vcglib/vcg/complex/algorithms/overlap_estimation.h

328 lines
16 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef OVERLAP_ESTIMATION_H
#define OVERLAP_ESTIMATION_H
#include <vcg/math/gen_normal.h>
#include <vcg/math/random_generator.h>
#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/complex/algorithms/closest.h>
#include <vcg/complex/algorithms/point_sampling.h>
#include <qdatetime.h>
using namespace std;
using namespace vcg;
/** \brief This class provides a strategy to estimate the overlap percentage of two range maps/point clouds.
*
* This class can be used, for exemple, into an automatic alignment process to check the quality of the
* transformation found; the idea is that bad alignments should have a small overlap. Two points are
* considered 'overlapping in the righ way' if they are close (i.e distance is less then \c consensusDist)
* and at the same time points' normals match quite well (i.e the angle between them is less then
* \c consensusNormalsAngle). The test to compute the overlap is perfomed on a given number of points
* (2500 is the default) sampled in a normal equalized way (default) or uniformly.
* \author Francesco Tonarelli
*/
template<class MESH_TYPE> class OverlapEstimation
{
public:
typedef MESH_TYPE MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename vector<VertexPointer>::iterator VertexPointerIterator;
typedef GridStaticPtr<VertexType, ScalarType > MeshGrid;
typedef tri::EmptyTMark<MeshType> MarkerVertex;
private:
/** Private simple class needed to perform sampling of pointers to vertexes. */
class VertexPointerSampler
{
public:
MeshType* m; //this is needed for advanced sampling (i.e poisson sampling)
VertexPointerSampler(){ m = new MeshType(); m->Tr.SetIdentity(); m->sfn=0; }
~VertexPointerSampler(){ if(m) delete m; }
vector<VertexType*> sampleVec;
void AddVert(VertexType &p){ sampleVec.push_back(&p); } //this function is the only we really need
void AddFace(const FaceType &f, const CoordType &p){}
void AddTextureSample(const FaceType &, const CoordType &, const Point2i &){}
};
public:
/** \brief Public class to hold parameters. Used to avoid endless list of parameters inside functions.
* \author Francesco Tonarelli
*/
class Parameters
{
public:
int samples; ///< Number of samples to check to compute the overlap. Higher values get more accurancy but requires more time.
int bestScore; ///< Score to overcome to paint \c mMov . If overlap estimation is called many times inside a loop, you can set this value in each iteration to paint \c mMov and see only the best overlap achived.
float consensusDist; ///< Consensus distance. Lower values should gat more accurancy; high values can lead to performance hit.
float consensusNormalsAngle; ///< Holds the the consensus angle for normals, in gradients. Lower values decrease accurancy, particulary for range maps with many peaks and high frequencies.
float threshold; ///< Consensus percentage requested to win consensus. Used to paint \c mMov. If the overlap overcames the \c threshold (and \c bestScore), \c mMov is painted.
bool normalEqualization; ///< Allows to use normal equalization sampling in consensus. If set to \c false uniform sampling is used instead. Uniform sampling is faster but less accurate.
bool paint; ///< Allows painting of \c mMov according to consensus. See Paint() for details.
void (*log)(int level, const char * f, ... ); ///< Pointer to a log function.
/** Constructor with default values. */
Parameters()
{
samples = 2500;
bestScore = 0;
consensusDist = 2.0f;
consensusNormalsAngle = 0.965f; //15 degrees.
threshold = 0.0f;
normalEqualization = true;
paint = false;
log = NULL;
}
};
private:
MeshType* mFix; /** Pointer to mesh \c mFix. */
MeshType* mMov; /** Pointer to mesh \c mMov. */
vector<vector<int> >* normBuckets; //structure to hold normals bucketing. Needed for normal equalized sampling during consensus
MeshGrid* gridFix; //variable to manage uniform grid
MarkerVertex markerFunctorFix; //variable to manage uniform grid
public:
/** Default constructor. */
OverlapEstimation() : normBuckets(NULL), gridFix(NULL){}
/** Default destructor. Deallocates structures. */
~OverlapEstimation(){
if(normBuckets) delete normBuckets;
if(gridFix) delete gridFix;
}
/** Set the fix mesh \c mFix. */
void SetFix(MeshType& m){ mFix = &m; }
/** Set the move mesh \c mMov. */
void SetMove(MeshType& m){ mMov = &m; }
/** Paint \c mMov according to the overlap estimation result. Works only if \c Compute() or \c Check() have
* been previously called with \c Parameters.paint=true .<br>Legend: \arg \e red: points overlaps correctly.
* \arg \e blue: points are too far to overlap. \arg \e yellow: points are close, but normals mismatch.
*/
void Paint()
{
for(VertexIterator vi=mMov->vert.begin(); vi!=mMov->vert.end(); vi++){
if(!(*vi).IsD()){
if((*vi).Q()==0.0) (*vi).C() = Color4b::Red;
if((*vi).Q()==1.0) (*vi).C() = Color4b::Yellow;
if((*vi).Q()==2.0) (*vi).C() = Color4b::Blue;
}
}
}
/** Initializes structures.
* @param param A reference to a \c Parameter class containing all the desidered options to estimate overlap.
* \return \c true if everything goes right.
*/
bool Init(Parameters& param){
//builds the uniform grid with mFix vertices
gridFix = new MeshGrid();
SetupGrid();
//if requested, group normals of mMov into 30 buckets. Buckets are used for Vertex Normal Equalization
//in consensus. Bucketing is done here once for all to speed up consensus.
if(normBuckets) {normBuckets->clear(); delete normBuckets; }
if(param.normalEqualization){
normBuckets = BucketVertexNormal(mMov->vert, 30);
assert(normBuckets);
}
return true;
}
/** Compute the overlap estimation between \c mFix and \c mMov.
* @param param A reference to a \c Parameter class containing all the desidered options to estimate overlap.
* \return The percentage of overlap in the range \c [0..1] .
*/
float Compute(Parameters& param)
{
return Check(param)/float(param.samples);
}
/** Compute the overlap estimation between \c mFix and \c mMov.
* @param param A reference to a \c Parameter class containing all the desidered options to estimate overlap.
* \return The number of points that overlap correctly. This number is in the range \c [0..param.samples] .
*/
//IMPORTANT: per vertex normals of mMov and mFix MUST BE PROVIDED YET NORMALIZED!!!
int Check(Parameters& param)
{
//pointer to a function to compute distance beetween points
vertex::PointDistanceFunctor<ScalarType> PDistFunct;
//if no buckets are provided get a vector of vertex pointers sampled uniformly
//else, get a vector of vertex pointers sampled in a normal equalized manner; used as query points
vector<VertexPointer> queryVert;
if(param.normalEqualization){
assert(normBuckets);
for(unsigned int i=0; i<mMov->vert.size(); i++) queryVert.push_back(&(mMov->vert[i]));//do a copy of pointers to vertexes
SampleVertNormalEqualized(queryVert, param.samples);
}
else{
SampleVertUniform(*mMov, queryVert, param.samples);
}
assert(queryVert.size()!=0);
//init variables for consensus
float consDist = param.consensusDist*(mMov->bbox.Diag()/100.0f); //consensus distance
int cons_succ = int(param.threshold*(param.samples/100.0f)); //score needed to pass consensus
int consensus = 0; //counts vertices in consensus
float dist; //holds the distance of the closest vertex found
VertexType* closestVertex = NULL; //pointer to the closest vertex
Point3<ScalarType> queryNrm; //the query point normal for consensus
CoordType queryPnt; //the query point for consensus
CoordType closestPnt; //the closest point found in consensus
Matrix33<ScalarType> inv33_matMov(mMov->Tr,3); //3x3 matrix needed to transform normals
Matrix33<ScalarType> inv33_matFix(Inverse(mFix->Tr),3); //3x3 matrix needed to transform normals
//consensus loop
VertexPointerIterator vi; int i;
for(i=0, vi=queryVert.begin(); vi!=queryVert.end(); vi++, i++)
{
dist = -1.0f;
//set query point; vertex coord is transformed properly in fix mesh coordinates space; the same for normals
queryPnt = Inverse(mFix->Tr) * (mMov->Tr * (*vi)->P());
queryNrm = inv33_matFix * (inv33_matMov * (*vi)->N());
//if query point is bbox, the look for a vertex in cDist from the query point
if(mFix->bbox.IsIn(queryPnt)) closestVertex = gridFix->GetClosest(PDistFunct,markerFunctorFix,queryPnt,consDist,dist,closestPnt);
else closestVertex=NULL; //out of bbox, we consider the point not in consensus...
if(closestVertex!=NULL && dist < consDist){
assert(closestVertex->P()==closestPnt); //coord and vertex pointer returned by getClosest must be the same
//point is in consensus distance, now we check if normals are near
if(queryNrm.dot(closestVertex->N())>param.consensusNormalsAngle) //15 degrees
{
consensus++; //got consensus
if(param.paint) (*vi)->Q() = 0.0f; //store 0 as quality
}
else{
if(param.paint) (*vi)->Q() = 1.0f; //store 1 as quality
}
}
else{
if(param.paint) (*vi)->Q() = 2.0f; //store 2 as quality
}
}
//Paint the mesh only if required and if consensus is the best ever found. Colors have been stores as numbers into quality attribute
if(param.paint){
if(consensus>=param.bestScore && consensus>=cons_succ) Paint();
}
return consensus;
}
private:
/** Fill the vector \c vert with \c sampleNum pointers to vertexes sampled uniformly from mesh \c m .
* @param m Source mesh.
* @param vert Destination vector.
* @param sampleNum Requested number of vertexes.
*/
void SampleVertUniform(MESH_TYPE& m, vector<typename MESH_TYPE::VertexPointer>& vert, int sampleNum)
{
VertexPointerSampler sampler;
tri::SurfaceSampling<MeshType, VertexPointerSampler>::VertexUniform(m, sampler, sampleNum);
for(unsigned int i=0; i<sampler.sampleVec.size(); i++) vert.push_back(sampler.sampleVec[i]);
}
/** Buckets normals of the vertexes contained in \c vert .
* \return A vector of vectors containing indexes to \c vert .
*/
vector<vector<int> >* BucketVertexNormal(typename MESH_TYPE::VertContainer& vert, int bucketDim = 30)
{
static vector<Point3f> NV;
if(NV.size()==0) GenNormal<float>::Uniform(bucketDim,NV);
vector<vector<int> >* BKT = new vector<vector<int> >(NV.size()); //NV size is greater then bucketDim, so don't change this!
int ind;
for(int i=0;i<vert.size();++i){
ind=GenNormal<float>::BestMatchingNormal(vert[i].N(),NV);
(*BKT)[ind].push_back(i);
}
return BKT;
}
/** Samples the \c vert vector in a normal equalized way.
* \return \c SampleNum pointers to vertexes sampled in a normal equalized way. Pointers are stored in
* the \c vert (i.e it is an \c in/out parameter).
*/
bool SampleVertNormalEqualized(vector<typename MESH_TYPE::VertexPointer>& vert, int SampleNum)
{
assert(normBuckets);
// vettore di contatori per sapere quanti punti ho gia' preso per ogni bucket
vector<int> BKTpos(normBuckets->size(),0);
if(SampleNum >= int(vert.size())) SampleNum= int(vert.size()-1);
int ind;
for(int i=0;i<SampleNum;){
ind=LocRnd(normBuckets->size()); // Scelgo un Bucket
int &CURpos = BKTpos[ind];
vector<int> &CUR = (*normBuckets)[ind];
if(CURpos<int(CUR.size())){
swap(CUR[CURpos], CUR[ CURpos + LocRnd((*normBuckets)[ind].size()-CURpos)]);
swap(vert[i],vert[CUR[CURpos]]);
++BKTpos[ind];
++i;
}
}
vert.resize(SampleNum);
return true;
}
/** Function to retrieve a static random number generator object.
* \return A \c SubtractiveRingRNG object.
*/
static math::SubtractiveRingRNG &LocRnd(){
static math::SubtractiveRingRNG myrnd(time(NULL));
return myrnd;
}
/** Gets a random number in the interval \c [0..n] . Number is
* produced by a \c SubtractiveRingRNG object initialized once for all.
* \return A random number in the interval \c [0..n] .
*/
static int LocRnd(int n){
return LocRnd().generate(n);
}
/** Put \c mFix into a grid. */
inline void SetupGrid()
{
gridFix->Set(mFix->vert.begin(),mFix->vert.end());
markerFunctorFix.SetMesh(mFix);
}
};
#endif // OVERLAP_ESTIMATION_H