254 lines
9.2 KiB
C++
254 lines
9.2 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
|
|
$Log: not supported by cvs2svn $
|
|
Revision 1.5 2004/05/14 03:15:09 ponchio
|
|
Redesigned partial version.
|
|
|
|
Revision 1.4 2004/05/07 12:46:08 cignoni
|
|
Restructured and adapted in a better way to opengl
|
|
|
|
Revision 1.3 2004/04/07 10:54:11 cignoni
|
|
Commented out unused parameter names and other minor warning related issues
|
|
|
|
Revision 1.2 2004/03/25 14:55:25 ponchio
|
|
Adding copyright.
|
|
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
#include <wrap/gui/trackmode.h>
|
|
#include <wrap/gui/trackball.h>
|
|
#include <vcg/space/intersection3.h>
|
|
#include <vcg/math/similarity.h>
|
|
#include <iostream>
|
|
using namespace std;
|
|
|
|
using namespace vcg;
|
|
/// Compute the plane plane perpedicular to view dir and passing through manip center
|
|
Plane3f TrackMode::GetViewPlane(const View<float> &camera, const Point3f ¢er) {
|
|
Point3f vp = camera.ViewPoint();
|
|
|
|
Plane3f pl;
|
|
Point3f plnorm= vp - center;
|
|
plnorm.Normalize();
|
|
pl.Set(plnorm, plnorm*center);
|
|
return pl;
|
|
}
|
|
|
|
/// Given a point p in window coordinate it compute the point where the lie p
|
|
/// over the plane paralell the viewplane and passing through the center of the trackball
|
|
|
|
Point3f TrackMode::HitViewPlane(Trackball *tb, const Point3f &p) {
|
|
// plane perpedicular to view direction and passing through manip center
|
|
Plane3f vp = GetViewPlane(tb->camera, tb->center);
|
|
|
|
Line3fN ln= tb->camera.ViewLineFromWindow(Point3f(p[0],p[1],0));
|
|
|
|
Point3f PonVP;
|
|
bool res = Intersection<float>(vp,ln,PonVP);
|
|
return PonVP;
|
|
}
|
|
|
|
// the most important function; given a new point in window coord, it update the transformation computed by the trackball.
|
|
// General scheme : the transformation is a function of just the begin and current mouse positions, with greater precision is function of just two 3d points over the manipulator.
|
|
void SphereMode::Apply(Trackball *tb, Point3f new_point) {
|
|
Point3f hitOld=Hit(tb, tb->last_point);
|
|
Point3f hitNew=Hit(tb, new_point);
|
|
tb->Hits.push_back(hitNew);
|
|
|
|
Point3f axis = (hitNew- tb->center)^(hitOld- tb->center);
|
|
|
|
// Figure out how much to rotate around that axis.
|
|
//float phi=Angle((hitNew- tb->center),(hitOld- tb->center));
|
|
float phi = Distance(hitNew,hitOld) / tb->radius;
|
|
|
|
tb->track.rot = tb->last_track.rot * Quaternionf(phi,axis);
|
|
/* Codice Originale Ponchio
|
|
|
|
Point3f ref = (tb->camera.ViewPoint() - tb->center).Normalize();
|
|
Point3f axis = hitNew^ref;
|
|
axis.Normalize();
|
|
float dist = (hitNew - ref).Norm()/2;
|
|
float phi = 2 * math::Asin(dist);
|
|
|
|
Point3f oaxis = hitOld^ref;
|
|
oaxis.Normalize();
|
|
float odist = (hitOld - ref).Norm()/2;
|
|
float ophi = 2 * math::Asin(odist);
|
|
|
|
|
|
Quaternionf r = tb->last_track.rot;
|
|
Quaternionf diff = r * Quaternionf(phi, axis) *
|
|
Quaternionf(-ophi, oaxis) * Inverse(r);
|
|
|
|
tb->track = Similarityf().SetRotate(diff) * tb->last_track;*/
|
|
|
|
}
|
|
|
|
/*
|
|
dato un punto in coordinate di schermo e.g. in pixel stile opengl
|
|
calcola il punto di intersezione tra la viewline che passa per viewpoint e per hitplane e l'iperboloide.
|
|
l'iperboloide si assume essere quello di rotazione attorno alla retta viewpoint-center e di raggio rad
|
|
si assume come sistema di riferimento quello con l'origine su center ecome x la retta center-viewpoint
|
|
|
|
eq linea
|
|
hitplane.y
|
|
y = - ----------- * x + hitplane.y
|
|
viewpoint.x
|
|
|
|
eq hiperboloide di raggio r (e.g. che passa per (r/sqrt2,r/sqrt2)
|
|
|
|
1
|
|
y = --- * (r^2 /2.0)
|
|
x
|
|
|
|
hitplane.y
|
|
----------- * x^2 - hitplane.y *x + (r^2/2.0) == 0
|
|
viewpoint.x
|
|
|
|
*/
|
|
bool SphereMode::HitHyper(Point3f center, float radius, Point3f viewpoint, Plane3f vp, Point3f hitplane, Point3f &hit)
|
|
{
|
|
float hitplaney = Distance(center,hitplane);
|
|
float viewpointx= Distance(center,viewpoint);
|
|
|
|
float a = hitplaney/viewpointx;
|
|
float b = -hitplaney;
|
|
float c = radius*radius/2.0f;
|
|
float delta = b*b - 4*a*c;
|
|
float x1,x2,xval,yval;
|
|
if(delta>0)
|
|
{
|
|
x1= (- b - sqrt(delta))/(2.0*a);
|
|
x2= (- b + sqrt(delta))/(2.0*a);
|
|
|
|
xval=x1; // always take the minimum value solution
|
|
yval=c/xval; // alternatively it also oould be the other part of the equation yval=-(hitplaney/viewpointx)*xval+hitplaney;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
// Computing the result in 3d space;
|
|
Point3f dirRadial=hitplane-center;
|
|
dirRadial.Normalize();
|
|
Point3f dirView=vp.Direction();
|
|
dirView.Normalize();
|
|
hit= center +dirRadial*yval+dirView*xval;
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
/* dato un punto in coordinate di schermo e.g. in pixel stile opengl
|
|
restituisce un punto in coordinate di mondo sulla superficie
|
|
della trackball.
|
|
La superficie della trackball e' data da una sfera + una porzione
|
|
di iperboloide di rotazione.
|
|
Assumiamo la sfera di raggio unitario e centrata sull'origine e
|
|
di guardare lungo la y negativa.
|
|
|
|
X 0 sqrt(1/2) 1
|
|
eq sfera: y=sqrt(1-x*x); 1 sqrt(1/2) 0
|
|
eq iperboloide : y=1/2*x; inf sqrt(1/2) 1/2
|
|
eq cono y=x+sqrt(2);
|
|
|
|
*/
|
|
|
|
Point3f SphereMode::Hit(Trackball *tb, const Point3f &p) {
|
|
const float Thr = tb->radius/math::Sqrt(2.0f);
|
|
|
|
Line3fN vn = tb->camera.ViewLineFromModel(tb->center);
|
|
Line3fN ln = tb->camera.ViewLineFromWindow(Point3f(p[0],p[1],0));
|
|
Point3f viewpoint = tb->camera.ViewPoint();
|
|
Plane3f vp = GetViewPlane(tb->camera, tb->center);
|
|
Point3f hit,hitPlane,hitSphere,hitSphere1,hitSphere2,hitHyper;
|
|
Intersection<float>(vp, ln, hitPlane);
|
|
Sphere3f sphere(tb->center,tb->radius);
|
|
bool resSp = Intersection<float>(sphere, ln, hitSphere1, hitSphere2);
|
|
if(Distance(viewpoint,hitSphere1)<Distance(viewpoint,hitSphere2))
|
|
hitSphere=hitSphere1;
|
|
else hitSphere=hitSphere2;
|
|
|
|
float dl=Distance(ln,tb->center);
|
|
bool resHp = HitHyper(tb->center, tb->radius, viewpoint, vp, hitPlane, hitHyper) ;
|
|
|
|
// four cases
|
|
|
|
// 1) Degenerate line tangent to both sphere and hyperboloid!
|
|
if((!resSp && !resHp) )
|
|
{
|
|
hit=ClosestPoint(ln,tb->center);
|
|
//printf("closest point to line %f\n",Distance(hit,tb->center));
|
|
return hit;
|
|
}
|
|
if((resSp && !resHp) ) return hitSphere; // 2) line cross only the sphere
|
|
if((!resSp && resHp) ) return hitHyper; // 3) line cross only the hyperboloid
|
|
|
|
// 4) line cross both sphere and hyperboloid: choose according angle.
|
|
float angleDeg=math::ToDeg(Angle((viewpoint-tb->center),(hitSphere-tb->center)));
|
|
//printf("Angle %f (%5.2f %5.2f %5.2f) (%5.2f %5.2f %5.2f)\n",angleDeg,hitSphere[0],hitSphere[1],hitSphere[2],hitHyper[0],hitHyper[1],hitHyper[2]);
|
|
if(angleDeg<45) return hitSphere;
|
|
else return hitHyper;
|
|
|
|
//
|
|
// Codice ORIGINALE PONCHIO
|
|
//vp.SetOffset(vp.Offset() + Thr);
|
|
|
|
//Point3f hit;
|
|
//bool res = Intersection<float>(vp, ln, hit);
|
|
//float d = Distance(tb->center - vn.Direction()*Thr, hit);
|
|
//if(d < Thr) {
|
|
// Point3f hit2;
|
|
// Sphere3f sphere(tb->center, tb->radius);
|
|
// bool res = Intersection<float>(sphere, ln, hit, hit2);
|
|
|
|
// //find closest intersection to sphere
|
|
// float d = (hit - viewpoint).Norm();
|
|
// float d2 = (hit2 - viewpoint).Norm();
|
|
// if(d > d2) hit = hit2;
|
|
// hit -= tb->center;
|
|
//} else {
|
|
// if(d > 2.99 * Thr)
|
|
// d = 2.99 * Thr;
|
|
// Point3f norm = (hit - tb->center)^(viewpoint - tb->center);
|
|
// norm.Normalize();
|
|
// float phi = -M_PI/4 - 3*M_PI/8 *(d - Thr)/Thr;
|
|
|
|
// Quaternionf q(phi, norm);
|
|
// hit = q.Rotate((viewpoint - tb->center).Normalize() * tb->radius);
|
|
//}
|
|
// hit.Normalize();
|
|
// return hit;
|
|
}
|
|
|
|
void PlaneMode::Apply(Trackball *tb, Point3f new_point) {
|
|
Point3f hitOld=HitViewPlane(tb, tb->last_point);
|
|
Point3f hitNew=HitViewPlane(tb, new_point);
|
|
|
|
}
|