vcglib/vcg/complex/trimesh/create/advancing_front.h

501 lines
15 KiB
C++

#ifndef MLS_ADVANCE_H
#define MLS_ADVANCE_H
#include <iostream>
#include <list>
#include <wrap/callback.h>
#include <vcg/complex/trimesh/update/topology.h>
#include <vcg/complex/trimesh/update/flag.h>
namespace vcg {
namespace tri {
class FrontEdge {
public:
int v0, v1, v2; //v0, v1 represent the FrontEdge, v2 the other vertex
//in the face this FrontEdge belongs to
int face; //index of the face
bool active; //keep tracks of wether it is in front or in deads
//the loops in the front are mantained as a double linked list
std::list<FrontEdge>::iterator next;
std::list<FrontEdge>::iterator previous;
FrontEdge() {}
FrontEdge(int _v0, int _v1, int _v2, int _face):
v0(_v0), v1(_v1), v2(_v2), face(_face), active(true) {
assert(v0 != v1 && v1 != v2 && v0 != v2);
}
};
template <class MESH> class AdvancingFront {
public:
typedef typename MESH::VertexType VertexType;
typedef typename MESH::FaceType FaceType;
typedef typename MESH::ScalarType ScalarType;
typedef typename MESH::VertexType::CoordType Point3x;
// protected:
std::list<FrontEdge> front;
std::list<FrontEdge> deads;
std::vector<int> nb; //number of fronts a vertex is into,
//this is used for the Visited and Border flags
//but adding topology may not be needed anymore
public:
MESH &mesh; //this structure will be filled by the algorithm
AdvancingFront(MESH &_mesh): mesh(_mesh) {
UpdateFlags<MESH>::FaceBorderFromNone(mesh);
UpdateFlags<MESH>::VertexBorderFromFace(mesh);
nb.clear();
nb.resize(mesh.vert.size(), 0);
CreateLoops();
}
virtual ~AdvancingFront() {}
virtual ScalarType radi() { return 0; }
void BuildMesh(CallBackPos call = NULL, int interval = 512) {
while(1) {
if(call) call(0, "Advancing front");
for(int i = 0; i < interval; i++) {
if(!front.size() && !SeedFace()) return;
AddFace();
}
}
}
protected:
//Implement these functions in your subclass
virtual bool Seed(int &v0, int &v1, int &v2) = 0;
virtual int Place(FrontEdge &e, std::list<FrontEdge>::iterator &touch) = 0;
bool CheckFrontEdge(int v0, int v1) {
int tot = 0;
//HACK to speed up things until i can use a seach structure
// int i = mesh.face.size() - 4*(front.size());
// if(front.size() < 100) i = mesh.face.size() - 100;
int i = 0;
if(i < 0) i = 0;
for(; i < (int)mesh.face.size(); i++) {
FaceType &f = mesh.face[i];
for(int k = 0; k < 3; k++) {
if(v1== (int)f.V(k) && v0 == (int)f.V((k+1)%3)) ++tot;
else if(v0 == (int)f.V(k) && v1 == (int)f.V((k+1)%3)) { //orientation non constistent
return false;
}
}
if(tot >= 2) { //non manifold
return false;
}
}
return true;
}
//create the FrontEdge loops from seed faces
void CreateLoops() {
VertexType *start = &*mesh.vert.begin();
for(int i = 0; i < (int)mesh.face.size(); i++) {
FaceType &f = mesh.face[i];
if(f.IsD()) continue;
for(int k = 0; k < 3; k++) {
if(f.IsB(k)) {
NewEdge(FrontEdge(f.V0(k) - start, f.V1(k) - start, f.V2(k) - start, i));
nb[f.V0(k)-start]++;
}
}
}
for(std::list<FrontEdge>::iterator s = front.begin(); s != front.end(); s++) {
(*s).previous = front.end();
(*s).next = front.end();
}
//now create loops:
for(std::list<FrontEdge>::iterator s = front.begin(); s != front.end(); s++) {
for(std::list<FrontEdge>::iterator j = front.begin(); j != front.end(); j++) {
if(s == j) continue;
if((*s).v1 != (*j).v0) continue;
if((*j).previous != front.end()) continue;
(*s).next = j;
(*j).previous = s;
break;
}
}
for(std::list<FrontEdge>::iterator s = front.begin(); s != front.end(); s++) {
assert((*s).next != front.end());
assert((*s).previous != front.end());
}
}
bool SeedFace() {
int v[3];
bool success = Seed(v[0], v[1], v[2]);
if(!success) return false;
nb.resize(mesh.vert.size(), 0);
//create the border of the first face
std::list<FrontEdge>::iterator e = front.end();
std::list<FrontEdge>::iterator last = e;
std::list<FrontEdge>::iterator first;
for(int i = 0; i < 3; i++) {
int v0 = v[i];
int v1 = v[((i+1)%3)];
int v2 = v[((i+2)%3)];
mesh.vert[v0].SetB();
nb[v[i]]++;
e = front.insert(front.begin(), FrontEdge(v0, v1, v2, mesh.face.size()));
if(i != 0) {
(*last).next = e;
(*e).previous = last;
} else
first = e;
last = e;
}
//connect last and first
(*last).next = first;
(*first).previous = last;
AddFace(v[0], v[1], v[2]);
return true;
}
public:
bool AddFace() {
if(!front.size()) return false;
std::list<FrontEdge>::iterator ei = front.begin();
FrontEdge &current = *ei;
FrontEdge &previous = *current.previous;
FrontEdge &next = *current.next;
int v0 = current.v0, v1 = current.v1;
assert(nb[v0] < 10 && nb[v1] < 10);
std::list<FrontEdge>::iterator touch = front.end();
int v2 = Place(current, touch);
if(v2 == -1) {
KillEdge(ei);
return false;
}
assert(v2 != v0 && v2 != v1);
if(touch != front.end()) {
//check for orientation and manifoldness
//touch == current.previous?
if(v2 == previous.v0) {
if(!CheckEdge(v2, v1)) {
KillEdge(ei);
return false;
}
/*touching previous FrontEdge (we reuse previous)
next
------->v2 -----> v1------>
\ /
\ /
previous \ / current
\ /
v0 */
Detach(v0);
std::list<FrontEdge>::iterator up = NewEdge(FrontEdge(v2, v1, v0, mesh.face.size()));
MoveFront(up);
(*up).previous = previous.previous;
(*up).next = current.next;
(*previous.previous).next = up;
next.previous = up;
Erase(current.previous);
Erase(ei);
Glue(up);
//touch == (*current.next).next
} else if(v2 == next.v1) {
if(!CheckEdge(v0, v2)) {
KillEdge(ei);
return false;
}
/*touching next FrontEdge (we reuse next)
previous
------->v0 -----> v2------>
\ /
\ /
\ / next
\ /
v1 */
Detach(v1);
std::list<FrontEdge>::iterator up = NewEdge(FrontEdge(v0, v2, v1, mesh.face.size()));
MoveFront(up);
(*up).previous = current.previous;
(*up).next = (*current.next).next;
previous.next = up;
(*next.next).previous = up;
Erase(current.next);
Erase(ei);
Glue(up);
} else {
if(!CheckEdge(v0, v2) || !CheckEdge(v2, v1)) {
KillEdge(ei);
return false;
}
//touching some loop: split (or merge it is local does not matter.
//like this
/*
left right
<--------v2-<------
/|\
/ \
up / \ down
/ \
/ V
----v0 - - - > v1---------
current */
std::list<FrontEdge>::iterator left = touch;
std::list<FrontEdge>::iterator right = (*touch).previous;
//this would be a really bad join
if(v1 == (*right).v0 || v0 == (*left).v1) {
KillEdge(ei);
return false;
}
nb[v2]++;
std::list<FrontEdge>::iterator down = NewEdge(FrontEdge(v2, v1, v0, mesh.face.size()));
std::list<FrontEdge>::iterator up = NewEdge(FrontEdge(v0, v2, v1, mesh.face.size()));
(*right).next = down;
(*down).previous = right;
(*down).next = current.next;
next.previous = down;
(*left).previous = up;
(*up).next = left;
(*up).previous = current.previous;
previous.next = up;
Erase(ei);
}
} else {
// assert(CheckEdge(v0, v2));
// assert(CheckEdge(v2, v1));
/* adding a new vertex
v2
/|\
/ \
up / \ down
/ \
/ V
----v0 - - - > v1--------- */
assert(!mesh.vert[v2].IsB()); //fatal error! a new point is already a border?
nb[v2]++;
mesh.vert[v2].SetB();
std::list<FrontEdge>::iterator down = NewEdge(FrontEdge(v2, v1, v0, mesh.face.size()));
std::list<FrontEdge>::iterator up = NewEdge(FrontEdge(v0, v2, v1, mesh.face.size()));
(*down).previous = up;
(*up).next = down;
(*down).next = current.next;
next.previous = down;
(*up).previous = current.previous;
previous.next = up;
Erase(ei);
}
AddFace(v0, v2, v1);
return false;
}
protected:
void AddFace(int v0, int v1, int v2) {
assert(v0 < (int)mesh.vert.size() && v1 < (int)mesh.vert.size() && v2 < (int)mesh.vert.size());
FaceType face;
face.V(0) = &mesh.vert[v0];
face.V(1) = &mesh.vert[v1];
face.V(2) = &mesh.vert[v2];
ComputeNormalizedNormal(face);
mesh.face.push_back(face);
mesh.fn++;
}
void AddVertex(VertexType &vertex) {
VertexType *oldstart = NULL;
if(mesh.vert.size()) oldstart = &*mesh.vert.begin();
mesh.vert.push_back(vertex);
mesh.vn++;
VertexType *newstart = &*mesh.vert.begin();
if(oldstart && oldstart != newstart) {
for(int i = 0; i < mesh.face.size(); i++) {
FaceType &face = mesh.face[i];
for(int k = 0; k < 3; k++)
face.V(k) = newstart + (face.V(k) - oldstart);
}
}
nb.push_back(0);
}
bool CheckEdge(int v0, int v1) {
int tot = 0;
//HACK to speed up things until i can use a seach structure
/* int i = mesh.face.size() - 4*(front.size());
if(front.size() < 100) i = mesh.face.size() - 100;
if(i < 0) i = 0;*/
VertexType *vv0 = &(mesh.vert[v0]);
VertexType *vv1 = &(mesh.vert[v1]);
for(int i = 0; i < (int)mesh.face.size(); i++) {
FaceType &f = mesh.face[i];
for(int k = 0; k < 3; k++) {
if(vv0 == f.V0(k) && vv1 == f.V1(k)) //orientation non constistent
return false;
else if(vv1 == f.V0(k) && vv0 == f.V1(k)) ++tot;
}
if(tot >= 2) { //non manifold
return false;
}
}
return true;
}
//front management:
//Add a new FrontEdge to the back of the queue
std::list<FrontEdge>::iterator NewEdge(FrontEdge e) {
return front.insert(front.end(), e);
}
//move an Edge among the dead ones
void KillEdge(std::list<FrontEdge>::iterator e) {
(*e).active = false;
deads.splice(deads.end(), front, e);
}
void Erase(std::list<FrontEdge>::iterator e) {
if((*e).active) front.erase(e);
else deads.erase(e);
}
//move an FrontEdge to the back of the queue
void MoveBack(std::list<FrontEdge>::iterator e) {
front.splice(front.end(), front, e);
}
void MoveFront(std::list<FrontEdge>::iterator e) {
front.splice(front.begin(), front, e);
}
//check if e can be sewed with one of oits neighbours
bool Glue(std::list<FrontEdge>::iterator e) {
return Glue((*e).previous, e) || Glue(e, (*e).next);
}
//Glue toghether a and b (where a.next = b
bool Glue(std::list<FrontEdge>::iterator a, std::list<FrontEdge>::iterator b) {
if((*a).v0 != (*b).v1) return false;
std::list<FrontEdge>::iterator previous = (*a).previous;
std::list<FrontEdge>::iterator next = (*b).next;
(*previous).next = next;
(*next).previous = previous;
Detach((*a).v1);
Detach((*a).v0);
Erase(a);
Erase(b);
return true;
}
void Detach(int v) {
assert(nb[v] > 0);
if(--nb[v] == 0) {
mesh.vert[v].ClearB();
}
}
};
template <class MESH> class AdvancingTest: public AdvancingFront<MESH> {
public:
typedef typename MESH::VertexType VertexType;
typedef typename MESH::VertexIterator VertexIterator;
typedef typename MESH::FaceType FaceType;
typedef typename MESH::FaceIterator FaceIterator;
typedef typename MESH::ScalarType ScalarType;
typedef typename MESH::VertexType::CoordType Point3x;
AdvancingTest(MESH &_mesh): AdvancingFront<MESH>(_mesh) {}
bool Seed(int &v0, int &v1, int &v2) {
VertexType v[3];
v[0].P() = Point3x(0, 0, 0);
v[1].P() = Point3x(1, 0, 0);
v[2].P() = Point3x(0, 1, 0);
v[0].ClearFlags();
v[1].ClearFlags();
v[2].ClearFlags();
v0 = this->mesh.vert.size();
AddVertex(v[0]);
v1 = this->mesh.vert.size();
AddVertex(v[1]);
v2 = this->mesh.vert.size();
AddVertex(v[2]);
return true;
}
int Place(FrontEdge &e, std::list<FrontEdge>::iterator &touch) {
Point3f p[3];
p[0] = this->mesh.vert[e.v0].P();
p[1] = this->mesh.vert[e.v1].P();
p[2] = this->mesh.vert[e.v2].P();
Point3f point = p[0] + p[1] - p[2];
int vn = this->mesh.vert.size();
for(int i = 0; i < this->mesh.vert.size(); i++) {
if((this->mesh.vert[i].P() - point).Norm() < 0.1) {
vn = i;
//find the border
assert(this->mesh.vert[i].IsB());
for(std::list<FrontEdge>::iterator k = this->front.begin(); k != this->front.end(); k++)
if((*k).v0 == i) touch = k;
for(std::list<FrontEdge>::iterator k = this->deads.begin(); k != this->deads.end(); k++)
if((*k).v0 == i) touch = k;
break;
}
}
if(vn == this->mesh.vert.size()) {
VertexType v;
v.P() = point;
v.ClearFlags();
AddVertex(v);
}
return vn;
}
};
}//namespace tri
}//namespace vcg
#endif