vcglib/apps/metro/sampling.h

605 lines
21 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB__SAMPLING
#define __VCGLIB__SAMPLING
#include <time.h>
#include <vcg/complex/algorithms/closest.h>
#include <vcg/space/box3.h>
#include <vcg/math/histogram.h>
#include <vcg/space/color4.h>
#include <vcg/simplex/face/distance.h>
#include <vcg/complex/algorithms/update/color.h>
#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/space/index/aabb_binary_tree/aabb_binary_tree.h>
#include <vcg/space/index/octree.h>
#include <vcg/space/index/spatial_hashing.h>
namespace vcg
{
struct SamplingFlags{
enum{
HIST = 0x0001,
VERTEX_SAMPLING = 0x0002,
EDGE_SAMPLING = 0x0004,
FACE_SAMPLING = 0x0008,
MONTECARLO_SAMPLING = 0x0010,
SUBDIVISION_SAMPLING = 0x0020,
SIMILAR_SAMPLING = 0x0040,
NO_SAMPLING = 0x0070,
SAVE_ERROR = 0x0100,
INCLUDE_UNREFERENCED_VERTICES = 0x0200,
USE_STATIC_GRID = 0x0400,
USE_HASH_GRID = 0x0800,
USE_AABB_TREE = 0x1000,
USE_OCTREE = 0x2000
};
};
// -----------------------------------------------------------------------------------------------
template <class MetroMesh>
class Sampling
{
public:
private:
typedef typename MetroMesh::CoordType CoordType;
typedef typename MetroMesh::ScalarType ScalarType;
typedef typename MetroMesh::VertexType VertexType;
typedef typename MetroMesh::VertexPointer VertexPointer;
typedef typename MetroMesh::VertexIterator VertexIterator;
typedef typename MetroMesh::FaceIterator FaceIterator;
typedef typename MetroMesh::FaceType FaceType;
typedef typename MetroMesh::FaceContainer FaceContainer;
typedef GridStaticPtr <FaceType, typename MetroMesh::ScalarType > MetroMeshGrid;
typedef SpatialHashTable <FaceType, typename MetroMesh::ScalarType > MetroMeshHash;
typedef AABBBinaryTreeIndex <FaceType, typename MetroMesh::ScalarType, vcg::EmptyClass> MetroMeshAABB;
typedef Octree <FaceType, typename MetroMesh::ScalarType > MetroMeshOctree;
typedef Point3<typename MetroMesh::ScalarType> Point3x;
// data structures
MetroMesh &S1;
MetroMesh &S2;
MetroMeshGrid gS2;
MetroMeshHash hS2;
MetroMeshAABB tS2;
MetroMeshOctree oS2;
unsigned int n_samples_per_face ;
float n_samples_edge_to_face_ratio ;
float bbox_factor ;
float inflate_percentage ;
unsigned int min_size ;
int n_hist_bins ;
int print_every_n_elements ;
int referredBit ;
// parameters
double dist_upper_bound;
double n_samples_per_area_unit;
unsigned long n_samples_target;
int Flags;
// results
Histogram<double> hist;
unsigned long n_total_samples;
unsigned long n_total_area_samples;
unsigned long n_total_edge_samples;
unsigned long n_total_vertex_samples;
double max_dist;
double mean_dist;
double RMS_dist;
double volume;
double area_S1;
// globals
int n_samples;
// private methods
inline double ComputeMeshArea(MetroMesh & mesh);
float AddSample(const Point3x &p);
inline void AddRandomSample(FaceIterator &T);
inline void SampleEdge(const Point3x & v0, const Point3x & v1, int n_samples_per_edge);
void VertexSampling();
void EdgeSampling();
void FaceSubdiv(const Point3x & v0, const Point3x &v1, const Point3x & v2, int maxdepth);
void SimilarTriangles(const Point3x &v0, const Point3x &v1, const Point3x &v2, int n_samples_per_edge);
void MontecarloFaceSampling();
void SubdivFaceSampling();
void SimilarFaceSampling();
public :
// public methods
Sampling(MetroMesh &_s1, MetroMesh &_s2);
~Sampling();
void Hausdorff();
double GetArea() {return area_S1;}
double GetDistMax() {return max_dist;}
double GetDistMean() {return mean_dist;}
double GetDistRMS() {return RMS_dist;}
double GetDistVolume() {return volume;}
unsigned long GetNSamples() {return n_total_samples;}
unsigned long GetNAreaSamples() {return n_total_area_samples;}
unsigned long GetNEdgeSamples() {return n_total_edge_samples;}
unsigned long GetNVertexSamples() {return n_total_vertex_samples;}
double GetNSamplesPerAreaUnit() {return n_samples_per_area_unit;}
unsigned long GetNSamplesTarget() {return n_samples_target;}
Histogram<double> &GetHist() {return hist;}
void SetFlags(int flags) {Flags = flags;}
void ClearFlag(int flag) {Flags &= (flag ^ -1);}
void SetParam(double _n_samp) {n_samples_target = _n_samp;}
void SetSamplesTarget(unsigned long _n_samp);
void SetSamplesPerAreaUnit(double _n_samp);
};
// -----------------------------------------------------------------------------------------------
// constructor
template <class MetroMesh>
Sampling<MetroMesh>::Sampling(MetroMesh &_s1, MetroMesh &_s2):S1(_s1),S2(_s2)
{
Flags = 0;
area_S1 = ComputeMeshArea(_s1);
// set default numbers
n_samples_per_face = 10;
n_samples_edge_to_face_ratio = 0.1f;
bbox_factor = 0.1f;
inflate_percentage = 0.02f;
min_size = 125; /* 125 = 5^3 */
n_hist_bins = 256;
print_every_n_elements = S1.fn/100;
if(print_every_n_elements <= 1)
print_every_n_elements = 2;
referredBit = VertexType::NewBitFlag();
// store the unreferred vertices
FaceIterator fi; VertexIterator vi; int i;
for(fi = _s1.face.begin(); fi!= _s1.face.end(); ++fi)
for(i=0;i<3;++i) (*fi).V(i)->SetUserBit(referredBit);
}
template <class MetroMesh>
Sampling<MetroMesh>::~Sampling()
{
VertexType::DeleteBitFlag(referredBit);
}
// set sampling parameters
template <class MetroMesh>
void Sampling<MetroMesh>::SetSamplesTarget(unsigned long _n_samp)
{
n_samples_target = _n_samp;
n_samples_per_area_unit = n_samples_target / (double)area_S1;
}
template <class MetroMesh>
void Sampling<MetroMesh>::SetSamplesPerAreaUnit(double _n_samp)
{
n_samples_per_area_unit = _n_samp;
n_samples_target = (unsigned long)((double) n_samples_per_area_unit * area_S1);
}
// auxiliary functions
template <class MetroMesh>
inline double Sampling<MetroMesh>::ComputeMeshArea(MetroMesh & mesh)
{
FaceIterator face;
double area = 0.0;
for(face=mesh.face.begin(); face != mesh.face.end(); face++)
if(!(*face).IsD())
area += DoubleArea(*face);
return area/2.0;
}
template <class MetroMesh>
float Sampling<MetroMesh>::AddSample(const Point3x &p )
{
FaceType *f=0;
Point3x normf, bestq, ip;
ScalarType dist;
dist = dist_upper_bound;
// compute distance between p_i and the mesh S2
if(Flags & SamplingFlags::USE_AABB_TREE)
f=tri::GetClosestFaceEP<MetroMesh,MetroMeshAABB>(S2, tS2, p, dist_upper_bound, dist, normf, bestq, ip);
if(Flags & SamplingFlags::USE_HASH_GRID)
f=tri::GetClosestFaceEP<MetroMesh,MetroMeshHash>(S2, hS2, p, dist_upper_bound, dist, normf, bestq, ip);
if(Flags & SamplingFlags::USE_STATIC_GRID)
f=tri::GetClosestFaceEP<MetroMesh,MetroMeshGrid>(S2, gS2, p, dist_upper_bound, dist, normf, bestq, ip);
if (Flags & SamplingFlags::USE_OCTREE)
f=tri::GetClosestFaceEP<MetroMesh,MetroMeshOctree>(S2, oS2, p, dist_upper_bound, dist, normf, bestq, ip);
// update distance measures
if(dist == dist_upper_bound)
return -1.0;
if(dist > max_dist)
max_dist = dist; // L_inf
mean_dist += dist; // L_1
RMS_dist += dist*dist; // L_2
n_total_samples++;
if(Flags & SamplingFlags::HIST)
hist.Add((float)fabs(dist));
return (float)dist;
}
// -----------------------------------------------------------------------------------------------
// --- Vertex Sampling ---------------------------------------------------------------------------
template <class MetroMesh>
void Sampling<MetroMesh>::VertexSampling()
{
// Vertex sampling.
int cnt = 0;
float error;
printf("Vertex sampling\n");
VertexIterator vi;
typename std::vector<VertexPointer>::iterator vif;
for(vi=S1.vert.begin();vi!=S1.vert.end();++vi)
if( (*vi).IsUserBit(referredBit) || // it is referred
((Flags&SamplingFlags::INCLUDE_UNREFERENCED_VERTICES) != 0) ) //include also unreferred
{
error = AddSample((*vi).cP());
n_total_vertex_samples++;
// save vertex quality
if(Flags & SamplingFlags::SAVE_ERROR) (*vi).Q() = error;
// print progress information
if(!(++cnt % print_every_n_elements))
printf("Sampling vertices %d%%\r", (100 * cnt/S1.vn));
}
printf(" \r");
}
// -----------------------------------------------------------------------------------------------
// --- Edge Sampling -----------------------------------------------------------------------------
template <class MetroMesh>
inline void Sampling<MetroMesh>::SampleEdge(const Point3x & v0, const Point3x & v1, int n_samples_per_edge)
{
// uniform sampling of the segment v0v1.
Point3x e((v1-v0)/(double)(n_samples_per_edge+1));
int i;
for(i=1; i <= n_samples_per_edge; i++)
{
AddSample(v0 + e*i);
n_total_edge_samples++;
}
}
template <class MetroMesh>
void Sampling<MetroMesh>::EdgeSampling()
{
// Edge sampling.
typedef std::pair<VertexPointer, VertexPointer> pvv;
std::vector< pvv > Edges;
printf("Edge sampling\n");
// compute edge list.
FaceIterator fi;
for(fi=S1.face.begin(); fi != S1.face.end(); fi++)
for(int i=0; i<3; ++i)
{
Edges.push_back(std::make_pair((*fi).V0(i),(*fi).V1(i)));
if(Edges.back().first > Edges.back().second)
std::swap(Edges.back().first, Edges.back().second);
}
sort(Edges.begin(), Edges.end());
typename std::vector< pvv>::iterator edgeend = unique(Edges.begin(), Edges.end());
Edges.resize(edgeend-Edges.begin());
// sample edges.
typename std::vector<pvv>::iterator ei;
double n_samples_per_length_unit;
double n_samples_decimal = 0.0;
int cnt=0;
if(Flags & SamplingFlags::FACE_SAMPLING)
n_samples_per_length_unit = sqrt((double)n_samples_per_area_unit);
else
n_samples_per_length_unit = n_samples_per_area_unit;
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
{
n_samples_decimal += Distance((*ei).first->cP(),(*ei).second->cP()) * n_samples_per_length_unit;
n_samples = (int) n_samples_decimal;
SampleEdge((*ei).first->cP(), (*ei).second->cP(), (int) n_samples);
n_samples_decimal -= (double) n_samples;
// print progress information
if(!(++cnt % print_every_n_elements))
printf("Sampling edge %lu%%\r", (100 * cnt/Edges.size()));
}
printf(" \r");
}
// -----------------------------------------------------------------------------------------------
// --- Face Sampling -----------------------------------------------------------------------------
// Montecarlo sampling.
template <class MetroMesh>
inline void Sampling<MetroMesh>::AddRandomSample(FaceIterator &T)
{
// random sampling over the input face.
double rnd_1, rnd_2;
// vertices of the face T.
Point3x p0(T->V(0)->cP());
Point3x p1(T->V(1)->cP());
Point3x p2(T->V(2)->cP());
// calculate two edges of T.
Point3x v1(p1 - p0);
Point3x v2(p2 - p0);
// choose two random numbers.
rnd_1 = (double)rand() / (double)RAND_MAX;
rnd_2 = (double)rand() / (double)RAND_MAX;
if(rnd_1 + rnd_2 > 1.0)
{
rnd_1 = 1.0 - rnd_1;
rnd_2 = 1.0 - rnd_2;
}
// add a random point on the face T.
AddSample (p0 + (v1 * rnd_1 + v2 * rnd_2));
n_total_area_samples++;
}
template <class MetroMesh>
void Sampling<MetroMesh>::MontecarloFaceSampling()
{
// Montecarlo sampling.
double n_samples_decimal = 0.0;
FaceIterator fi;
srand(clock());
// printf("Montecarlo face sampling\n");
for(fi=S1.face.begin(); fi != S1.face.end(); fi++)
if(!(*fi).IsD())
{
// compute # samples in the current face.
n_samples_decimal += 0.5*DoubleArea(*fi) * n_samples_per_area_unit;
n_samples = (int) n_samples_decimal;
// for every sample p_i in T...
for(int i=0; i < n_samples; i++)
AddRandomSample(fi);
n_samples_decimal -= (double) n_samples;
// print progress information
// if(!(++cnt % print_every_n_elements))
// printf("Sampling face %d%%\r", (100 * cnt/S1.fn));
}
// printf(" \r");
}
// Subdivision sampling.
template <class MetroMesh>
void Sampling<MetroMesh>::FaceSubdiv(const Point3x & v0, const Point3x & v1, const Point3x & v2, int maxdepth)
{
// recursive face subdivision.
if(maxdepth == 0)
{
// ground case.
AddSample((v0+v1+v2)/3.0f);
n_total_area_samples++;
n_samples++;
return;
}
// compute the longest edge.
double maxd01 = SquaredDistance(v0,v1);
double maxd12 = SquaredDistance(v1,v2);
double maxd20 = SquaredDistance(v2,v0);
int res;
if(maxd01 > maxd12)
if(maxd01 > maxd20) res = 0;
else res = 2;
else
if(maxd12 > maxd20) res = 1;
else res = 2;
// break the input triangle along the median to the the longest edge.
Point3x pp;
switch(res)
{
case 0 : pp = (v0+v1)/2;
FaceSubdiv(v0,pp,v2,maxdepth-1);
FaceSubdiv(pp,v1,v2,maxdepth-1);
break;
case 1 : pp = (v1+v2)/2;
FaceSubdiv(v0,v1,pp,maxdepth-1);
FaceSubdiv(v0,pp,v2,maxdepth-1);
break;
case 2 : pp = (v2+v0)/2;
FaceSubdiv(v0,v1,pp,maxdepth-1);
FaceSubdiv(pp,v1,v2,maxdepth-1);
break;
}
}
template <class MetroMesh>
void Sampling<MetroMesh>::SubdivFaceSampling()
{
// Subdivision sampling.
int cnt = 0, maxdepth;
double n_samples_decimal = 0.0;
typename MetroMesh::FaceIterator fi;
printf("Subdivision face sampling\n");
for(fi=S1.face.begin(); fi != S1.face.end(); fi++)
{
// compute # samples in the current face.
n_samples_decimal += 0.5*DoubleArea(*fi) * n_samples_per_area_unit;
n_samples = (int) n_samples_decimal;
if(n_samples)
{
// face sampling.
maxdepth = ((int)(log((double)n_samples)/log(2.0)));
n_samples = 0;
FaceSubdiv((*fi).V(0)->cP(), (*fi).V(1)->cP(), (*fi).V(2)->cP(), maxdepth);
}
n_samples_decimal -= (double) n_samples;
// print progress information
if(!(++cnt % print_every_n_elements))
printf("Sampling face %d%%\r", (100 * cnt/S1.fn));
}
printf(" \r");
}
// Similar Triangles sampling.
template <class MetroMesh>
void Sampling<MetroMesh>::SimilarTriangles(const Point3x & v0, const Point3x & v1, const Point3x & v2, int n_samples_per_edge)
{
Point3x V1((v1-v0)/(double)(n_samples_per_edge-1));
Point3x V2((v2-v0)/(double)(n_samples_per_edge-1));
int i, j;
// face sampling.
for(i=1; i < n_samples_per_edge-1; i++)
for(j=1; j < n_samples_per_edge-1-i; j++)
{
AddSample( v0 + (V1*(double)i + V2*(double)j) );
n_total_area_samples++;
n_samples++;
}
}
template <class MetroMesh>
void Sampling<MetroMesh>::SimilarFaceSampling()
{
// Similar Triangles sampling.
int cnt = 0, n_samples_per_edge;
double n_samples_decimal = 0.0;
FaceIterator fi;
printf("Similar Triangles face sampling\n");
for(fi=S1.face.begin(); fi != S1.face.end(); fi++)
{
// compute # samples in the current face.
n_samples_decimal += 0.5*DoubleArea(*fi) * n_samples_per_area_unit;
n_samples = (int) n_samples_decimal;
if(n_samples)
{
// face sampling.
n_samples_per_edge = (int)((sqrt(1.0+8.0*(double)n_samples) +5.0)/2.0);
n_samples = 0;
SimilarTriangles((*fi).V(0)->cP(), (*fi).V(1)->cP(), (*fi).V(2)->cP(), n_samples_per_edge);
}
n_samples_decimal -= (double) n_samples;
// print progress information
if(!(++cnt % print_every_n_elements))
printf("Sampling face %d%%\r", (100 * cnt/S1.fn));
}
printf(" \r");
}
// -----------------------------------------------------------------------------------------------
// --- Distance ----------------------------------------------------------------------------------
template <class MetroMesh>
void Sampling<MetroMesh>::Hausdorff()
{
Box3< ScalarType> bbox;
typedef typename std::vector<FaceType>::iterator FaceVecIterator;
// set grid meshes.
if(Flags & SamplingFlags::USE_HASH_GRID) hS2.Set(S2.face.begin(),S2.face.end());
if(Flags & SamplingFlags::USE_AABB_TREE) tS2.Set(S2.face.begin(),S2.face.end());
if(Flags & SamplingFlags::USE_STATIC_GRID) gS2.Set(S2.face.begin(),S2.face.end());
if(Flags & SamplingFlags::USE_OCTREE) oS2.Set(S2.face.begin(),S2.face.end());
// set bounding box
bbox = S2.bbox;
dist_upper_bound = /*bbox_factor * */bbox.Diag();
if(Flags & SamplingFlags::HIST)
hist.SetRange(0.0, dist_upper_bound/100.0, n_hist_bins);
// initialize sampling statistics.
n_total_area_samples = n_total_edge_samples = n_total_vertex_samples = n_total_samples = n_samples = 0;
max_dist = -HUGE_VAL;
mean_dist = RMS_dist = 0;
// Vertex sampling.
if(Flags & SamplingFlags::VERTEX_SAMPLING)
VertexSampling();
// Edge sampling.
if(n_samples_target > n_total_samples)
{
n_samples_target -= (int) n_total_samples;
n_samples_per_area_unit = n_samples_target / area_S1;
if(Flags & SamplingFlags::EDGE_SAMPLING)
{
EdgeSampling();
if(n_samples_target > n_total_samples) n_samples_target -= (int) n_total_samples;
else n_samples_target=0;
}
// Face sampling.
if((Flags & SamplingFlags::FACE_SAMPLING) && (n_samples_target > 0))
{
n_samples_per_area_unit = n_samples_target / area_S1;
if(Flags & SamplingFlags::MONTECARLO_SAMPLING) MontecarloFaceSampling();
if(Flags & SamplingFlags::SUBDIVISION_SAMPLING) SubdivFaceSampling();
if(Flags & SamplingFlags::SIMILAR_SAMPLING) SimilarFaceSampling();
}
}
// compute vertex colour
if(Flags & SamplingFlags::SAVE_ERROR)
vcg::tri::UpdateColor<MetroMesh>::PerVertexQualityRamp(S1);
// compute statistics
n_samples_per_area_unit = (double) n_total_samples / area_S1;
volume = mean_dist / n_samples_per_area_unit / 2.0;
mean_dist /= n_total_samples;
RMS_dist = sqrt(RMS_dist / n_total_samples);
}
}
#endif