2237 lines
76 KiB
C++
2237 lines
76 KiB
C++
/***************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
#ifndef __VCGLIB_TETRAALLOCATOR
|
|
#define __VCGLIB_TETRAALLOCATOR
|
|
|
|
#ifndef __VCG_TETRA_MESH
|
|
#error "This file should not be included alone. It is automatically included by complex.h"
|
|
#endif
|
|
|
|
namespace vcg
|
|
{
|
|
namespace tetra
|
|
{
|
|
/** \addtogroup tetramesh
|
|
@{
|
|
*/
|
|
|
|
template <class MeshType>
|
|
size_t Index(MeshType &m, const typename MeshType::VertexType &v) { return &v - &*m.vert.begin(); }
|
|
template <class MeshType>
|
|
size_t Index(MeshType &m, const typename MeshType::FaceType &f) { return &f - &*m.face.begin(); }
|
|
template <class MeshType>
|
|
size_t Index(MeshType &m, const typename MeshType::EdgeType &e) { return &e - &*m.edge.begin(); }
|
|
template <class MeshType>
|
|
size_t Index(MeshType &m, const typename MeshType::TetraType &t) { return &t - &*m.tetra.begin(); }
|
|
|
|
template <class MeshType>
|
|
size_t Index(MeshType &m, const typename MeshType::VertexType *vp) { return vp - &*m.vert.begin(); }
|
|
template <class MeshType>
|
|
size_t Index(MeshType &m, const typename MeshType::FaceType *fp) { return fp - &*m.face.begin(); }
|
|
template <class MeshType>
|
|
size_t Index(MeshType &m, const typename MeshType::EdgeType *e) { return e - &*m.edge.begin(); }
|
|
template <class MeshType>
|
|
size_t Index(MeshType &m, const typename MeshType::TetraType *t) { return t - &*m.tetra.begin(); }
|
|
|
|
template <class MeshType>
|
|
bool IsValidPointer(MeshType &m, const typename MeshType::VertexType *vp) { return (m.vert.size() > 0 && (vp >= &*m.vert.begin()) && (vp <= &m.vert.back())); }
|
|
template <class MeshType>
|
|
bool IsValidPointer(MeshType &m, const typename MeshType::EdgeType *ep) { return (m.edge.size() > 0 && (ep >= &*m.edge.begin()) && (ep <= &m.edge.back())); }
|
|
template <class MeshType>
|
|
bool IsValidPointer(MeshType &m, const typename MeshType::FaceType *fp) { return (m.face.size() > 0 && (fp >= &*m.face.begin()) && (fp <= &m.face.back())); }
|
|
template <class MeshType>
|
|
bool IsValidPointer(MeshType &m, const typename MeshType::TetraType *tp) { return (m.tetra.size() > 0 && (tp >= &*m.tetra.begin()) && (tp <= &m.tetra.back())); }
|
|
|
|
template <class MeshType, class ATTR_CONT>
|
|
void ReorderAttribute(ATTR_CONT &c, std::vector<size_t> &newVertIndex, MeshType & /* m */)
|
|
{
|
|
typename std::set<typename MeshType::PointerToAttribute>::iterator ai;
|
|
for (ai = c.begin(); ai != c.end(); ++ai)
|
|
((typename MeshType::PointerToAttribute)(*ai)).Reorder(newVertIndex);
|
|
}
|
|
|
|
template <class MeshType, class ATTR_CONT>
|
|
void ResizeAttribute(ATTR_CONT &c, size_t sz, MeshType & /*m*/)
|
|
{
|
|
typename std::set<typename MeshType::PointerToAttribute>::iterator ai;
|
|
for (ai = c.begin(); ai != c.end(); ++ai)
|
|
((typename MeshType::PointerToAttribute)(*ai)).Resize(sz);
|
|
}
|
|
|
|
/*!
|
|
\brief Class to safely add and delete elements in a mesh.
|
|
|
|
Adding elements to a mesh, like faces and vertices can involve the reallocation of the vectors of the involved elements.
|
|
This class provide the only safe methods to add elements.
|
|
It also provide an accessory class vcg::tri::PointerUpdater for updating pointers to mesh elements that are kept by the user.
|
|
*/
|
|
template <class MeshType>
|
|
class Allocator
|
|
{
|
|
|
|
public:
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::VertContainer VertContainer;
|
|
|
|
typedef typename MeshType::EdgeType EdgeType;
|
|
typedef typename MeshType::EdgePointer EdgePointer;
|
|
typedef typename MeshType::EdgeIterator EdgeIterator;
|
|
typedef typename MeshType::EdgeContainer EdgeContainer;
|
|
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef typename MeshType::FaceContainer FaceContainer;
|
|
|
|
typedef typename MeshType::TetraType TetraType;
|
|
typedef typename MeshType::TetraPointer TetraPointer;
|
|
typedef typename MeshType::TetraIterator TetraIterator;
|
|
typedef typename MeshType::TetraContainer TetraContainer;
|
|
|
|
typedef typename MeshType::CoordType CoordType;
|
|
|
|
typedef typename MeshType::PointerToAttribute PointerToAttribute;
|
|
typedef typename std::set<PointerToAttribute>::iterator AttrIterator;
|
|
typedef typename std::set<PointerToAttribute>::const_iterator AttrConstIterator;
|
|
typedef typename std::set<PointerToAttribute>::iterator PAIte;
|
|
|
|
/*!
|
|
\brief Accessory class to update pointers after eventual reallocation caused by adding elements.
|
|
|
|
This class is used whenever you trigger some allocation operation that can cause the invalidation of the pointers to mesh elements.
|
|
Typical situations are when you are allocating new vertexes, edges, halfedges of faces or when you compact
|
|
their containers to get rid of deleted elements.
|
|
This object allows you to update an invalidate pointer immediately after an action that invalidate it.
|
|
\note It can also be used to prevent any update of the various internal pointers caused by an invalidation.
|
|
This can be useful in case you are building all the internal connections by hand as it happens in a importer;
|
|
\sa \ref allocation
|
|
*/
|
|
template <class SimplexPointerType>
|
|
class PointerUpdater
|
|
{
|
|
public:
|
|
PointerUpdater(void) : newBase(0), oldBase(0), newEnd(0), oldEnd(0), preventUpdateFlag(false) { ; }
|
|
void Clear()
|
|
{
|
|
newBase = oldBase = newEnd = oldEnd = 0;
|
|
remap.clear();
|
|
}
|
|
/*! \brief Update a pointer to an element of a mesh after a reallocation
|
|
|
|
The updating is correctly done only if this PointerUpdater have been passed to the corresponing allocation call. \sa \ref allocation
|
|
*/
|
|
void Update(SimplexPointerType &vp)
|
|
{
|
|
//if(vp>=newBase && vp<newEnd) return;
|
|
if (vp < oldBase || vp > oldEnd)
|
|
return;
|
|
assert(vp >= oldBase);
|
|
assert(vp < oldEnd);
|
|
vp = newBase + (vp - oldBase);
|
|
if (!remap.empty())
|
|
vp = newBase + remap[vp - newBase];
|
|
}
|
|
/*!
|
|
\brief return true if the allocation operation that initialized this PointerUpdater has caused a reallocation
|
|
*/
|
|
bool NeedUpdate()
|
|
{
|
|
if ((oldBase && newBase != oldBase && !preventUpdateFlag) || !remap.empty())
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
SimplexPointerType newBase;
|
|
SimplexPointerType oldBase;
|
|
SimplexPointerType newEnd;
|
|
SimplexPointerType oldEnd;
|
|
std::vector<size_t> remap; // this vector keep the new position of an element. Uninitialized elements have max_int value to denote an element that has not to be remapped.
|
|
|
|
bool preventUpdateFlag; /// when true no update is considered necessary.
|
|
};
|
|
|
|
/* +++++++++++++++ Add Vertices ++++++++++++++++ */
|
|
|
|
/** \brief Add n vertices to the mesh.
|
|
Function to add n vertices to the mesh.
|
|
The elements are added always to the end of the vector.
|
|
No attempt of reusing previously deleted element is done.
|
|
\sa PointerUpdater
|
|
\param m the mesh to be modified
|
|
\param n the number of elements to be added
|
|
\param pu a PointerUpdater initialized so that it can be used to update pointers to vertices that could have become invalid after this adding.
|
|
\retval the iterator to the first element added.
|
|
*/
|
|
static VertexIterator AddVertices(MeshType &m, size_t n, PointerUpdater<VertexPointer> &pu)
|
|
{
|
|
VertexIterator last;
|
|
if (n == 0)
|
|
return m.vert.end();
|
|
pu.Clear();
|
|
if (m.vert.empty())
|
|
pu.oldBase = 0; // if the vector is empty we cannot find the last valid element
|
|
else
|
|
{
|
|
pu.oldBase = &*m.vert.begin();
|
|
pu.oldEnd = &m.vert.back() + 1;
|
|
}
|
|
|
|
m.vert.resize(m.vert.size() + n);
|
|
m.vn += int(n);
|
|
|
|
typename std::set<PointerToAttribute>::iterator ai;
|
|
for (ai = m.vert_attr.begin(); ai != m.vert_attr.end(); ++ai)
|
|
((PointerToAttribute)(*ai)).Resize(m.vert.size());
|
|
|
|
pu.newBase = &*m.vert.begin();
|
|
pu.newEnd = &m.vert.back() + 1;
|
|
if (pu.NeedUpdate())
|
|
{
|
|
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if (!(*fi).IsD())
|
|
for (int i = 0; i < (*fi).VN(); ++i)
|
|
if ((*fi).cV(i) != 0)
|
|
pu.Update((*fi).V(i));
|
|
|
|
for (EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei)
|
|
if (!(*ei).IsD())
|
|
{
|
|
pu.Update((*ei).V(0));
|
|
pu.Update((*ei).V(1));
|
|
// if(HasEVAdjacency(m))
|
|
}
|
|
|
|
for (TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti)
|
|
if (!(*ti).IsD())
|
|
for (int i = 0; i < 4; ++i)
|
|
if ((*ti).cV(i) != 0)
|
|
pu.Update((*ti).V(i));
|
|
// HEdgeIterator hi;
|
|
// for (hi=m.hedge.begin(); hi!=m.hedge.end(); ++hi)
|
|
// if(!(*hi).IsD())
|
|
// {
|
|
// if(HasHVAdjacency (m))
|
|
// {
|
|
// pu.Update((*hi).HVp());
|
|
// }
|
|
// }
|
|
|
|
// e poiche' lo spazio e' cambiato si ricalcola anche last da zero
|
|
}
|
|
size_t siz = (size_t)(m.vert.size() - n);
|
|
|
|
last = m.vert.begin();
|
|
advance(last, siz);
|
|
|
|
return last; // deve restituire l'iteratore alla prima faccia aggiunta;
|
|
}
|
|
|
|
/** \brief Wrapper to AddVertices(); no PointerUpdater
|
|
*/
|
|
static VertexIterator AddVertices(MeshType &m, size_t n)
|
|
{
|
|
PointerUpdater<VertexPointer> pu;
|
|
return AddVertices(m, n, pu);
|
|
}
|
|
|
|
/** \brief Wrapper to AddVertices() no PointerUpdater but a vector of VertexPointer pointers to be updated
|
|
*/
|
|
static VertexIterator AddVertices(MeshType &m, size_t n, std::vector<VertexPointer *> &local_vec)
|
|
{
|
|
PointerUpdater<VertexPointer> pu;
|
|
VertexIterator v_ret = AddVertices(m, n, pu);
|
|
|
|
typename std::vector<VertexPointer *>::iterator vi;
|
|
for (vi = local_vec.begin(); vi != local_vec.end(); ++vi)
|
|
pu.Update(**vi);
|
|
return v_ret;
|
|
}
|
|
|
|
/** \brief Wrapper to AddVertices() to add a single vertex with given coords
|
|
*/
|
|
static VertexIterator AddVertex(MeshType &m, const CoordType &p)
|
|
{
|
|
VertexIterator v_ret = AddVertices(m, 1);
|
|
v_ret->P() = p;
|
|
return v_ret;
|
|
}
|
|
|
|
/** \brief Wrapper to AddVertices() to add a single vertex with given coords and normal
|
|
*/
|
|
static VertexIterator AddVertex(MeshType &m, const CoordType &p, const CoordType &n)
|
|
{
|
|
VertexIterator v_ret = AddVertices(m, 1);
|
|
v_ret->P() = p;
|
|
v_ret->N() = n;
|
|
return v_ret;
|
|
}
|
|
|
|
/** \brief Wrapper to AddVertices() to add a single vertex with given coords and color
|
|
*/
|
|
static VertexIterator AddVertex(MeshType &m, const CoordType &p, const Color4b &c)
|
|
{
|
|
VertexIterator v_ret = AddVertices(m, 1);
|
|
v_ret->P() = p;
|
|
v_ret->C() = c;
|
|
return v_ret;
|
|
}
|
|
|
|
/* +++++++++++++++ Add Edges ++++++++++++++++ */
|
|
|
|
/** \brief Add n edges to the mesh.
|
|
Function to add n edges to the mesh.
|
|
The elements are added always to the end of the vector. No attempt of reusing previously deleted element is done.
|
|
\sa PointerUpdater
|
|
\param m the mesh to be modified
|
|
\param n the number of elements to be added
|
|
\param pu a PointerUpdater initialized so that it can be used to update pointers to edges that could have become invalid after this adding.
|
|
\retval the iterator to the first element added.
|
|
*/
|
|
static EdgeIterator AddEdges(MeshType &m, size_t n, PointerUpdater<EdgePointer> &pu)
|
|
{
|
|
if (n == 0)
|
|
return m.edge.end();
|
|
pu.Clear();
|
|
if (m.edge.empty())
|
|
pu.oldBase = 0; // if the vector is empty we cannot find the last valid element
|
|
else
|
|
{
|
|
pu.oldBase = &*m.edge.begin();
|
|
pu.oldEnd = &m.edge.back() + 1;
|
|
}
|
|
|
|
m.edge.resize(m.edge.size() + n);
|
|
m.en += int(n);
|
|
size_t siz = (size_t)(m.edge.size() - n);
|
|
EdgeIterator firstNewEdge = m.edge.begin();
|
|
advance(firstNewEdge, siz);
|
|
|
|
typename std::set<typename MeshType::PointerToAttribute>::iterator ai;
|
|
for (ai = m.edge_attr.begin(); ai != m.edge_attr.end(); ++ai)
|
|
((typename MeshType::PointerToAttribute)(*ai)).Resize(m.edge.size());
|
|
|
|
pu.newBase = &*m.edge.begin();
|
|
pu.newEnd = &m.edge.back() + 1;
|
|
if (pu.NeedUpdate())
|
|
{
|
|
if (HasFEAdjacency(m))
|
|
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
{
|
|
if (!(*fi).IsD())
|
|
for (int i = 0; i < (*fi).VN(); ++i)
|
|
if ((*fi).cFEp(i) != 0)
|
|
pu.Update((*fi).FEp(i));
|
|
}
|
|
|
|
if (HasVEAdjacency(m))
|
|
{
|
|
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if (!(*vi).IsD())
|
|
if ((*vi).cVEp() != 0)
|
|
pu.Update((*vi).VEp());
|
|
for (EdgeIterator ei = m.edge.begin(); ei != firstNewEdge; ++ei)
|
|
if (!(*ei).IsD())
|
|
{
|
|
if ((*ei).cVEp(0) != 0)
|
|
pu.Update((*ei).VEp(0));
|
|
if ((*ei).cVEp(1) != 0)
|
|
pu.Update((*ei).VEp(1));
|
|
}
|
|
}
|
|
|
|
//if(HasTEAdjacency(m))
|
|
//....
|
|
|
|
// if(HasHEAdjacency(m))
|
|
// for (HEdgeIterator hi=m.hedge.begin(); hi!=m.hedge.end(); ++hi)
|
|
// if(!(*hi).IsD())
|
|
// if ((*hi).cHEp()!=0) pu.Update((*hi).HEp());
|
|
}
|
|
|
|
return firstNewEdge; // deve restituire l'iteratore alla prima faccia aggiunta;
|
|
}
|
|
|
|
/** Function to add a single edge to the mesh. and initializing it with two VertexPointer
|
|
*/
|
|
static EdgeIterator AddEdge(MeshType &m, VertexPointer v0, VertexPointer v1)
|
|
{
|
|
EdgeIterator ei = AddEdges(m, 1);
|
|
ei->V(0) = v0;
|
|
ei->V(1) = v1;
|
|
return ei;
|
|
}
|
|
|
|
/** Function to add a single edge to the mesh. and initializing it with two indexes to the vertexes
|
|
*/
|
|
static EdgeIterator AddEdge(MeshType &m, size_t v0, size_t v1)
|
|
{
|
|
assert(v0 != v1);
|
|
assert(v0 >= 0 && v0 < m.vert.size());
|
|
assert(v1 >= 0 && v1 < m.vert.size());
|
|
return AddEdge(m, &(m.vert[v0]), &(m.vert[v1]));
|
|
}
|
|
|
|
/** Function to add a face to the mesh and initializing it with the three given coords
|
|
*/
|
|
static EdgeIterator AddEdge(MeshType &m, CoordType p0, CoordType p1)
|
|
{
|
|
VertexIterator vi = AddVertices(m, 2);
|
|
EdgeIterator ei = AddEdges(m, 1);
|
|
vi->P() = p0;
|
|
ei->V(0) = &*vi++;
|
|
vi->P() = p1;
|
|
ei->V(1) = &*vi++;
|
|
return ei;
|
|
}
|
|
|
|
/** Function to add n edges to the mesh.
|
|
First wrapper, with no parameters
|
|
*/
|
|
static EdgeIterator AddEdges(MeshType &m, size_t n)
|
|
{
|
|
PointerUpdater<EdgePointer> pu;
|
|
return AddEdges(m, n, pu);
|
|
}
|
|
|
|
/** Function to add n edges to the mesh.
|
|
Second Wrapper, with a vector of vertex pointers to be updated.
|
|
*/
|
|
static EdgeIterator AddEdges(MeshType &m, size_t n, std::vector<EdgePointer *> &local_vec)
|
|
{
|
|
PointerUpdater<EdgePointer> pu;
|
|
EdgeIterator v_ret = AddEdges(m, n, pu);
|
|
|
|
typename std::vector<EdgePointer *>::iterator ei;
|
|
for (ei = local_vec.begin(); ei != local_vec.end(); ++ei)
|
|
pu.Update(**ei);
|
|
return v_ret;
|
|
}
|
|
|
|
/* +++++++++++++++ Add HalfEdges ++++++++++++++++ */
|
|
|
|
// /** Function to add n halfedges to the mesh. The second parameter hold a vector of
|
|
// pointers to pointer to elements of the mesh that should be updated after a
|
|
// possible vector realloc.
|
|
// \sa PointerUpdater
|
|
// \param m the mesh to be modified
|
|
// \param n the number of elements to be added
|
|
// \param pu a PointerUpdater initialized so that it can be used to update pointers to edges that could have become invalid after this adding.
|
|
// \retval the iterator to the first element added.
|
|
// */
|
|
// static HEdgeIterator AddHEdges(MeshType &m, size_t n, PointerUpdater<HEdgePointer> &pu)
|
|
// {
|
|
// HEdgeIterator last;
|
|
// if(n == 0) return m.hedge.end();
|
|
// pu.Clear();
|
|
// if(m.hedge.empty()) pu.oldBase=0; // if the vector is empty we cannot find the last valid element
|
|
// else {
|
|
// pu.oldBase=&*m.hedge.begin();
|
|
// pu.oldEnd=&m.hedge.back()+1;
|
|
// }
|
|
|
|
// m.hedge.resize(m.hedge.size()+n);
|
|
// m.hn+=int(n);
|
|
|
|
// pu.newBase = &*m.hedge.begin();
|
|
// pu.newEnd = &m.hedge.back()+1;
|
|
|
|
// if(pu.NeedUpdate())
|
|
// {
|
|
// if(HasFHAdjacency(m)) {
|
|
// for (FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
|
|
// {
|
|
// if(!(*fi).IsD() && (*fi).FHp())
|
|
// pu.Update((*fi).FHp());
|
|
// }
|
|
// }
|
|
// if(HasVHAdjacency(m)) {
|
|
// for (VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
|
|
// if(!(*vi).IsD() && (*vi).cVHp()!=0)
|
|
// pu.Update((*vi).VHp());
|
|
// }
|
|
// if(HasEHAdjacency(m)) {
|
|
// for (EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
|
|
// if(!(*ei).IsD() && (*ei).cEHp()!=0)
|
|
// pu.Update((*ei).EHp());
|
|
// }
|
|
|
|
// int ii = 0;
|
|
// HEdgeIterator hi = m.hedge.begin();
|
|
// while(ii < m.hn - int(n))// cycle on all the faces except the new ones
|
|
// {
|
|
// if(!(*hi).IsD())
|
|
// {
|
|
// if(HasHNextAdjacency(m)) pu.Update((*hi).HNp());
|
|
// if(HasHPrevAdjacency(m)) pu.Update((*hi).HPp());
|
|
// if(HasHOppAdjacency(m)) pu.Update((*hi).HOp());
|
|
// ++ii;
|
|
// }
|
|
// ++hi;
|
|
// }
|
|
// }
|
|
// size_t siz = (size_t)(m.hedge.size()-n);
|
|
|
|
// last = m.hedge.begin();
|
|
// advance(last,siz);
|
|
|
|
// return last;// deve restituire l'iteratore alla prima faccia aggiunta;
|
|
// }
|
|
|
|
// /** Function to add n vertices to the mesh.
|
|
// First wrapper, with no parameters
|
|
// */
|
|
// static HEdgeIterator AddHEdges(MeshType &m, size_t n)
|
|
// {
|
|
// PointerUpdater<HEdgePointer> pu;
|
|
// return AddHEdges(m, n,pu);
|
|
// }
|
|
|
|
// /** Function to add n vertices to the mesh.
|
|
// Second Wrapper, with a vector of vertex pointers to be updated.
|
|
// */
|
|
// static HEdgeIterator AddHEdges(MeshType &m, size_t n, std::vector<HEdgePointer*> &local_vec)
|
|
// {
|
|
// PointerUpdater<HEdgePointer> pu;
|
|
// HEdgeIterator v_ret = AddHEdges(m, n,pu);
|
|
|
|
// typename std::vector<HEdgePointer *>::iterator ei;
|
|
// for(ei=local_vec.begin();ei!=local_vec.end();++ei)
|
|
// pu.Update(**ei);
|
|
// return v_ret;
|
|
// }
|
|
|
|
/* +++++++++++++++ Add Faces ++++++++++++++++ */
|
|
|
|
/** Function to add a face to the mesh and initializing it with the three given VertexPointers
|
|
*/
|
|
static FaceIterator AddFace(MeshType &m, VertexPointer v0, VertexPointer v1, VertexPointer v2)
|
|
{
|
|
assert(m.vert.size() > 0);
|
|
assert((v0 != v1) && (v1 != v2) && (v0 != v2));
|
|
assert(v0 >= &m.vert.front() && v0 <= &m.vert.back());
|
|
assert(v1 >= &m.vert.front() && v1 <= &m.vert.back());
|
|
assert(v2 >= &m.vert.front() && v2 <= &m.vert.back());
|
|
PointerUpdater<FacePointer> pu;
|
|
FaceIterator fi = AddFaces(m, 1, pu);
|
|
fi->Alloc(3);
|
|
fi->V(0) = v0;
|
|
fi->V(1) = v1;
|
|
fi->V(2) = v2;
|
|
return fi;
|
|
}
|
|
|
|
/** Function to add a face to the mesh and initializing it with three indexes
|
|
*/
|
|
static FaceIterator AddFace(MeshType &m, size_t v0, size_t v1, size_t v2)
|
|
{
|
|
assert((v0 != v1) && (v1 != v2) && (v0 != v2));
|
|
assert(v0 >= 0 && v0 < m.vert.size());
|
|
assert(v1 >= 0 && v1 < m.vert.size());
|
|
assert(v2 >= 0 && v2 < m.vert.size());
|
|
return AddFace(m, &(m.vert[v0]), &(m.vert[v1]), &(m.vert[v2]));
|
|
}
|
|
/** Function to add a face to the mesh and initializing it with the three given coords
|
|
*/
|
|
static FaceIterator AddFace(MeshType &m, CoordType p0, CoordType p1, CoordType p2)
|
|
{
|
|
VertexIterator vi = AddVertices(m, 3);
|
|
FaceIterator fi = AddFaces(m, 1);
|
|
fi->Alloc(3);
|
|
vi->P() = p0;
|
|
fi->V(0) = &*vi++;
|
|
vi->P() = p1;
|
|
fi->V(1) = &*vi++;
|
|
vi->P() = p2;
|
|
fi->V(2) = &*vi;
|
|
return fi;
|
|
}
|
|
|
|
/** \brief Function to add n faces to the mesh.
|
|
First wrapper, with no parameters
|
|
*/
|
|
static FaceIterator AddFaces(MeshType &m, size_t n)
|
|
{
|
|
PointerUpdater<FacePointer> pu;
|
|
return AddFaces(m, n, pu);
|
|
}
|
|
|
|
/** \brief Function to add n faces to the mesh.
|
|
Second Wrapper, with a vector of face pointer to be updated.
|
|
*/
|
|
static FaceIterator AddFaces(MeshType &m, size_t n, std::vector<FacePointer *> &local_vec)
|
|
{
|
|
PointerUpdater<FacePointer> pu;
|
|
FaceIterator f_ret = AddFaces(m, n, pu);
|
|
|
|
typename std::vector<FacePointer *>::iterator fi;
|
|
for (fi = local_vec.begin(); fi != local_vec.end(); ++fi)
|
|
pu.Update(**fi);
|
|
return f_ret;
|
|
}
|
|
|
|
/** \brief Function to add n faces to the mesh.
|
|
This is the only full featured function that is able to manage correctly
|
|
all the official internal pointers of the mesh (like the VF and FF adjacency relations)
|
|
\warning Calling this function can cause the invalidation of any not-managed FacePointer
|
|
just because we resize the face vector.
|
|
If you have such pointers you need to update them by mean of the PointerUpdater object.
|
|
\sa PointerUpdater
|
|
\param m the mesh to be modified
|
|
\param n the number of elements to be added
|
|
\param pu a PointerUpdater initialized so that it can be used to update pointers to edges that could have become invalid after this adding.
|
|
\retval the iterator to the first element added.
|
|
*/
|
|
static FaceIterator AddFaces(MeshType &m, size_t n, PointerUpdater<FacePointer> &pu)
|
|
{
|
|
pu.Clear();
|
|
if (n == 0)
|
|
return m.face.end();
|
|
if (!m.face.empty()) // if the vector is empty we cannot find the last valid element
|
|
{
|
|
pu.oldBase = &*m.face.begin();
|
|
pu.oldEnd = &m.face.back() + 1;
|
|
}
|
|
// The actual resize
|
|
m.face.resize(m.face.size() + n);
|
|
m.fn += int(n);
|
|
|
|
size_t siz = (size_t)(m.face.size() - n);
|
|
FaceIterator firstNewFace = m.face.begin();
|
|
advance(firstNewFace, siz);
|
|
|
|
typename std::set<PointerToAttribute>::iterator ai;
|
|
for (ai = m.face_attr.begin(); ai != m.face_attr.end(); ++ai)
|
|
((PointerToAttribute)(*ai)).Resize(m.face.size());
|
|
|
|
pu.newBase = &*m.face.begin();
|
|
pu.newEnd = &m.face.back() + 1;
|
|
|
|
if (pu.NeedUpdate())
|
|
{
|
|
if (HasFFAdjacency(m))
|
|
{ // cycle on all the faces except the new ones
|
|
for (FaceIterator fi = m.face.begin(); fi != firstNewFace; ++fi)
|
|
if (!(*fi).IsD())
|
|
for (int i = 0; i < (*fi).VN(); ++i)
|
|
if ((*fi).cFFp(i) != 0)
|
|
pu.Update((*fi).FFp(i));
|
|
}
|
|
|
|
if (HasPerVertexVFAdjacency(m) && HasPerFaceVFAdjacency(m))
|
|
{ // cycle on all the faces except the new ones
|
|
for (FaceIterator fi = m.face.begin(); fi != firstNewFace; ++fi)
|
|
if (!(*fi).IsD())
|
|
for (int i = 0; i < (*fi).VN(); ++i)
|
|
if ((*fi).cVFp(i) != 0)
|
|
pu.Update((*fi).VFp(i));
|
|
|
|
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if (!(*vi).IsD() && (*vi).cVFp() != 0)
|
|
pu.Update((*vi).VFp());
|
|
}
|
|
|
|
if (HasEFAdjacency(m))
|
|
{
|
|
for (EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei)
|
|
if (!(*ei).IsD() && (*ei).cEFp() != 0)
|
|
pu.Update((*ei).EFp());
|
|
}
|
|
|
|
// if (HasHFAdjacency(m))
|
|
// {
|
|
// for (HEdgeIterator hi = m.hedge.begin(); hi != m.hedge.end(); ++hi)
|
|
// if (!(*hi).IsD() && (*hi).cHFp() != 0)
|
|
// pu.Update((*hi).HFp());
|
|
// }
|
|
}
|
|
return firstNewFace;
|
|
}
|
|
|
|
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
|
//:::::::::::::::::TETRAS ADDER FUNCTIONS:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
|
//do all the other adder funcitons
|
|
|
|
/** \brief Function to add n tetras to the mesh.
|
|
This is the only full featured function that is able to manage correctly
|
|
all the official internal pointers of the mesh (like the VT and TT adjacency relations)
|
|
\warning Calling this function can cause the invalidation of any not-managed TetraPointer
|
|
just because we resize the face vector.
|
|
If you have such pointers you need to update them by mean of the PointerUpdater object.
|
|
\sa PointerUpdater
|
|
\param m the mesh to be modified
|
|
\param n the number of elements to be added
|
|
\param pu a PointerUpdater initialized so that it can be used to update pointers to tetras that could have become invalid after this adding.
|
|
\retval the iterator to the first element added.
|
|
*/
|
|
static TetraIterator AddTetras(MeshType &m, size_t n, PointerUpdater<TetraPointer> &pu)
|
|
{
|
|
//nothing to do
|
|
if (n == 0)
|
|
return m.tetra.end();
|
|
|
|
//prepare the pointerupdater info
|
|
pu.Clear();
|
|
if (m.tetra.empty())
|
|
pu.oldBase = 0;
|
|
else
|
|
{
|
|
pu.oldBase = &*m.tetra.begin();
|
|
pu.oldEnd = &m.tetra.back() + 1;
|
|
}
|
|
|
|
//resize the tetra list and update tetra count
|
|
m.tetra.resize(m.tetra.size() + n);
|
|
m.tn += n;
|
|
|
|
//get the old size and advance to the first new tetrahedron position
|
|
size_t oldSize = (size_t)(m.tetra.size() - n);
|
|
|
|
TetraIterator firstNewTetra = m.tetra.begin();
|
|
advance(firstNewTetra, oldSize);
|
|
|
|
//for each attribute make adapt the list size
|
|
typename std::set<typename MeshType::PointerToAttribute>::iterator ai;
|
|
for (ai = m.tetra_attr.begin(); ai != m.tetra_attr.end(); ++ai)
|
|
((typename MeshType::PointerToAttribute)(*ai)).Resize(m.tetra.size());
|
|
|
|
//do the update
|
|
pu.newBase = &*m.tetra.begin();
|
|
pu.newEnd = &m.tetra.back() + 1;
|
|
if (pu.NeedUpdate())
|
|
{
|
|
if (HasVTAdjacency(m))
|
|
{
|
|
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if (!vi->IsD())
|
|
pu.Update(vi->VTp());
|
|
|
|
for (TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti)
|
|
if (!ti->IsD())
|
|
{
|
|
pu.Update(ti->VTp(0));
|
|
pu.Update(ti->VTp(1));
|
|
pu.Update(ti->VTp(2));
|
|
pu.Update(ti->VTp(3));
|
|
}
|
|
}
|
|
|
|
//do edge and face adjacency
|
|
if (HasTTAdjacency(m))
|
|
for (TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti)
|
|
if (!ti->IsD())
|
|
{
|
|
pu.Update(ti->TTp(0));
|
|
pu.Update(ti->TTp(1));
|
|
pu.Update(ti->TTp(2));
|
|
pu.Update(ti->TTp(3));
|
|
}
|
|
}
|
|
|
|
return firstNewTetra;
|
|
}
|
|
|
|
//TODO: ADD 4 FACES then add tetra
|
|
/** Function to add a face to the mesh and initializing it with the three given VertexPointers
|
|
*/
|
|
static TetraIterator AddTetra(MeshType &m, VertexPointer v0, VertexPointer v1, VertexPointer v2, VertexPointer v3)
|
|
{
|
|
assert(m.vert.size() > 0);
|
|
assert((v0 != v1) && (v0 != v2) && (v0 != v3) && (v1 != v2) && (v1 != v3) && (v2 != v3));
|
|
assert(v0 >= &m.vert.front() && v0 <= &m.vert.back());
|
|
assert(v1 >= &m.vert.front() && v1 <= &m.vert.back());
|
|
assert(v2 >= &m.vert.front() && v2 <= &m.vert.back());
|
|
assert(v3 >= &m.vert.front() && v3 <= &m.vert.back());
|
|
|
|
AddFace(m, v0, v1, v2);
|
|
AddFace(m, v0, v3, v1);
|
|
AddFace(m, v0, v2, v3);
|
|
AddFace(m, v1, v3, v2);
|
|
|
|
PointerUpdater<TetraPointer> pu;
|
|
TetraIterator ti = AddTetras(m, 1, pu);
|
|
ti->V(0) = v0;
|
|
ti->V(1) = v1;
|
|
ti->V(2) = v2;
|
|
ti->V(3) = v3;
|
|
return ti;
|
|
}
|
|
|
|
/** Function to add a face to the mesh and initializing it with three indexes
|
|
*/
|
|
static TetraIterator AddTetra(MeshType &m, const size_t v0, const size_t v1, const size_t v2, const size_t v3)
|
|
{
|
|
assert(m.vert.size() > 0);
|
|
assert((v0 != v1) && (v0 != v2) && (v0 != v3) && (v1 != v2) && (v1 != v3) && (v2 != v3));
|
|
assert(v0 >= 0 && v0 < m.vert.size());
|
|
assert(v1 >= 0 && v1 < m.vert.size());
|
|
assert(v2 >= 0 && v2 < m.vert.size());
|
|
assert(v3 >= 0 && v3 < m.vert.size());
|
|
|
|
return AddTetra(m, &(m.vert[v0]), &(m.vert[v1]), &(m.vert[v2]), &(m.vert[v3]));
|
|
}
|
|
/** Function to add a face to the mesh and initializing it with the three given coords
|
|
*/
|
|
static TetraIterator AddTetra(MeshType &m, const CoordType & p0, const CoordType & p1, const CoordType & p2, const CoordType & p3)
|
|
{
|
|
VertexIterator vi = AddVertices(m, 4);
|
|
|
|
VertexPointer v0 = &*vi++;
|
|
VertexPointer v1 = &*vi++;
|
|
VertexPointer v2 = &*vi++;
|
|
VertexPointer v3 = &*vi++;
|
|
|
|
v0->P() = p0;
|
|
v1->P() = p1;
|
|
v2->P() = p2;
|
|
v3->P() = p3;
|
|
|
|
return AddTetra(m, v0, v1, v2, v3);
|
|
}
|
|
|
|
//requires no duplicate vertices on faces you use
|
|
static TetraIterator AddTetra(MeshType &m, const FaceType & f0, const FaceType & f1, const FaceType & f2, const FaceType & f3)
|
|
{
|
|
assert(m.face.size() > 0);
|
|
assert((f0 != f1) && (f0 != f2) && (f0 != f3) && (f1 != f2) && (f1 != f3) && (f2 != f3));
|
|
assert(f1 >= 0 && f1 < m.face.size());
|
|
assert(f2 >= 0 && f2 < m.face.size());
|
|
assert(f3 >= 0 && f3 < m.face.size());
|
|
assert(f0 >= 0 && f0 < m.face.size());
|
|
//TODO: decide if you want to address this like this
|
|
//ERROR: can't use position...so..could force to have no dup verts..and use pointers or avoid this kind of thing
|
|
assert(f0.V(0) == f1.V(0) && f0.V(0) == f2.V(0) && //v0
|
|
f0.V(1) == f1.V(2) && f0.V(1) == f3.V(0) && //v1
|
|
f0.V(2) == f2.V(1) && f0.V(2) == f3.V(2) && //v2
|
|
f1.V(1) == f2.V(2) && f1.V(1) == f3.V(1) ) //v3
|
|
|
|
//add a tetra...and set vertices correctly
|
|
PointerUpdater<TetraPointer> pu;
|
|
TetraIterator ti = AddTetras(m, 1, pu);
|
|
ti->V(0) = f0.V(0);
|
|
ti->V(1) = f0.V(1);
|
|
ti->V(2) = f0.V(2);
|
|
ti->V(3) = f1.V(1);
|
|
|
|
return ti;
|
|
}
|
|
|
|
/** \brief Function to add n faces to the mesh.
|
|
First wrapper, with no parameters
|
|
*/
|
|
static TetraIterator AddTetras(MeshType &m, size_t n)
|
|
{
|
|
PointerUpdater<TetraPointer> pu;
|
|
return AddTetras(m, n, pu);
|
|
}
|
|
|
|
/** \brief Function to add n faces to the mesh.
|
|
Second Wrapper, with a vector of face pointer to be updated.
|
|
*/
|
|
static TetraIterator AddTetras(MeshType &m, size_t n, std::vector<TetraPointer *> &local_vec)
|
|
{
|
|
PointerUpdater<TetraPointer> pu;
|
|
TetraIterator t_ret = AddTetras(m, n, pu);
|
|
|
|
typename std::vector<TetraPointer *>::iterator fi;
|
|
for (ti = local_vec.begin(); ti != local_vec.end(); ++ti)
|
|
pu.Update(**ti);
|
|
return t_ret;
|
|
}
|
|
|
|
|
|
|
|
|
|
/* +++++++++++++++ Deleting ++++++++++++++++ */
|
|
|
|
/** Function to delete a face from the mesh.
|
|
NOTE: THIS FUNCTION ALSO UPDATE FN
|
|
*/
|
|
static void DeleteFace(MeshType &m, FaceType &f)
|
|
{
|
|
assert(&f >= &m.face.front() && &f <= &m.face.back());
|
|
assert(!f.IsD());
|
|
f.Dealloc();
|
|
f.SetD();
|
|
--m.fn;
|
|
}
|
|
|
|
/** Function to delete a vertex from the mesh.
|
|
NOTE: THIS FUNCTION ALSO UPDATE vn
|
|
*/
|
|
static void DeleteVertex(MeshType &m, VertexType &v)
|
|
{
|
|
assert(&v >= &m.vert.front() && &v <= &m.vert.back());
|
|
assert(!v.IsD());
|
|
v.SetD();
|
|
--m.vn;
|
|
}
|
|
|
|
/** Function to delete an edge from the mesh.
|
|
NOTE: THIS FUNCTION ALSO UPDATE en
|
|
*/
|
|
static void DeleteEdge(MeshType &m, EdgeType &e)
|
|
{
|
|
assert(&e >= &m.edge.front() && &e <= &m.edge.back());
|
|
assert(!e.IsD());
|
|
e.SetD();
|
|
--m.en;
|
|
}
|
|
|
|
// /** Function to delete a hedge from the mesh.
|
|
// NOTE: THIS FUNCTION ALSO UPDATE en
|
|
// */
|
|
// static void DeleteHEdge(MeshType &m, HEdgeType &h)
|
|
// {
|
|
// assert(&h >= &m.hedge.front() && &h <= &m.hedge.back());
|
|
// assert(!h.IsD());
|
|
// h.SetD();
|
|
// --m.hn;
|
|
// }
|
|
|
|
|
|
/** Function to delete a tetra from the mesh.
|
|
NOTE: THIS FUNCTION ALSO UPDATE tn
|
|
*/
|
|
static void DeleteTetra(MeshType &m, TetraType &t)
|
|
{
|
|
assert(&t >= &m.tetra.front() && &t <= &m.tetra.back());
|
|
assert(!t.IsD());
|
|
t.SetD();
|
|
--m.tn;
|
|
}
|
|
|
|
|
|
/*
|
|
Function to rearrange the vertex vector according to a given index permutation
|
|
the permutation is vector such that after calling this function
|
|
|
|
m.vert[ newVertIndex[i] ] = m.vert[i];
|
|
|
|
e.g. newVertIndex[i] is the new index of the vertex i
|
|
|
|
*/
|
|
static void PermutateVertexVector(MeshType &m, PointerUpdater<VertexPointer> &pu)
|
|
{
|
|
if (m.vert.empty())
|
|
return;
|
|
for (size_t i = 0; i < m.vert.size(); ++i)
|
|
{
|
|
if (pu.remap[i] < size_t(m.vn))
|
|
{
|
|
assert(!m.vert[i].IsD());
|
|
m.vert[pu.remap[i]].ImportData(m.vert[i]);
|
|
if (HasVFAdjacency(m))
|
|
{
|
|
if (m.vert[i].IsVFInitialized())
|
|
{
|
|
m.vert[pu.remap[i]].VFp() = m.vert[i].cVFp();
|
|
m.vert[pu.remap[i]].VFi() = m.vert[i].cVFi();
|
|
}
|
|
else
|
|
m.vert[pu.remap[i]].VFClear();
|
|
}
|
|
if (HasVEAdjacency(m))
|
|
{
|
|
if (m.vert[i].IsVEInitialized())
|
|
{
|
|
m.vert[pu.remap[i]].VEp() = m.vert[i].cVEp();
|
|
m.vert[pu.remap[i]].VEi() = m.vert[i].cVEi();
|
|
}
|
|
else
|
|
m.vert[pu.remap[i]].VEClear();
|
|
}
|
|
}
|
|
}
|
|
|
|
// reorder the optional atttributes in m.vert_attr to reflect the changes
|
|
ReorderAttribute(m.vert_attr, pu.remap, m);
|
|
|
|
// setup the pointer updater
|
|
pu.oldBase = &m.vert[0];
|
|
pu.oldEnd = &m.vert.back() + 1;
|
|
|
|
// resize
|
|
m.vert.resize(m.vn);
|
|
|
|
// setup the pointer updater
|
|
pu.newBase = (m.vert.empty()) ? 0 : &m.vert[0];
|
|
pu.newEnd = (m.vert.empty()) ? 0 : &m.vert.back() + 1;
|
|
|
|
// resize the optional atttributes in m.vert_attr to reflect the changes
|
|
ResizeAttribute(m.vert_attr, m.vn, m);
|
|
|
|
// Loop on the face to update the pointers FV relation (vertex refs)
|
|
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if (!(*fi).IsD())
|
|
for (int i = 0; i < fi->VN(); ++i)
|
|
{
|
|
size_t oldIndex = (*fi).V(i) - pu.oldBase;
|
|
assert(pu.oldBase <= (*fi).V(i) && oldIndex < pu.remap.size());
|
|
(*fi).V(i) = pu.newBase + pu.remap[oldIndex];
|
|
}
|
|
// Loop on the edges to update the pointers EV relation
|
|
if (HasEVAdjacency(m))
|
|
for (EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei)
|
|
if (!(*ei).IsD())
|
|
{
|
|
pu.Update((*ei).V(0));
|
|
pu.Update((*ei).V(1));
|
|
}
|
|
}
|
|
|
|
static void CompactEveryVector(MeshType &m)
|
|
{
|
|
CompactVertexVector(m);
|
|
CompactEdgeVector(m);
|
|
CompactFaceVector(m);
|
|
CompactTetraVector(m);
|
|
}
|
|
|
|
/*!
|
|
\brief Compact vector of vertices removing deleted elements.
|
|
Deleted elements are put to the end of the vector and the vector is resized. Order between elements is preserved but not their position (hence the PointerUpdater)
|
|
After calling this function the \c IsD() test in the scanning a vector, is no more necessary.
|
|
|
|
\warning It should not be called when TemporaryData is active (but works correctly if attributes are present)
|
|
*/
|
|
static void CompactVertexVector(MeshType &m, PointerUpdater<VertexPointer> &pu)
|
|
{
|
|
// If already compacted fast return please!
|
|
if (m.vn == (int)m.vert.size())
|
|
return;
|
|
|
|
// newVertIndex [ <old_vert_position> ] gives you the new position of the vertex in the vector;
|
|
pu.remap.resize(m.vert.size(), std::numeric_limits<size_t>::max());
|
|
|
|
size_t pos = 0;
|
|
size_t i = 0;
|
|
|
|
for (i = 0; i < m.vert.size(); ++i)
|
|
{
|
|
if (!m.vert[i].IsD())
|
|
{
|
|
pu.remap[i] = pos;
|
|
++pos;
|
|
}
|
|
}
|
|
assert((int)pos == m.vn);
|
|
|
|
PermutateVertexVector(m, pu);
|
|
}
|
|
|
|
/*! \brief Wrapper without the PointerUpdater. */
|
|
static void CompactVertexVector(MeshType &m)
|
|
{
|
|
PointerUpdater<VertexPointer> pu;
|
|
CompactVertexVector(m, pu);
|
|
}
|
|
|
|
/*!
|
|
\brief Compact vector of edges removing deleted elements.
|
|
|
|
Deleted elements are put to the end of the vector and the vector is resized. Order between elements is preserved but not their position (hence the PointerUpdater)
|
|
After calling this function the \c IsD() test in the scanning a vector, is no more necessary.
|
|
|
|
\warning It should not be called when TemporaryData is active (but works correctly if attributes are present)
|
|
*/
|
|
static void CompactEdgeVector(MeshType &m, PointerUpdater<EdgePointer> &pu)
|
|
{
|
|
// If already compacted fast return please!
|
|
if (m.en == (int)m.edge.size())
|
|
return;
|
|
|
|
// remap [ <old_edge_position> ] gives you the new position of the edge in the vector;
|
|
pu.remap.resize(m.edge.size(), std::numeric_limits<size_t>::max());
|
|
|
|
size_t pos = 0;
|
|
size_t i = 0;
|
|
|
|
for (i = 0; i < m.edge.size(); ++i)
|
|
{
|
|
if (!m.edge[i].IsD())
|
|
{
|
|
pu.remap[i] = pos;
|
|
++pos;
|
|
}
|
|
}
|
|
assert((int)pos == m.en);
|
|
|
|
// the actual copying of the data.
|
|
for (size_t i = 0; i < m.edge.size(); ++i)
|
|
{
|
|
if (pu.remap[i] < size_t(m.en)) // uninitialized entries in the remap vector has max_int value;
|
|
{
|
|
assert(!m.edge[i].IsD());
|
|
m.edge[pu.remap[i]].ImportData(m.edge[i]);
|
|
// copy the vertex reference (they are not data!)
|
|
m.edge[pu.remap[i]].V(0) = m.edge[i].cV(0);
|
|
m.edge[pu.remap[i]].V(1) = m.edge[i].cV(1);
|
|
// Now just copy the adjacency pointers (without changing them, to be done later)
|
|
if (HasVEAdjacency(m))
|
|
//if (m.edge[i].cVEp(0)!=0)
|
|
{
|
|
m.edge[pu.remap[i]].VEp(0) = m.edge[i].cVEp(0);
|
|
m.edge[pu.remap[i]].VEi(0) = m.edge[i].cVEi(0);
|
|
m.edge[pu.remap[i]].VEp(1) = m.edge[i].cVEp(1);
|
|
m.edge[pu.remap[i]].VEi(1) = m.edge[i].cVEi(1);
|
|
}
|
|
if (HasEEAdjacency(m))
|
|
// if (m.edge[i].cEEp(0)!=0)
|
|
{
|
|
m.edge[pu.remap[i]].EEp(0) = m.edge[i].cEEp(0);
|
|
m.edge[pu.remap[i]].EEi(0) = m.edge[i].cEEi(0);
|
|
m.edge[pu.remap[i]].EEp(1) = m.edge[i].cEEp(1);
|
|
m.edge[pu.remap[i]].EEi(1) = m.edge[i].cEEi(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// reorder the optional attributes in m.vert_attr to reflect the changes
|
|
ReorderAttribute(m.edge_attr, pu.remap, m);
|
|
|
|
// setup the pointer updater
|
|
pu.oldBase = &m.edge[0];
|
|
pu.oldEnd = &m.edge.back() + 1;
|
|
|
|
// THE resize
|
|
m.edge.resize(m.en);
|
|
|
|
// setup the pointer updater
|
|
pu.newBase = (m.edge.empty()) ? 0 : &m.edge[0];
|
|
pu.newEnd = (m.edge.empty()) ? 0 : &m.edge.back() + 1;
|
|
|
|
// resize the optional atttributes in m.vert_attr to reflect the changes
|
|
ResizeAttribute(m.edge_attr, m.en, m);
|
|
|
|
// Loop on the vertices to update the pointers of VE relation
|
|
if (HasVEAdjacency(m))
|
|
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if (!(*vi).IsD())
|
|
pu.Update((*vi).VEp());
|
|
|
|
// Loop on the edges to update the pointers EE VE relation
|
|
for (EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei)
|
|
for (unsigned int i = 0; i < 2; ++i)
|
|
{
|
|
if (HasVEAdjacency(m))
|
|
pu.Update((*ei).VEp(i));
|
|
if (HasEEAdjacency(m))
|
|
pu.Update((*ei).EEp(i));
|
|
}
|
|
}
|
|
|
|
/*! \brief Wrapper without the PointerUpdater. */
|
|
static void CompactEdgeVector(MeshType &m)
|
|
{
|
|
PointerUpdater<EdgePointer> pu;
|
|
CompactEdgeVector(m, pu);
|
|
}
|
|
|
|
|
|
/*!
|
|
\brief Compact face vector by removing deleted elements.
|
|
|
|
Deleted elements are put to the end of the vector and the vector is resized.
|
|
Order between elements is preserved, but not their position (hence the PointerUpdater)
|
|
Immediately after calling this function the \c IsD() test during the scanning a vector, is no more necessary.
|
|
\warning It should not be called when some TemporaryData is active (but works correctly if attributes are present)
|
|
*/
|
|
static void CompactFaceVector(MeshType &m, PointerUpdater<FacePointer> &pu)
|
|
{
|
|
// If already compacted fast return please!
|
|
if (m.fn == (int)m.face.size())
|
|
return;
|
|
|
|
// newFaceIndex [ <old_face_position> ] gives you the new position of the face in the vector;
|
|
pu.remap.resize(m.face.size(), std::numeric_limits<size_t>::max());
|
|
|
|
size_t pos = 0;
|
|
for (size_t i = 0; i < m.face.size(); ++i)
|
|
{
|
|
if (!m.face[i].IsD())
|
|
{
|
|
if (pos != i)
|
|
{
|
|
m.face[pos].ImportData(m.face[i]);
|
|
if (FaceType::HasPolyInfo())
|
|
{
|
|
m.face[pos].Dealloc();
|
|
m.face[pos].Alloc(m.face[i].VN());
|
|
}
|
|
for (int j = 0; j < m.face[i].VN(); ++j)
|
|
m.face[pos].V(j) = m.face[i].V(j);
|
|
|
|
if (HasVFAdjacency(m))
|
|
for (int j = 0; j < m.face[i].VN(); ++j)
|
|
{
|
|
if (m.face[i].IsVFInitialized(j))
|
|
{
|
|
m.face[pos].VFp(j) = m.face[i].cVFp(j);
|
|
m.face[pos].VFi(j) = m.face[i].cVFi(j);
|
|
}
|
|
else
|
|
m.face[pos].VFClear(j);
|
|
}
|
|
if (HasFFAdjacency(m))
|
|
for (int j = 0; j < m.face[i].VN(); ++j)
|
|
{
|
|
m.face[pos].FFp(j) = m.face[i].cFFp(j);
|
|
m.face[pos].FFi(j) = m.face[i].cFFi(j);
|
|
}
|
|
}
|
|
pu.remap[i] = pos;
|
|
++pos;
|
|
}
|
|
}
|
|
assert((int)pos == m.fn);
|
|
|
|
// reorder the optional atttributes in m.face_attr to reflect the changes
|
|
ReorderAttribute(m.face_attr, pu.remap, m);
|
|
|
|
FacePointer fbase = &m.face[0];
|
|
|
|
// Loop on the vertices to correct VF relation
|
|
if (HasVFAdjacency(m))
|
|
{
|
|
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if (!(*vi).IsD())
|
|
{
|
|
if ((*vi).IsVFInitialized() && (*vi).VFp() != 0)
|
|
{
|
|
size_t oldIndex = (*vi).cVFp() - fbase;
|
|
assert(fbase <= (*vi).cVFp() && oldIndex < pu.remap.size());
|
|
(*vi).VFp() = fbase + pu.remap[oldIndex];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Loop on the faces to correct VF and FF relations
|
|
pu.oldBase = &m.face[0];
|
|
pu.oldEnd = &m.face.back() + 1;
|
|
for (size_t i = m.fn; i < m.face.size(); ++i)
|
|
m.face[i].Dealloc();
|
|
m.face.resize(m.fn);
|
|
pu.newBase = (m.face.empty()) ? 0 : &m.face[0];
|
|
pu.newEnd = (m.face.empty()) ? 0 : &m.face.back() + 1;
|
|
|
|
// resize the optional atttributes in m.face_attr to reflect the changes
|
|
ResizeAttribute(m.face_attr, m.fn, m);
|
|
|
|
// now we update the various (not null) face pointers (inside VF and FF relations)
|
|
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if (!(*fi).IsD())
|
|
{
|
|
if (HasVFAdjacency(m))
|
|
for (int i = 0; i < (*fi).VN(); ++i)
|
|
if ((*fi).IsVFInitialized(i) && (*fi).VFp(i) != 0)
|
|
{
|
|
size_t oldIndex = (*fi).VFp(i) - fbase;
|
|
assert(fbase <= (*fi).VFp(i) && oldIndex < pu.remap.size());
|
|
(*fi).VFp(i) = fbase + pu.remap[oldIndex];
|
|
}
|
|
if (HasFFAdjacency(m))
|
|
for (int i = 0; i < (*fi).VN(); ++i)
|
|
if ((*fi).cFFp(i) != 0)
|
|
{
|
|
size_t oldIndex = (*fi).FFp(i) - fbase;
|
|
assert(fbase <= (*fi).FFp(i) && oldIndex < pu.remap.size());
|
|
(*fi).FFp(i) = fbase + pu.remap[oldIndex];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*! \brief Wrapper without the PointerUpdater. */
|
|
static void CompactFaceVector(MeshType &m)
|
|
{
|
|
PointerUpdater<FacePointer> pu;
|
|
CompactFaceVector(m, pu);
|
|
}
|
|
|
|
|
|
/*!
|
|
\brief Compact tetra vector by removing deleted elements.
|
|
|
|
Deleted elements are put to the end of the vector and the vector is resized.
|
|
Order between elements is preserved, but not their position (hence the PointerUpdater)
|
|
Immediately after calling this function the \c IsD() test during the scanning a vector, is no more necessary.
|
|
\warning It should not be called when some TemporaryData is active (but works correctly if attributes are present)
|
|
*/
|
|
static void CompactTetraVector(MeshType & m, PointerUpdater<TetraPointer> & pu)
|
|
{
|
|
//nothing to do
|
|
if (size_t(m.tn) == m.tetra.size())
|
|
return;
|
|
|
|
//init the remap
|
|
pu.remap.resize(m.tetra.size(), std::numeric_limits<size_t>::max());
|
|
|
|
//cycle over all the tetras, pos is the last not D() position, I is the index
|
|
//when pos != i and !tetra[i].IsD() => we need to compact and update adj
|
|
size_t pos = 0;
|
|
for (size_t i = 0; i < m.tetra.size(); ++i)
|
|
{
|
|
if (!m.tetra.IsD())
|
|
{
|
|
if (pos != i)
|
|
{
|
|
//import data
|
|
m.tetra[pos].ImportData(m.tetra[i]);
|
|
//import vertex refs
|
|
for (int j = 0; j < 4; ++j)
|
|
m.tetra[pos].V(j) = m.tetra[i].cV(j);
|
|
//import VT adj
|
|
if (HasVTAdjacency(m))
|
|
for (int j = 0; j < 4; ++j)
|
|
{
|
|
if (m.tetra[i].IsVTInitialized(j))
|
|
{
|
|
m.tetra[pos].VTp(j) = m.tetra[i].VTp(j);
|
|
m.tetra[pos].VTi(j) = m.tetra[i].VTi(j);
|
|
}
|
|
else
|
|
m.tetra[pos].VTClear();
|
|
}
|
|
//import TT adj
|
|
if (HasTTAdjacency(m))
|
|
for (int j = 0; j < 4; ++j)
|
|
{
|
|
m.tetra[pos].TTp(j) = m.tetra[i].cTTp(j);
|
|
m.tetra[pos].TTi(j) = m.tetra[i].cTTi(j);
|
|
}
|
|
}
|
|
//update remapping and advance pos
|
|
pu.remap[i] = pos;
|
|
++pos;
|
|
}
|
|
}
|
|
|
|
assert(size_t(m.tn) == pos);
|
|
//reorder the optional attributes in m.tetra_attr
|
|
ReorderAttribute(m.tetra_attr, pu.remap, m);
|
|
// resize the optional atttributes in m.tetra_attr to reflect the changes
|
|
ResizeAttribute(m.tetra_attr, m.tn, m);
|
|
|
|
// Loop on the tetras to correct VT and TT relations
|
|
pu.oldBase = &m.tetra[0];
|
|
pu.oldEnd = &m.tetra.back() + 1;
|
|
|
|
m.tetra.resize(m.tn);
|
|
pu.newBase = (m.tetra.empty()) ? 0 : &m.tetra[0];
|
|
pu.newEnd = (m.tetra.empty()) ? 0 : &m.tetra.back() + 1;
|
|
|
|
TetraPointer tbase = &m.tetra[0];
|
|
|
|
//Loop on the vertices to correct VT relation (since we moved things around)
|
|
if (HasVTAdjacency(m))
|
|
{
|
|
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if (!(*vi).IsD())
|
|
{
|
|
if ((*vi).IsVTInitialized() && (*vi).VTp() != 0)
|
|
{
|
|
size_t oldIndex = (*vi).cVTp() - tbase;
|
|
assert(tbase <= (*vi).cVTp() && oldIndex < pu.remap.size());
|
|
(*vi).VTp() = tbase + pu.remap[oldIndex];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Loop on the tetras to correct the VT and TT relations
|
|
for (TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti)
|
|
if (!(*ti).IsD())
|
|
{
|
|
//VT
|
|
if (HasVTAdjacency(m))
|
|
for (int i = 0; i < 4; ++i)
|
|
if ((*ti).IsVTInitialized(i) && (*ti).VTp(i) != 0)
|
|
{
|
|
size_t oldIndex = (*ti).VTp(i) - fbase;
|
|
assert(tbase <= (*ti).VTp(i) && oldIndex < pu.remap.size());
|
|
(*ti).VTp(i) = tbase + pu.remap[oldIndex];
|
|
}
|
|
//TT
|
|
if (HasTTAdjacency(m))
|
|
for (int i = 0; i < 4; ++i)
|
|
if ((*ti).cTTp(i) != 0)
|
|
{
|
|
size_t oldIndex = (*ti).TTp(i) - tbase;
|
|
assert(tbase <= (*ti).TTp(i) && oldIndex < pu.remap.size());
|
|
(*ti).TTp(i) = tbase + pu.remap[oldIndex];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*! \brief Wrapper without the PointerUpdater. */
|
|
static void CompactTetraVector(MeshType &m)
|
|
{
|
|
PointerUpdater<TetraPointer> pu;
|
|
CompactTetraVector(m, pu);
|
|
}
|
|
|
|
public:
|
|
/*! \brief Check if an handle to a Per-Vertex Attribute is valid
|
|
*/
|
|
template <class ATTR_TYPE>
|
|
static bool IsValidHandle(MeshType &m, const typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> &a)
|
|
{
|
|
if (a._handle == NULL)
|
|
return false;
|
|
for (AttrIterator i = m.vert_attr.begin(); i != m.vert_attr.end(); ++i)
|
|
if ((*i).n_attr == a.n_attr)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*! \brief Add a Per-Vertex Attribute of the given ATTR_TYPE with the given name.
|
|
|
|
No attribute with that name must exists (even of different type)
|
|
*/
|
|
template <class ATTR_TYPE>
|
|
static
|
|
typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>
|
|
AddPerVertexAttribute(MeshType &m, std::string name)
|
|
{
|
|
PAIte i;
|
|
PointerToAttribute h;
|
|
h._name = name;
|
|
if (!name.empty())
|
|
{
|
|
i = m.vert_attr.find(h);
|
|
assert(i == m.vert_attr.end()); // an attribute with this name exists
|
|
}
|
|
|
|
h._sizeof = sizeof(ATTR_TYPE);
|
|
h._padding = 0;
|
|
h._handle = new SimpleTempData<VertContainer, ATTR_TYPE>(m.vert);
|
|
h._type = typeid(ATTR_TYPE);
|
|
m.attrn++;
|
|
h.n_attr = m.attrn;
|
|
std::pair<AttrIterator, bool> res = m.vert_attr.insert(h);
|
|
return typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>(res.first->_handle, res.first->n_attr);
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>
|
|
AddPerVertexAttribute(MeshType &m)
|
|
{
|
|
return AddPerVertexAttribute<ATTR_TYPE>(m, std::string(""));
|
|
}
|
|
|
|
/*! \brief gives a handle to a per-vertex attribute with a given name and ATTR_TYPE
|
|
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it.
|
|
Otherwise return a hanlde to a newly created.
|
|
*/
|
|
template <class ATTR_TYPE>
|
|
static
|
|
typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>
|
|
GetPerVertexAttribute(MeshType &m, std::string name = std::string(""))
|
|
{
|
|
typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> h;
|
|
if (!name.empty())
|
|
{
|
|
h = FindPerVertexAttribute<ATTR_TYPE>(m, name);
|
|
if (IsValidHandle(m, h))
|
|
return h;
|
|
}
|
|
return AddPerVertexAttribute<ATTR_TYPE>(m, name);
|
|
}
|
|
|
|
/*! \brief Try to retrieve an handle to an attribute with a given name and ATTR_TYPE
|
|
\returns a invalid handle if no attribute with that name and type exists.
|
|
*/
|
|
template <class ATTR_TYPE>
|
|
static typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>
|
|
FindPerVertexAttribute(MeshType &m, const std::string &name)
|
|
{
|
|
assert(!name.empty());
|
|
PointerToAttribute h1;
|
|
h1._name = name;
|
|
typename std::set<PointerToAttribute>::iterator i;
|
|
|
|
i = m.vert_attr.find(h1);
|
|
if (i != m.vert_attr.end())
|
|
if ((*i)._sizeof == sizeof(ATTR_TYPE))
|
|
{
|
|
if ((*i)._padding != 0)
|
|
{
|
|
PointerToAttribute attr = (*i); // copy the PointerToAttribute
|
|
m.vert_attr.erase(i); // remove it from the set
|
|
FixPaddedPerVertexAttribute<ATTR_TYPE>(m, attr);
|
|
std::pair<AttrIterator, bool> new_i = m.vert_attr.insert(attr); // insert the modified PointerToAttribute
|
|
assert(new_i.second);
|
|
i = new_i.first;
|
|
}
|
|
return typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>((*i)._handle, (*i).n_attr);
|
|
}
|
|
return typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>(NULL, 0);
|
|
}
|
|
|
|
/*! \brief query the mesh for all the attributes per vertex
|
|
\returns the name of all attributes with a non-empy name.
|
|
*/
|
|
template <class ATTR_TYPE>
|
|
static void GetAllPerVertexAttribute(MeshType &m, std::vector<std::string> &all)
|
|
{
|
|
all.clear();
|
|
typename std::set<PointerToAttribute>::const_iterator i;
|
|
for (i = m.vert_attr.begin(); i != m.vert_attr.end(); ++i)
|
|
if (!(*i)._name.empty())
|
|
{
|
|
typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> hh;
|
|
hh = Allocator<MeshType>::template FindPerVertexAttribute<ATTR_TYPE>(m, (*i)._name);
|
|
if (IsValidHandle<ATTR_TYPE>(m, hh))
|
|
all.push_back((*i)._name);
|
|
}
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static void
|
|
ClearPerVertexAttribute(MeshType &m, typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> &h, const ATTR_TYPE &initVal = ATTR_TYPE())
|
|
{
|
|
typename std::set<PointerToAttribute>::iterator i;
|
|
for (i = m.vert_attr.begin(); i != m.vert_attr.end(); ++i)
|
|
if ((*i)._handle == h._handle)
|
|
{
|
|
for (typename MeshType::VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
h[vi] = initVal;
|
|
return;
|
|
}
|
|
assert(0);
|
|
}
|
|
|
|
/*! \brief If the per-vertex attribute exists, delete it.
|
|
*/
|
|
template <class ATTR_TYPE>
|
|
static void
|
|
DeletePerVertexAttribute(MeshType &m, typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> &h)
|
|
{
|
|
typename std::set<PointerToAttribute>::iterator i;
|
|
for (i = m.vert_attr.begin(); i != m.vert_attr.end(); ++i)
|
|
if ((*i)._handle == h._handle)
|
|
{
|
|
delete ((SimpleTempData<VertContainer, ATTR_TYPE> *)(*i)._handle);
|
|
m.vert_attr.erase(i);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Generic DeleteAttribute.
|
|
// It must not crash if you try to delete a non existing attribute,
|
|
// because you do not have a way of asking for a handle of an attribute for which you do not know the type.
|
|
static bool DeletePerVertexAttribute(MeshType &m, std::string name)
|
|
{
|
|
AttrIterator i;
|
|
PointerToAttribute h1;
|
|
h1._name = name;
|
|
i = m.vert_attr.find(h1);
|
|
if (i == m.vert_attr.end())
|
|
return false;
|
|
delete ((SimpleTempDataBase *)(*i)._handle);
|
|
m.vert_attr.erase(i);
|
|
return true;
|
|
}
|
|
|
|
/// Per Edge Attributes
|
|
template <class ATTR_TYPE>
|
|
static bool IsValidHandle(MeshType &m, const typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE> &a)
|
|
{
|
|
if (a._handle == NULL)
|
|
return false;
|
|
for (AttrIterator i = m.edge_attr.begin(); i != m.edge_attr.end(); ++i)
|
|
if ((*i).n_attr == a.n_attr)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static
|
|
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>
|
|
AddPerEdgeAttribute(MeshType &m, std::string name)
|
|
{
|
|
PAIte i;
|
|
PointerToAttribute h;
|
|
h._name = name;
|
|
if (!name.empty())
|
|
{
|
|
i = m.edge_attr.find(h);
|
|
assert(i == m.edge_attr.end()); // an attribute with this name exists
|
|
}
|
|
h._sizeof = sizeof(ATTR_TYPE);
|
|
h._padding = 0;
|
|
// h._typename = typeid(ATTR_TYPE).name();
|
|
h._handle = new SimpleTempData<EdgeContainer, ATTR_TYPE>(m.edge);
|
|
h._type = typeid(ATTR_TYPE);
|
|
m.attrn++;
|
|
h.n_attr = m.attrn;
|
|
std::pair<AttrIterator, bool> res = m.edge_attr.insert(h);
|
|
return typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>(res.first->_handle, res.first->n_attr);
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static
|
|
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>
|
|
AddPerEdgeAttribute(MeshType &m)
|
|
{
|
|
return AddPerEdgeAttribute<ATTR_TYPE>(m, std::string(""));
|
|
}
|
|
|
|
/*! \brief gives a handle to a per-edge attribute with a given name and ATTR_TYPE
|
|
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it.
|
|
Otherwise return a hanlde to a newly created.
|
|
*/
|
|
template <class ATTR_TYPE>
|
|
static
|
|
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>
|
|
GetPerEdgeAttribute(MeshType &m, std::string name = std::string(""))
|
|
{
|
|
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE> h;
|
|
if (!name.empty())
|
|
{
|
|
h = FindPerEdgeAttribute<ATTR_TYPE>(m, name);
|
|
if (IsValidHandle(m, h))
|
|
return h;
|
|
}
|
|
return AddPerEdgeAttribute<ATTR_TYPE>(m, name);
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static
|
|
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>
|
|
FindPerEdgeAttribute(MeshType &m, const std::string &name)
|
|
{
|
|
assert(!name.empty());
|
|
PointerToAttribute h1;
|
|
h1._name = name;
|
|
typename std::set<PointerToAttribute>::const_iterator i;
|
|
|
|
i = m.edge_attr.find(h1);
|
|
if (i != m.edge_attr.end())
|
|
if ((*i)._sizeof == sizeof(ATTR_TYPE))
|
|
{
|
|
if ((*i)._padding != 0)
|
|
{
|
|
PointerToAttribute attr = (*i); // copy the PointerToAttribute
|
|
m.edge_attr.erase(i); // remove it from the set
|
|
FixPaddedPerEdgeAttribute<ATTR_TYPE>(m, attr);
|
|
std::pair<AttrIterator, bool> new_i = m.edge_attr.insert(attr); // insert the modified PointerToAttribute
|
|
assert(new_i.second);
|
|
i = new_i.first;
|
|
}
|
|
return typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>((*i)._handle, (*i).n_attr);
|
|
}
|
|
|
|
return typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>(NULL, 0);
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static void GetAllPerEdgeAttribute(const MeshType &m, std::vector<std::string> &all)
|
|
{
|
|
all.clear();
|
|
typename std::set<PointerToAttribute>::const_iterator i;
|
|
for (i = m.edge_attr.begin(); i != m.edge_attr.end(); ++i)
|
|
if (!(*i)._name.empty())
|
|
{
|
|
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE> hh;
|
|
hh = Allocator<MeshType>::template FindPerEdgeAttribute<ATTR_TYPE>(m, (*i)._name);
|
|
if (IsValidHandle<ATTR_TYPE>(m, hh))
|
|
all.push_back((*i)._name);
|
|
}
|
|
}
|
|
|
|
/*! \brief If the per-edge attribute exists, delete it.
|
|
*/
|
|
template <class ATTR_TYPE>
|
|
static void
|
|
DeletePerEdgeAttribute(MeshType &m, typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE> &h)
|
|
{
|
|
typename std::set<PointerToAttribute>::iterator i;
|
|
for (i = m.edge_attr.begin(); i != m.edge_attr.end(); ++i)
|
|
if ((*i)._handle == h._handle)
|
|
{
|
|
delete ((SimpleTempData<FaceContainer, ATTR_TYPE> *)(*i)._handle);
|
|
m.edge_attr.erase(i);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Generic DeleteAttribute.
|
|
// It must not crash if you try to delete a non existing attribute,
|
|
// because you do not have a way of asking for a handle of an attribute for which you do not know the type.
|
|
static bool DeletePerEdgeAttribute(MeshType &m, std::string name)
|
|
{
|
|
AttrIterator i;
|
|
PointerToAttribute h1;
|
|
h1._name = name;
|
|
i = m.edge_attr.find(h1);
|
|
if (i == m.edge_attr.end())
|
|
return false;
|
|
delete ((SimpleTempDataBase *)(*i)._handle);
|
|
m.edge_attr.erase(i);
|
|
return true;
|
|
}
|
|
|
|
/// Per Tetra Attributes
|
|
template <class ATTR_TYPE>
|
|
static bool IsValidHandle(MeshType & m, const typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> & a)
|
|
{
|
|
if (a._handle == NULL)
|
|
return false;
|
|
for (AttrIterator i = m.tetra_attr.begin(); i != m.tetra_attr.end(); ++i)
|
|
if ((*i).n_attr == a.n_attr)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> AddPerTetraAttribute(MeshType & m, std::string name)
|
|
{
|
|
PAIte i;
|
|
PointerToAttribute h;
|
|
h._name = name;
|
|
if (!name.empty())
|
|
{
|
|
i = m.tetra_attr.find(h);
|
|
assert(i == m.tetra_attr.end());
|
|
}
|
|
|
|
h._sizeof = sizeof(ATTR_TYPE);
|
|
h._padding = 0;
|
|
h._handle = new SimpleTempData<TetraContainer, ATTR_TYPE>(m.tetra);
|
|
h._type = typeid(ATTR_TYPE);
|
|
m.attrn++;
|
|
h.n_attr = m.attrn;
|
|
std::pair<AttrIterator, bool> res = m.tetra_attr.insert(h);
|
|
return typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE>(res.first->_handle, res.first->n_attr);
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> AddPerTetraAttribute(MeshType &m)
|
|
{
|
|
return AddPerTetraAttribute<ATTR_TYPE>(m, std::string(""));
|
|
}
|
|
|
|
/*! \brief gives a handle to a per-tetra attribute with a given name and ATTR_TYPE
|
|
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it.
|
|
Otherwise return a hanlde to a newly created.
|
|
*/
|
|
template <class ATTR_TYPE>
|
|
static typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> GetPerTetraAttribute(MeshType &m, std::string name = std::string(""))
|
|
{
|
|
typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> h;
|
|
if (!name.empty())
|
|
{
|
|
h = FindPerTetraAttribute<ATTR_TYPE>(m, name);
|
|
if (IsValidHandle(m, h))
|
|
return h;
|
|
}
|
|
return AddPerTetraAttribute<ATTR_TYPE>(m, name);
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> FindPerTetraAttribute(MeshType &m, const std::string &name)
|
|
{
|
|
assert(!name.empty());
|
|
PointerToAttribute h1;
|
|
h1._name = name;
|
|
typename std::set<PointerToAttribute>::iterator i;
|
|
|
|
i = m.tetra_attr.find(h1);
|
|
if (i != m.tetra_attr.end())
|
|
if ((*i)._sizeof == sizeof(ATTR_TYPE))
|
|
{
|
|
if ((*i)._padding != 0)
|
|
{
|
|
PointerToAttribute attr = (*i); // copy the PointerToAttribute
|
|
m.tetra_attr.erase(i); // remove it from the set
|
|
FixPaddedPerTetraAttribute<ATTR_TYPE>(m, attr);
|
|
std::pair<AttrIterator, bool> new_i = m.tetra_attr.insert(attr); // insert the modified PointerToAttribute
|
|
assert(new_i.second);
|
|
i = new_i.first;
|
|
}
|
|
return typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE>((*i)._handle, (*i).n_attr);
|
|
}
|
|
return typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE>(NULL, 0);
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static void GetAllPerTetraAttribute(MeshType &m, std::vector<std::string> &all)
|
|
{
|
|
all.clear();
|
|
typename std::set<PointerToAttribute>::const_iterator i;
|
|
for (i = m.tetra_attr.begin(); i != m.tetra_attr.end(); ++i)
|
|
if (!(*i)._name.empty())
|
|
{
|
|
typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> hh;
|
|
hh = Allocator<MeshType>::template FindPerTetraAttribute<ATTR_TYPE>(m, (*i)._name);
|
|
if (IsValidHandle<ATTR_TYPE>(m, hh))
|
|
all.push_back((*i)._name);
|
|
}
|
|
}
|
|
|
|
/*! \brief If the per-face attribute exists, delete it.
|
|
*/
|
|
template <class ATTR_TYPE>
|
|
static void DeletePerTetraAttribute(MeshType &m, typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> &h)
|
|
{
|
|
typename std::set<PointerToAttribute>::iterator i;
|
|
for (i = m.tetra_attr.begin(); i != m.tetra_attr.end(); ++i)
|
|
if ((*i)._handle == h._handle)
|
|
{
|
|
delete ((SimpleTempData<TetraContainer, ATTR_TYPE> *)(*i)._handle);
|
|
m.tetra_attr.erase(i);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Generic DeleteAttribute.
|
|
// It must not crash if you try to delete a non existing attribute,
|
|
// because you do not have a way of asking for a handle of an attribute for which you do not know the type.
|
|
static bool DeletePerTetraAttribute(MeshType &m, std::string name)
|
|
{
|
|
AttrIterator i;
|
|
PointerToAttribute h1;
|
|
h1._name = name;
|
|
i = m.tetra_attr.find(h1);
|
|
if (i == m.tetra_attr.end())
|
|
return false;
|
|
delete ((SimpleTempDataBase *)(*i)._handle);
|
|
m.tetra_attr.erase(i);
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Per Face Attributes
|
|
template <class ATTR_TYPE>
|
|
static bool IsValidHandle(MeshType &m, const typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE> &a)
|
|
{
|
|
if (a._handle == NULL)
|
|
return false;
|
|
for (AttrIterator i = m.face_attr.begin(); i != m.face_attr.end(); ++i)
|
|
if ((*i).n_attr == a.n_attr)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static
|
|
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>
|
|
AddPerFaceAttribute(MeshType &m, std::string name)
|
|
{
|
|
PAIte i;
|
|
PointerToAttribute h;
|
|
h._name = name;
|
|
if (!name.empty())
|
|
{
|
|
i = m.face_attr.find(h);
|
|
assert(i == m.face_attr.end()); // an attribute with this name exists
|
|
}
|
|
|
|
h._sizeof = sizeof(ATTR_TYPE);
|
|
h._padding = 0;
|
|
h._handle = new SimpleTempData<FaceContainer, ATTR_TYPE>(m.face);
|
|
h._type = typeid(ATTR_TYPE);
|
|
m.attrn++;
|
|
h.n_attr = m.attrn;
|
|
std::pair<AttrIterator, bool> res = m.face_attr.insert(h);
|
|
return typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>(res.first->_handle, res.first->n_attr);
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static
|
|
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>
|
|
AddPerFaceAttribute(MeshType &m)
|
|
{
|
|
return AddPerFaceAttribute<ATTR_TYPE>(m, std::string(""));
|
|
}
|
|
|
|
/*! \brief gives a handle to a per-edge attribute with a given name and ATTR_TYPE
|
|
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it.
|
|
Otherwise return a hanlde to a newly created.
|
|
*/
|
|
template <class ATTR_TYPE>
|
|
static
|
|
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>
|
|
GetPerFaceAttribute(MeshType &m, std::string name = std::string(""))
|
|
{
|
|
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE> h;
|
|
if (!name.empty())
|
|
{
|
|
h = FindPerFaceAttribute<ATTR_TYPE>(m, name);
|
|
if (IsValidHandle(m, h))
|
|
return h;
|
|
}
|
|
return AddPerFaceAttribute<ATTR_TYPE>(m, name);
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static
|
|
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>
|
|
FindPerFaceAttribute(MeshType &m, const std::string &name)
|
|
{
|
|
assert(!name.empty());
|
|
PointerToAttribute h1;
|
|
h1._name = name;
|
|
typename std::set<PointerToAttribute>::iterator i;
|
|
|
|
i = m.face_attr.find(h1);
|
|
if (i != m.face_attr.end())
|
|
if ((*i)._sizeof == sizeof(ATTR_TYPE))
|
|
{
|
|
if ((*i)._padding != 0)
|
|
{
|
|
PointerToAttribute attr = (*i); // copy the PointerToAttribute
|
|
m.face_attr.erase(i); // remove it from the set
|
|
FixPaddedPerFaceAttribute<ATTR_TYPE>(m, attr);
|
|
std::pair<AttrIterator, bool> new_i = m.face_attr.insert(attr); // insert the modified PointerToAttribute
|
|
assert(new_i.second);
|
|
i = new_i.first;
|
|
}
|
|
return typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>((*i)._handle, (*i).n_attr);
|
|
}
|
|
return typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>(NULL, 0);
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static void GetAllPerFaceAttribute(MeshType &m, std::vector<std::string> &all)
|
|
{
|
|
all.clear();
|
|
typename std::set<PointerToAttribute>::const_iterator i;
|
|
for (i = m.face_attr.begin(); i != m.face_attr.end(); ++i)
|
|
if (!(*i)._name.empty())
|
|
{
|
|
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE> hh;
|
|
hh = Allocator<MeshType>::template FindPerFaceAttribute<ATTR_TYPE>(m, (*i)._name);
|
|
if (IsValidHandle<ATTR_TYPE>(m, hh))
|
|
all.push_back((*i)._name);
|
|
}
|
|
}
|
|
|
|
/*! \brief If the per-face attribute exists, delete it.
|
|
*/
|
|
template <class ATTR_TYPE>
|
|
static void DeletePerFaceAttribute(MeshType &m, typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE> &h)
|
|
{
|
|
typename std::set<PointerToAttribute>::iterator i;
|
|
for (i = m.face_attr.begin(); i != m.face_attr.end(); ++i)
|
|
if ((*i)._handle == h._handle)
|
|
{
|
|
delete ((SimpleTempData<FaceContainer, ATTR_TYPE> *)(*i)._handle);
|
|
m.face_attr.erase(i);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Generic DeleteAttribute.
|
|
// It must not crash if you try to delete a non existing attribute,
|
|
// because you do not have a way of asking for a handle of an attribute for which you do not know the type.
|
|
static bool DeletePerFaceAttribute(MeshType &m, std::string name)
|
|
{
|
|
AttrIterator i;
|
|
PointerToAttribute h1;
|
|
h1._name = name;
|
|
i = m.face_attr.find(h1);
|
|
if (i == m.face_attr.end())
|
|
return false;
|
|
delete ((SimpleTempDataBase *)(*i)._handle);
|
|
m.face_attr.erase(i);
|
|
return true;
|
|
}
|
|
|
|
/// Per Mesh Attributes
|
|
template <class ATTR_TYPE>
|
|
static bool IsValidHandle(MeshType &m, const typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE> &a)
|
|
{
|
|
if (a._handle == NULL)
|
|
return false;
|
|
for (AttrIterator i = m.mesh_attr.begin(); i != m.mesh_attr.end(); ++i)
|
|
if ((*i).n_attr == a.n_attr)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static
|
|
typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE>
|
|
AddPerMeshAttribute(MeshType &m, std::string name)
|
|
{
|
|
PAIte i;
|
|
PointerToAttribute h;
|
|
h._name = name;
|
|
if (!name.empty())
|
|
{
|
|
i = m.mesh_attr.find(h);
|
|
assert(i == m.mesh_attr.end()); // an attribute with this name exists
|
|
}
|
|
h._sizeof = sizeof(ATTR_TYPE);
|
|
h._padding = 0;
|
|
h._handle = new Attribute<ATTR_TYPE>();
|
|
h._type = typeid(ATTR_TYPE);
|
|
m.attrn++;
|
|
h.n_attr = m.attrn;
|
|
std::pair<AttrIterator, bool> res = m.mesh_attr.insert(h);
|
|
return typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE>(res.first->_handle, res.first->n_attr);
|
|
}
|
|
|
|
/*! \brief gives a handle to a per-edge attribute with a given name and ATTR_TYPE
|
|
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it.
|
|
Otherwise return a hanlde to a newly created.
|
|
*/
|
|
template <class ATTR_TYPE>
|
|
static
|
|
typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE>
|
|
GetPerMeshAttribute(MeshType &m, std::string name = std::string(""))
|
|
{
|
|
typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE> h;
|
|
if (!name.empty())
|
|
{
|
|
h = FindPerMeshAttribute<ATTR_TYPE>(m, name);
|
|
if (IsValidHandle(m, h))
|
|
return h;
|
|
}
|
|
return AddPerMeshAttribute<ATTR_TYPE>(m, name);
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static
|
|
typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE>
|
|
FindPerMeshAttribute(MeshType &m, const std::string &name)
|
|
{
|
|
assert(!name.empty());
|
|
PointerToAttribute h1;
|
|
h1._name = name;
|
|
typename std::set<PointerToAttribute>::iterator i;
|
|
|
|
i = m.mesh_attr.find(h1);
|
|
if (i != m.mesh_attr.end())
|
|
if ((*i)._sizeof == sizeof(ATTR_TYPE))
|
|
{
|
|
if ((*i)._padding != 0)
|
|
{
|
|
PointerToAttribute attr = (*i); // copy the PointerToAttribute
|
|
m.mesh_attr.erase(i); // remove it from the set
|
|
FixPaddedPerMeshAttribute<ATTR_TYPE>(m, attr);
|
|
std::pair<AttrIterator, bool> new_i = m.mesh_attr.insert(attr); // insert the modified PointerToAttribute
|
|
assert(new_i.second);
|
|
i = new_i.first;
|
|
}
|
|
|
|
return typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE>((*i)._handle, (*i).n_attr);
|
|
}
|
|
|
|
return typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE>(NULL, 0);
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static void GetAllPerMeshAttribute(const MeshType &m, std::vector<std::string> &all)
|
|
{
|
|
typename std::set<PointerToAttribute>::iterator i;
|
|
for (i = m.mesh_attr.begin(); i != m.mesh_attr.end(); ++i)
|
|
if ((*i)._sizeof == sizeof(ATTR_TYPE))
|
|
all.push_back((*i)._name);
|
|
}
|
|
|
|
/*! \brief If the per-mesh attribute exists, delete it.
|
|
*/
|
|
template <class ATTR_TYPE>
|
|
static void DeletePerMeshAttribute(MeshType &m, typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE> &h)
|
|
{
|
|
typename std::set<PointerToAttribute>::iterator i;
|
|
for (i = m.mesh_attr.begin(); i != m.mesh_attr.end(); ++i)
|
|
if ((*i)._handle == h._handle)
|
|
{
|
|
delete ((Attribute<ATTR_TYPE> *)(*i)._handle);
|
|
m.mesh_attr.erase(i);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Generic DeleteAttribute.
|
|
// It must not crash if you try to delete a non existing attribute,
|
|
// because you do not have a way of asking for a handle of an attribute for which you do not know the type.
|
|
static bool DeletePerMeshAttribute(MeshType &m, std::string name)
|
|
{
|
|
AttrIterator i;
|
|
PointerToAttribute h1;
|
|
h1._name = name;
|
|
i = m.mesh_attr.find(h1);
|
|
if (i == m.mesh_attr.end())
|
|
return false;
|
|
delete ((SimpleTempDataBase *)(*i)._handle);
|
|
m.mesh_attr.erase(i);
|
|
return true;
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static void FixPaddedPerVertexAttribute(MeshType &m, PointerToAttribute &pa)
|
|
{
|
|
|
|
// create the container of the right type
|
|
SimpleTempData<VertContainer, ATTR_TYPE> *_handle = new SimpleTempData<VertContainer, ATTR_TYPE>(m.vert);
|
|
|
|
// copy the padded container in the new one
|
|
_handle->Resize(m.vert.size());
|
|
for (size_t i = 0; i < m.vert.size(); ++i)
|
|
{
|
|
ATTR_TYPE *dest = &(*_handle)[i];
|
|
char *ptr = (char *)(((SimpleTempDataBase *)pa._handle)->DataBegin());
|
|
memcpy((void *)dest,
|
|
(void *)&(ptr[i * pa._sizeof]), sizeof(ATTR_TYPE));
|
|
}
|
|
|
|
// remove the padded container
|
|
delete ((SimpleTempDataBase *)pa._handle);
|
|
|
|
// update the pointer to data
|
|
pa._sizeof = sizeof(ATTR_TYPE);
|
|
|
|
// update the pointer to data
|
|
pa._handle = _handle;
|
|
|
|
// zero the padding
|
|
pa._padding = 0;
|
|
}
|
|
template <class ATTR_TYPE>
|
|
static void FixPaddedPerEdgeAttribute(MeshType &m, PointerToAttribute &pa)
|
|
{
|
|
|
|
// create the container of the right type
|
|
SimpleTempData<EdgeContainer, ATTR_TYPE> *_handle = new SimpleTempData<EdgeContainer, ATTR_TYPE>(m.edge);
|
|
|
|
// copy the padded container in the new one
|
|
_handle->Resize(m.edge.size());
|
|
for (size_t i = 0; i < m.edge.size(); ++i)
|
|
{
|
|
ATTR_TYPE *dest = &(*_handle)[i];
|
|
char *ptr = (char *)(((SimpleTempDataBase *)pa._handle)->DataBegin());
|
|
memcpy((void *)dest,
|
|
(void *)&(ptr[i * pa._sizeof]), sizeof(ATTR_TYPE));
|
|
}
|
|
|
|
// remove the padded container
|
|
delete ((SimpleTempDataBase *)pa._handle);
|
|
|
|
// update the pointer to data
|
|
pa._sizeof = sizeof(ATTR_TYPE);
|
|
|
|
// update the pointer to data
|
|
pa._handle = _handle;
|
|
|
|
// zero the padding
|
|
pa._padding = 0;
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static void FixPaddedPerFaceAttribute(MeshType &m, PointerToAttribute &pa)
|
|
{
|
|
|
|
// create the container of the right type
|
|
SimpleTempData<FaceContainer, ATTR_TYPE> *_handle = new SimpleTempData<FaceContainer, ATTR_TYPE>(m.face);
|
|
|
|
// copy the padded container in the new one
|
|
_handle->Resize(m.face.size());
|
|
for (size_t i = 0; i < m.face.size(); ++i)
|
|
{
|
|
ATTR_TYPE *dest = &(*_handle)[i];
|
|
char *ptr = (char *)(((SimpleTempDataBase *)pa._handle)->DataBegin());
|
|
memcpy((void *)dest,
|
|
(void *)&(ptr[i * pa._sizeof]), sizeof(ATTR_TYPE));
|
|
}
|
|
|
|
// remove the padded container
|
|
delete ((SimpleTempDataBase *)pa._handle);
|
|
|
|
// update the pointer to data
|
|
pa._sizeof = sizeof(ATTR_TYPE);
|
|
|
|
// update the pointer to data
|
|
pa._handle = _handle;
|
|
|
|
// zero the padding
|
|
pa._padding = 0;
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static void FixPaddedPerTetraAttribute(MeshType &m, PointerToAttribute &pa)
|
|
{
|
|
|
|
// create the container of the right type
|
|
SimpleTempData<TetraContainer, ATTR_TYPE> *_handle = new SimpleTempData<TetraContainer, ATTR_TYPE>(m.tetra);
|
|
|
|
// copy the padded container in the new one
|
|
_handle->Resize(m.tetra.size());
|
|
for (size_t i = 0; i < m.tetra.size(); ++i)
|
|
{
|
|
ATTR_TYPE *dest = &(*_handle)[i];
|
|
char *ptr = (char *)(((SimpleTempDataBase *)pa._handle)->DataBegin());
|
|
memcpy((void *)dest,
|
|
(void *)&(ptr[i * pa._sizeof]), sizeof(ATTR_TYPE));
|
|
}
|
|
|
|
// remove the padded container
|
|
delete ((SimpleTempDataBase *)pa._handle);
|
|
|
|
// update the pointer to data
|
|
pa._sizeof = sizeof(ATTR_TYPE);
|
|
|
|
// update the pointer to data
|
|
pa._handle = _handle;
|
|
|
|
// zero the padding
|
|
pa._padding = 0;
|
|
}
|
|
|
|
template <class ATTR_TYPE>
|
|
static void FixPaddedPerMeshAttribute(MeshType & /* m */, PointerToAttribute &pa)
|
|
{
|
|
|
|
// create the container of the right type
|
|
Attribute<ATTR_TYPE> *_handle = new Attribute<ATTR_TYPE>();
|
|
|
|
// copy the padded container in the new one
|
|
char *ptr = (char *)(((Attribute<ATTR_TYPE> *)pa._handle)->DataBegin());
|
|
memcpy((void *)_handle->attribute, (void *)&(ptr[0]), sizeof(ATTR_TYPE));
|
|
|
|
// remove the padded container
|
|
delete ((Attribute<ATTR_TYPE> *)pa._handle);
|
|
|
|
// update the pointer to data
|
|
pa._sizeof = sizeof(ATTR_TYPE);
|
|
|
|
// update the pointer to data
|
|
pa._handle = _handle;
|
|
|
|
// zero the padding
|
|
pa._padding = 0;
|
|
}
|
|
|
|
}; // end Allocator class
|
|
|
|
/** @} */ // end doxygen group trimesh
|
|
} // end namespace tri
|
|
} // end namespace vcg
|
|
|
|
#endif
|