vcglib/apps/texdeci/texdeci.cpp

231 lines
8.1 KiB
C++

#include <vector>
#include <limits>
#include <stdio.h>
#include <stdlib.h>
// stuff to define the mesh
#include <vcg/simplex/vertex/base.h>
#include <vcg/simplex/face/base.h>
#include <vcg/simplex/edge/base.h>
#include <vcg/complex/complex.h>
#include <vcg/math/quadric.h>
#include <vcg/complex/algorithms/clean.h>
// io
#include <wrap/io_trimesh/import.h>
#include <wrap/io_trimesh/export_ply.h>
// update
#include <vcg/complex/algorithms/update/topology.h>
#include <vcg/complex/algorithms/update/bounding.h>
#include <vcg/complex/algorithms/smooth.h>
// local optimization
#include <vcg/complex/algorithms/local_optimization.h>
#include <vcg/complex/algorithms/local_optimization/tri_edge_collapse.h>
#include <vcg/complex/algorithms/local_optimization/tri_edge_collapse_quadric_tex.h>
using namespace vcg;
using namespace tri;
// The class prototypes.
class MyVertex;
class MyEdge;
class MyFace;
struct MyUsedTypes: public UsedTypes<Use<MyVertex>::AsVertexType, Use<MyEdge>::AsEdgeType, Use<MyFace>::AsFaceType>{};
class MyVertex : public Vertex< MyUsedTypes,
vertex::VFAdj,
vertex::Coord3f,
vertex::Normal3f,
vertex::Mark,
vertex::BitFlags >{
};
class MyEdge : public Edge< MyUsedTypes> {};
typedef BasicVertexPair<MyVertex> VertexPair;
class MyFace : public Face< MyUsedTypes,
face::VFAdj,
face::VertexRef,
face::BitFlags,
face::WedgeTexCoord2f> {};
// the main mesh class
class MyMesh : public vcg::tri::TriMesh<std::vector<MyVertex>, std::vector<MyFace> > {};
class MyTriEdgeCollapseQTex: public TriEdgeCollapseQuadricTex< MyMesh, VertexPair, MyTriEdgeCollapseQTex, QuadricTexHelper<MyMesh> > {
public:
typedef TriEdgeCollapseQuadricTex< MyMesh, VertexPair, MyTriEdgeCollapseQTex, QuadricTexHelper<MyMesh> > TECQ;
inline MyTriEdgeCollapseQTex( const VertexPair &p, int i,BaseParameterClass *pp) :TECQ(p,i,pp){}
};
void TexDecimation(MyMesh &m, bool CleaningFlag,int TargetFaceNum)
{
tri::TriEdgeCollapseQuadricTexParameter pp;
pp.SetDefaultParams();
if(CleaningFlag){
int dup = tri::Clean<MyMesh>::RemoveDuplicateVertex(m);
int unref = tri::Clean<MyMesh>::RemoveUnreferencedVertex(m);
printf("Removed %i duplicate and %i unreferenced vertices from mesh \n",dup,unref);
}
printf("reducing it to %i\n",TargetFaceNum);
int t1=clock();
tri::UpdateBounding<MyMesh>::Box(m);
math::Quadric<double> QZero;
QZero.SetZero();
QuadricTexHelper<MyMesh>::QuadricTemp TD3(m.vert,QZero);
QuadricTexHelper<MyMesh>::TDp3()=&TD3;
std::vector<std::pair<vcg::TexCoord2<float>,Quadric5<double> > > qv;
QuadricTexHelper<MyMesh>::Quadric5Temp TD(m.vert,qv);
QuadricTexHelper<MyMesh>::TDp()=&TD;
vcg::LocalOptimization<MyMesh> DeciSession(m, &pp);
// cb(1,"Initializing simplification");
DeciSession.Init<MyTriEdgeCollapseQTex>();
DeciSession.SetTargetSimplices(TargetFaceNum);
DeciSession.SetTimeBudget(0.1f);
// int startFn=m.fn;
int faceToDel=m.fn-TargetFaceNum;
int t2=clock();
while( DeciSession.DoOptimization() && m.fn>TargetFaceNum )
{
printf("Simplifing heap size %i ops %i\n",int(DeciSession.h.size()),DeciSession.nPerfmormedOps);
};
DeciSession.Finalize<MyTriEdgeCollapseQTex>();
int t3=clock();
printf("mesh %d %d Error %g \n",m.vn,m.fn,DeciSession.currMetric);
printf("\nCompleted in (%i+%i) msec\n",t2-t1,t3-t2);
}
// mesh to simplify
int main(int argc, char**argv){
int meshNum=argc-1;
//std::vector<MyMesh> meshVec(meshNum);
MyMesh meshVec[10];
int tt0=clock();
char buf[255];
int i;
for(i=0;i<meshNum;++i)
{
int err=vcg::tri::io::Importer<MyMesh>::Open(meshVec[i],argv[i+1]);
if(err)
{
printf("Unable to open mesh %s : '%s'\n",argv[i+1], vcg::tri::io::Importer<MyMesh>::ErrorMsg(err));
exit(-1);
}
printf("mesh loaded %d %d \n",meshVec[i].vn,meshVec[i].fn);
int t1=clock();
tri::Smooth<MyMesh>::VertexCoordLaplacian(meshVec[i],5*i);
TexDecimation(meshVec[i],true,meshVec[i].fn/2);
int t2=clock();
printf("%i %5.3f sec\n",i,float(t2-t1)/CLOCKS_PER_SEC);
sprintf(buf,"out%i.ply",i);
tri::io::ExporterPLY<MyMesh>::Save(meshVec[i],buf,false);
}
int tt1=clock();
printf("---Total %5.3f sec\n",float(tt1-tt0)/CLOCKS_PER_SEC);
for(int i=0;i<meshNum;++i)
{
char buf[255];
sprintf(buf,"out%i.ply",i);
tri::io::ExporterPLY<MyMesh>::Save(meshVec[i],buf,tri::io::Mask::IOM_WEDGTEXCOORD,false);
}
// TriEdgeCollapseQuadricParameter qparams;
// qparams.QualityThr =.3;
// float TargetError=std::numeric_limits<float>::max();
// bool CleaningFlag =false;
// // parse command line.
// for(int i=4; i < argc;)
// {
// if(argv[i][0]=='-')
// switch(argv[i][1])
// {
// case 'H' : qparams.SafeHeapUpdate=true; printf("Using Safe heap option\n"); break;
// case 'Q' : if(argv[i][2]=='y') { qparams.QualityCheck = true; printf("Using Quality Checking\n"); }
// else { qparams.QualityCheck = false; printf("NOT Using Quality Checking\n"); } break;
// case 'N' : if(argv[i][2]=='y') { qparams.NormalCheck = true; printf("Using Normal Deviation Checking\n"); }
// else { qparams.NormalCheck = false; printf("NOT Using Normal Deviation Checking\n"); } break;
// case 'O' : if(argv[i][2]=='y') { qparams.OptimalPlacement = true; printf("Using OptimalPlacement\n"); }
// else { qparams.OptimalPlacement = false; printf("NOT Using OptimalPlacement\n"); } break;
// case 'S' : if(argv[i][2]=='y') { qparams.ScaleIndependent = true; printf("Using ScaleIndependent\n"); }
// else { qparams.ScaleIndependent = false; printf("NOT Using ScaleIndependent\n"); } break;
// case 'B' : if(argv[i][2]=='y') { qparams.PreserveBoundary = true; printf("Preserving Boundary\n"); }
// else { qparams.PreserveBoundary = false; printf("NOT Preserving Boundary\n"); } break;
// case 'T' : if(argv[i][2]=='y') { qparams.PreserveTopology = true; printf("Preserving Topology\n"); }
// else { qparams.PreserveTopology = false; printf("NOT Preserving Topology\n"); } break;
// case 'q' : qparams.QualityThr = atof(argv[i]+2); printf("Setting Quality Thr to %f\n",atof(argv[i]+2)); break;
// case 'n' : qparams.NormalThrRad = math::ToRad(atof(argv[i]+2)); printf("Setting Normal Thr to %f deg\n",atof(argv[i]+2)); break;
// case 'b' : qparams.BoundaryWeight = atof(argv[i]+2); printf("Setting Boundary Weight to %f\n",atof(argv[i]+2)); break;
// case 'e' : TargetError = float(atof(argv[i]+2)); printf("Setting TargetError to %g\n",atof(argv[i]+2)); break;
// case 'P' : CleaningFlag=true; printf("Cleaning mesh before simplification\n"); break;
// default : printf("Unknown option '%s'\n", argv[i]);
// exit(0);
// }
// i++;
// }
// if(CleaningFlag){
// int dup = tri::Clean<MyMesh>::RemoveDuplicateVertex(mesh);
// int unref = tri::Clean<MyMesh>::RemoveUnreferencedVertex(mesh);
// printf("Removed %i duplicate and %i unreferenced vertices from mesh \n",dup,unref);
// }
// printf("reducing it to %i\n",FinalSize);
// vcg::tri::UpdateBounding<MyMesh>::Box(mesh);
// // decimator initialization
// vcg::LocalOptimization<MyMesh> DeciSession(mesh,&qparams);
// int t1=clock();
// DeciSession.Init<MyTriEdgeCollapse>();
// int t2=clock();
// printf("Initial Heap Size %i\n",int(DeciSession.h.size()));
// DeciSession.SetTargetSimplices(FinalSize);
// DeciSession.SetTimeBudget(0.5f);
// if(TargetError< std::numeric_limits<float>::max() ) DeciSession.SetTargetMetric(TargetError);
// while(DeciSession.DoOptimization() && mesh.fn>FinalSize && DeciSession.currMetric < TargetError)
// printf("Current Mesh size %7i heap sz %9i err %9g \r",mesh.fn, int(DeciSession.h.size()),DeciSession.currMetric);
// int t3=clock();
// printf("mesh %d %d Error %g \n",mesh.vn,mesh.fn,DeciSession.currMetric);
// printf("\nCompleted in (%i+%i) msec\n",t2-t1,t3-t2);
// vcg::tri::io::ExporterPLY<MyMesh>::Save(mesh,argv[2]);
return 0;
}