1164 lines
40 KiB
C++
1164 lines
40 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCGLIB_PLATONIC
|
|
#define __VCGLIB_PLATONIC
|
|
|
|
#include<vcg/math/base.h>
|
|
#include<vcg/complex/algorithms/refine.h>
|
|
#include<vcg/complex/algorithms/update/flag.h>
|
|
#include<vcg/complex/algorithms/update/position.h>
|
|
#include<vcg/complex/algorithms/update/topology.h>
|
|
#include<vcg/complex/algorithms/update/bounding.h>
|
|
#include<vcg/complex/algorithms/clean.h>
|
|
#include<vcg/complex/algorithms/polygon_support.h>
|
|
#include<vcg/complex/algorithms/smooth.h>
|
|
|
|
|
|
namespace vcg {
|
|
namespace tri {
|
|
/** \addtogroup trimesh */
|
|
//@{
|
|
/**
|
|
A set of functions that builds meshes
|
|
that represent surfaces of platonic solids,
|
|
and other simple shapes.
|
|
|
|
The 1st parameter is the mesh that will
|
|
be filled with the solid.
|
|
*/
|
|
template <class TetraMeshType>
|
|
void Tetrahedron(TetraMeshType &in)
|
|
{
|
|
typedef TetraMeshType MeshType;
|
|
typedef typename TetraMeshType::CoordType CoordType;
|
|
typedef typename TetraMeshType::VertexPointer VertexPointer;
|
|
typedef typename TetraMeshType::VertexIterator VertexIterator;
|
|
typedef typename TetraMeshType::FaceIterator FaceIterator;
|
|
|
|
in.Clear();
|
|
Allocator<TetraMeshType>::AddVertices(in,4);
|
|
Allocator<TetraMeshType>::AddFaces(in,4);
|
|
|
|
VertexPointer ivp[4];
|
|
VertexIterator vi=in.vert.begin();
|
|
ivp[0]=&*vi;(*vi).P()=CoordType ( 1.0, 1.0, 1.0); ++vi;
|
|
ivp[1]=&*vi;(*vi).P()=CoordType (-1.0, 1.0,-1.0); ++vi;
|
|
ivp[2]=&*vi;(*vi).P()=CoordType (-1.0,-1.0, 1.0); ++vi;
|
|
ivp[3]=&*vi;(*vi).P()=CoordType ( 1.0,-1.0,-1.0);
|
|
|
|
FaceIterator fi=in.face.begin();
|
|
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[2]; ++fi;
|
|
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[3]; ++fi;
|
|
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[3]; (*fi).V(2)=ivp[1]; ++fi;
|
|
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[1];
|
|
}
|
|
|
|
|
|
/// builds a Dodecahedron,
|
|
/// (each pentagon is composed of 5 triangles)
|
|
template <class DodMeshType>
|
|
void Dodecahedron(DodMeshType & in)
|
|
{
|
|
typedef DodMeshType MeshType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
const int N_penta=12;
|
|
const int N_points=62;
|
|
|
|
int penta[N_penta*3*3]=
|
|
{20,11, 18, 18, 11, 8, 8, 11, 4,
|
|
13,23, 4, 4, 23, 8, 8, 23, 16,
|
|
13, 4, 30, 30, 4, 28, 28, 4, 11,
|
|
16,34, 8, 8, 34, 18, 18, 34, 36,
|
|
11,20, 28, 28, 20, 45, 45, 20, 38,
|
|
13,30, 23, 23, 30, 41, 41, 30, 47,
|
|
16,23, 34, 34, 23, 50, 50, 23, 41,
|
|
20,18, 38, 38, 18, 52, 52, 18, 36,
|
|
30,28, 47, 47, 28, 56, 56, 28, 45,
|
|
50,60, 34, 34, 60, 36, 36, 60, 52,
|
|
45,38, 56, 56, 38, 60, 60, 38, 52,
|
|
50,41, 60, 60, 41, 56, 56, 41, 47 };
|
|
//A B E D C
|
|
const ScalarType p=(1.0 + math::Sqrt(5.0)) / 2.0;
|
|
const ScalarType p2=p*p;
|
|
const ScalarType p3=p*p*p;
|
|
ScalarType vv[N_points*3]=
|
|
{
|
|
0, 0, 2*p2, p2, 0, p3, p, p2, p3,
|
|
0, p, p3, -p, p2, p3, -p2, 0, p3,
|
|
-p, -p2, p3, 0, -p, p3, p, -p2, p3,
|
|
p3, p, p2, p2, p2, p2, 0, p3, p2,
|
|
-p2, p2, p2, -p3, p, p2, -p3, -p, p2,
|
|
-p2, -p2, p2, 0, -p3, p2, p2, -p2, p2,
|
|
p3, -p, p2, p3, 0, p, p2, p3, p,
|
|
-p2, p3, p, -p3, 0, p, -p2, -p3, p,
|
|
p2, -p3, p, 2*p2, 0, 0, p3, p2, 0,
|
|
p, p3, 0, 0, 2*p2, 0, -p, p3, 0,
|
|
-p3, p2, 0, -2*p2, 0, 0, -p3, -p2, 0,
|
|
-p, -p3, 0, 0, -2*p2, 0, p, -p3, 0,
|
|
p3, -p2, 0, p3, 0, -p, p2, p3, -p,
|
|
-p2, p3, -p, -p3, 0, -p, -p2, -p3, -p,
|
|
p2, -p3, -p, p3, p, -p2, p2, p2, -p2,
|
|
0, p3, -p2, -p2, p2, -p2, -p3, p, -p2,
|
|
-p3, -p, -p2, -p2, -p2, -p2, 0, -p3, -p2,
|
|
p2, -p2, -p2, p3, -p, -p2, p2, 0, -p3,
|
|
p, p2, -p3, 0, p, -p3, -p, p2, -p3,
|
|
-p2, 0, -p3, -p, -p2, -p3, 0, -p, -p3,
|
|
p, -p2, -p3, 0, 0, -2*p2
|
|
};
|
|
in.Clear();
|
|
//in.face.clear();
|
|
Allocator<DodMeshType>::AddVertices(in,20+12);
|
|
Allocator<DodMeshType>::AddFaces(in, 5*12); // five pentagons, each made by 5 tri
|
|
|
|
int h,i,j,m=0;
|
|
|
|
bool used[N_points];
|
|
for (i=0; i<N_points; i++) used[i]=false;
|
|
|
|
int reindex[20+12 *10];
|
|
ScalarType xx,yy,zz, sx,sy,sz;
|
|
|
|
int order[5]={0,1,8,6,2};
|
|
int added[12];
|
|
|
|
VertexIterator vi=in.vert.begin();
|
|
|
|
for (i=0; i<12; i++) {
|
|
sx=sy=sz=0;
|
|
for (int j=0; j<5; j++) {
|
|
h= penta[ i*9 + order[j] ]-1;
|
|
xx=vv[h*3];yy=vv[h*3+1];zz=vv[h*3+2]; sx+=xx; sy+=yy; sz+=zz;
|
|
if (!used[h]) {
|
|
(*vi).P()=CoordType( xx, yy, zz ); vi++;
|
|
used[h]=true;
|
|
reindex[ h ] = m++;
|
|
}
|
|
}
|
|
(*vi).P()=CoordType( sx/5.0, sy/5.0, sz/5.0 ); vi++;
|
|
added[ i ] = m++;
|
|
}
|
|
|
|
std::vector<VertexPointer> index(in.vn);
|
|
|
|
for(j=0,vi=in.vert.begin();j<in.vn;++j,++vi) index[j] = &(*vi);
|
|
|
|
FaceIterator fi=in.face.begin();
|
|
|
|
for (i=0; i<12; i++) {
|
|
for (j=0; j<5; j++){
|
|
(*fi).V(0)=index[added[i] ];
|
|
(*fi).V(1)=index[reindex[penta[i*9 + order[j ] ] -1 ] ];
|
|
(*fi).V(2)=index[reindex[penta[i*9 + order[(j+1)%5] ] -1 ] ];
|
|
if (HasPerFaceFlags(in)) {
|
|
// tag faux edges
|
|
(*fi).SetF(0);
|
|
(*fi).SetF(2);
|
|
}
|
|
fi++;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class OctMeshType>
|
|
void Octahedron(OctMeshType &in)
|
|
{
|
|
typedef OctMeshType MeshType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
|
|
in.Clear();
|
|
Allocator<OctMeshType>::AddVertices(in,6);
|
|
Allocator<OctMeshType>::AddFaces(in,8);
|
|
|
|
VertexPointer ivp[6];
|
|
|
|
VertexIterator vi=in.vert.begin();
|
|
ivp[0]=&*vi;(*vi).P()=CoordType ( 1, 0, 0); ++vi;
|
|
ivp[1]=&*vi;(*vi).P()=CoordType ( 0, 1, 0); ++vi;
|
|
ivp[2]=&*vi;(*vi).P()=CoordType ( 0, 0, 1); ++vi;
|
|
ivp[3]=&*vi;(*vi).P()=CoordType (-1, 0, 0); ++vi;
|
|
ivp[4]=&*vi;(*vi).P()=CoordType ( 0,-1, 0); ++vi;
|
|
ivp[5]=&*vi;(*vi).P()=CoordType ( 0, 0,-1);
|
|
|
|
FaceIterator fi=in.face.begin();
|
|
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[2]; ++fi;
|
|
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[4]; ++fi;
|
|
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[4]; (*fi).V(2)=ivp[5]; ++fi;
|
|
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[5]; (*fi).V(2)=ivp[1]; ++fi;
|
|
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[5]; ++fi;
|
|
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[5]; (*fi).V(2)=ivp[4]; ++fi;
|
|
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[4]; (*fi).V(2)=ivp[2]; ++fi;
|
|
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[1];
|
|
}
|
|
|
|
template <class IcoMeshType>
|
|
void Icosahedron(IcoMeshType &in)
|
|
{
|
|
typedef IcoMeshType MeshType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
|
|
ScalarType L=ScalarType((math::Sqrt(5.0)+1.0)/2.0);
|
|
CoordType vv[12]={
|
|
CoordType ( 0, L, 1),
|
|
CoordType ( 0, L,-1),
|
|
CoordType ( 0,-L, 1),
|
|
CoordType ( 0,-L,-1),
|
|
|
|
CoordType ( L, 1, 0),
|
|
CoordType ( L,-1, 0),
|
|
CoordType (-L, 1, 0),
|
|
CoordType (-L,-1, 0),
|
|
|
|
CoordType ( 1, 0, L),
|
|
CoordType (-1, 0, L),
|
|
CoordType ( 1, 0,-L),
|
|
CoordType (-1, 0,-L)
|
|
};
|
|
|
|
int ff[20][3]={
|
|
{1,0,4},{0,1,6},{2,3,5},{3,2,7},
|
|
{4,5,10},{5,4,8},{6,7,9},{7,6,11},
|
|
{8,9,2},{9,8,0},{10,11,1},{11,10,3},
|
|
{0,8,4},{0,6,9},{1,4,10},{1,11,6},
|
|
{2,5,8},{2,9,7},{3,10,5},{3,7,11}
|
|
};
|
|
|
|
|
|
in.Clear();
|
|
Allocator<IcoMeshType>::AddVertices(in,12);
|
|
Allocator<IcoMeshType>::AddFaces(in,20);
|
|
VertexPointer ivp[12];
|
|
|
|
VertexIterator vi;
|
|
int i;
|
|
for(i=0,vi=in.vert.begin();vi!=in.vert.end();++i,++vi){
|
|
(*vi).P()=vv[i];
|
|
ivp[i]=&*vi;
|
|
}
|
|
|
|
FaceIterator fi;
|
|
for(i=0,fi=in.face.begin();fi!=in.face.end();++i,++fi){
|
|
(*fi).V(0)=ivp[ff[i][0]];
|
|
(*fi).V(1)=ivp[ff[i][1]];
|
|
(*fi).V(2)=ivp[ff[i][2]];
|
|
}
|
|
}
|
|
|
|
template <class MeshType>
|
|
void Hexahedron(MeshType &in)
|
|
{
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
|
|
in.Clear();
|
|
Allocator<MeshType>::AddVertices(in,8);
|
|
Allocator<MeshType>::AddFaces(in,12);
|
|
|
|
VertexPointer ivp[8];
|
|
|
|
VertexIterator vi=in.vert.begin();
|
|
|
|
ivp[7]=&*vi;(*vi).P()=CoordType (-1,-1,-1); ++vi;
|
|
ivp[6]=&*vi;(*vi).P()=CoordType ( 1,-1,-1); ++vi;
|
|
ivp[5]=&*vi;(*vi).P()=CoordType (-1, 1,-1); ++vi;
|
|
ivp[4]=&*vi;(*vi).P()=CoordType ( 1, 1,-1); ++vi;
|
|
ivp[3]=&*vi;(*vi).P()=CoordType (-1,-1, 1); ++vi;
|
|
ivp[2]=&*vi;(*vi).P()=CoordType ( 1,-1, 1); ++vi;
|
|
ivp[1]=&*vi;(*vi).P()=CoordType (-1, 1, 1); ++vi;
|
|
ivp[0]=&*vi;(*vi).P()=CoordType ( 1, 1, 1);
|
|
|
|
FaceIterator fi=in.face.begin();
|
|
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[2]; ++fi;
|
|
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[1]; ++fi;
|
|
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[4]; ++fi;
|
|
(*fi).V(0)=ivp[6]; (*fi).V(1)=ivp[4]; (*fi).V(2)=ivp[2]; ++fi;
|
|
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[4]; (*fi).V(2)=ivp[1]; ++fi;
|
|
(*fi).V(0)=ivp[5]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[4]; ++fi;
|
|
(*fi).V(0)=ivp[7]; (*fi).V(1)=ivp[5]; (*fi).V(2)=ivp[6]; ++fi;
|
|
(*fi).V(0)=ivp[4]; (*fi).V(1)=ivp[6]; (*fi).V(2)=ivp[5]; ++fi;
|
|
(*fi).V(0)=ivp[7]; (*fi).V(1)=ivp[6]; (*fi).V(2)=ivp[3]; ++fi;
|
|
(*fi).V(0)=ivp[2]; (*fi).V(1)=ivp[3]; (*fi).V(2)=ivp[6]; ++fi;
|
|
(*fi).V(0)=ivp[7]; (*fi).V(1)=ivp[3]; (*fi).V(2)=ivp[5]; ++fi;
|
|
(*fi).V(0)=ivp[1]; (*fi).V(1)=ivp[5]; (*fi).V(2)=ivp[3];
|
|
|
|
if (HasPerFaceFlags(in)) {
|
|
FaceIterator fi=in.face.begin();
|
|
for (int k=0; k<12; k++) {
|
|
(*fi).SetF(1); fi++;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
template <class MeshType>
|
|
void Square(MeshType &in)
|
|
{
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
|
|
in.Clear();
|
|
Allocator<MeshType>::AddVertices(in,4);
|
|
Allocator<MeshType>::AddFaces(in,2);
|
|
|
|
VertexPointer ivp[4];
|
|
|
|
VertexIterator vi=in.vert.begin();
|
|
ivp[0]=&*vi;(*vi).P()=CoordType ( 1, 0, 0); ++vi;
|
|
ivp[1]=&*vi;(*vi).P()=CoordType ( 0, 1, 0); ++vi;
|
|
ivp[2]=&*vi;(*vi).P()=CoordType (-1, 0, 0); ++vi;
|
|
ivp[3]=&*vi;(*vi).P()=CoordType ( 0,-1, 0);
|
|
|
|
FaceIterator fi=in.face.begin();
|
|
(*fi).V(0)=ivp[0]; (*fi).V(1)=ivp[1]; (*fi).V(2)=ivp[2]; ++fi;
|
|
(*fi).V(0)=ivp[2]; (*fi).V(1)=ivp[3]; (*fi).V(2)=ivp[0];
|
|
|
|
if (HasPerFaceFlags(in)) {
|
|
FaceIterator fi=in.face.begin();
|
|
for (int k=0; k<2; k++) {
|
|
(*fi).SetF(2); fi++;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class MeshType>
|
|
void SphericalCap(MeshType &in, float angleRad, const int subdiv = 3 )
|
|
{
|
|
typedef typename MeshType::CoordType CoordType;
|
|
in.Clear();
|
|
tri::Allocator<MeshType>::AddVertex(in,CoordType(0,0,0));
|
|
for(int i=0;i<6;++i)
|
|
tri::Allocator<MeshType>::AddVertex(in,CoordType(cos(math::ToRad(i*60.0)),sin(math::ToRad(i*60.0)),0));
|
|
|
|
for(int i=0;i<6;++i)
|
|
tri::Allocator<MeshType>::AddFace(in,&(in.vert[0]),&(in.vert[1+i]),&(in.vert[1+(i+1)%6]));
|
|
|
|
tri::UpdateTopology<MeshType>::FaceFace(in);
|
|
for(int i=0;i<subdiv;++i)
|
|
{
|
|
tri::Refine(in, MidPoint<MeshType>(&in));
|
|
|
|
tri::UpdateFlags<MeshType>::FaceBorderFromFF(in);
|
|
tri::UpdateFlags<MeshType>::VertexBorderFromFace(in);
|
|
|
|
for(int i=0;i<in.vn;++i)
|
|
if(in.vert[i].IsB())
|
|
in.vert[i].P().Normalize();
|
|
|
|
tri::UpdateSelection<MeshType>::VertexFromBorderFlag(in);
|
|
tri::UpdateSelection<MeshType>::VertexInvert(in);
|
|
tri::Smooth<MeshType>::VertexCoordLaplacian(in,10,true);
|
|
}
|
|
|
|
float angleHalfRad = angleRad /2.0f;
|
|
float width = sin(angleHalfRad);
|
|
tri::UpdatePosition<MeshType>::Scale(in,width);
|
|
|
|
for(size_t i=0;i<in.vn;++i)
|
|
{
|
|
float cosVi = in.vert[i].P().Norm();
|
|
float angVi = asin (cosVi);
|
|
in.vert[i].P()[2] = cos(angVi) - cos(angleHalfRad);
|
|
}
|
|
}
|
|
|
|
// this function build a sphere starting from a eventually not empty mesh.
|
|
// If the mesh is not empty it is 'spherified' and used as base for the subdivision process.
|
|
// otherwise an icosahedron is used.
|
|
template <class MeshType>
|
|
void Sphere(MeshType &in, const int subdiv = 3 )
|
|
{
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
if(in.vn==0 && in.fn==0) Icosahedron(in);
|
|
|
|
VertexIterator vi;
|
|
for(vi = in.vert.begin(); vi!=in.vert.end();++vi)
|
|
vi->P().Normalize();
|
|
|
|
tri::UpdateFlags<MeshType>::FaceBorderFromNone(in);
|
|
tri::UpdateTopology<MeshType>::FaceFace(in);
|
|
|
|
size_t lastsize = 0;
|
|
for(int i = 0 ; i < subdiv; ++i)
|
|
{
|
|
Refine< MeshType, MidPoint<MeshType> >(in, MidPoint<MeshType>(&in), 0);
|
|
|
|
for(vi = in.vert.begin() + lastsize; vi != in.vert.end(); ++vi)
|
|
vi->P().Normalize();
|
|
|
|
lastsize = in.vert.size();
|
|
}
|
|
}
|
|
|
|
|
|
/// r1 = raggio 1, r2 = raggio2, h = altezza (asse y)
|
|
template <class MeshType>
|
|
void Cone( MeshType& in,
|
|
const typename MeshType::ScalarType r1,
|
|
const typename MeshType::ScalarType r2,
|
|
const typename MeshType::ScalarType h,
|
|
const int SubDiv = 36 )
|
|
{
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
|
|
int i,b1,b2;
|
|
in.Clear();
|
|
int VN,FN;
|
|
if(r1==0 || r2==0) {
|
|
VN=SubDiv+2;
|
|
FN=SubDiv*2;
|
|
} else {
|
|
VN=SubDiv*2+2;
|
|
FN=SubDiv*4;
|
|
}
|
|
|
|
Allocator<MeshType>::AddVertices(in,VN);
|
|
Allocator<MeshType>::AddFaces(in,FN);
|
|
VertexPointer *ivp = new VertexPointer[VN];
|
|
|
|
VertexIterator vi=in.vert.begin();
|
|
ivp[0]=&*vi;(*vi).P()=CoordType ( 0,-h/2.0,0 ); ++vi;
|
|
ivp[1]=&*vi;(*vi).P()=CoordType ( 0, h/2.0,0 ); ++vi;
|
|
|
|
b1 = b2 = 2;
|
|
int cnt=2;
|
|
if(r1!=0)
|
|
{
|
|
for(i=0;i<SubDiv;++i)
|
|
{
|
|
double a = math::ToRad(i*360.0/SubDiv);
|
|
ivp[cnt]=&*vi; (*vi).P()= CoordType(r1*cos(a), -h/2.0, r1*sin(a)); ++vi;++cnt;
|
|
}
|
|
b2 += SubDiv;
|
|
}
|
|
|
|
if(r2!=0)
|
|
{
|
|
for(i=0;i<SubDiv;++i)
|
|
{
|
|
double a = math::ToRad(i*360.0/SubDiv);
|
|
ivp[cnt]=&*vi; (*vi).P()= CoordType( r2*cos(a), h/2.0, r2*sin(a)); ++vi;++cnt;
|
|
}
|
|
}
|
|
|
|
FaceIterator fi=in.face.begin();
|
|
|
|
if(r1!=0) for(i=0;i<SubDiv;++i,++fi) {
|
|
(*fi).V(0)=ivp[0];
|
|
(*fi).V(1)=ivp[b1+i];
|
|
(*fi).V(2)=ivp[b1+(i+1)%SubDiv];
|
|
}
|
|
|
|
if(r2!=0) for(i=0;i<SubDiv;++i,++fi) {
|
|
(*fi).V(0)=ivp[1];
|
|
(*fi).V(2)=ivp[b2+i];
|
|
(*fi).V(1)=ivp[b2+(i+1)%SubDiv];
|
|
}
|
|
|
|
if(r1==0) for(i=0;i<SubDiv;++i,++fi)
|
|
{
|
|
(*fi).V(0)=ivp[0];
|
|
(*fi).V(1)=ivp[b2+i];
|
|
(*fi).V(2)=ivp[b2+(i+1)%SubDiv];
|
|
}
|
|
if(r2==0) for(i=0;i<SubDiv;++i,++fi){
|
|
(*fi).V(0)=ivp[1];
|
|
(*fi).V(2)=ivp[b1+i];
|
|
(*fi).V(1)=ivp[b1+(i+1)%SubDiv];
|
|
}
|
|
|
|
if(r1!=0 && r2!=0)for(i=0;i<SubDiv;++i)
|
|
{
|
|
(*fi).V(0)=ivp[b1+i];
|
|
(*fi).V(1)=ivp[b2+i];
|
|
(*fi).V(2)=ivp[b2+(i+1)%SubDiv];
|
|
++fi;
|
|
(*fi).V(0)=ivp[b1+i];
|
|
(*fi).V(1)=ivp[b2+(i+1)%SubDiv];
|
|
(*fi).V(2)=ivp[b1+(i+1)%SubDiv];
|
|
++fi;
|
|
}
|
|
}
|
|
|
|
|
|
template <class MeshType >
|
|
void Box(MeshType &in, const typename MeshType::BoxType & bb )
|
|
{
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
|
|
in.Clear();
|
|
Allocator<MeshType>::AddVertices(in,8);
|
|
VertexPointer ivp[8];
|
|
|
|
VertexIterator vi=in.vert.begin();
|
|
ivp[0]=&*vi;(*vi).P()=CoordType (bb.min[0],bb.min[1],bb.min[2]); ++vi;
|
|
ivp[1]=&*vi;(*vi).P()=CoordType (bb.max[0],bb.min[1],bb.min[2]); ++vi;
|
|
ivp[2]=&*vi;(*vi).P()=CoordType (bb.min[0],bb.max[1],bb.min[2]); ++vi;
|
|
ivp[3]=&*vi;(*vi).P()=CoordType (bb.max[0],bb.max[1],bb.min[2]); ++vi;
|
|
ivp[4]=&*vi;(*vi).P()=CoordType (bb.min[0],bb.min[1],bb.max[2]); ++vi;
|
|
ivp[5]=&*vi;(*vi).P()=CoordType (bb.max[0],bb.min[1],bb.max[2]); ++vi;
|
|
ivp[6]=&*vi;(*vi).P()=CoordType (bb.min[0],bb.max[1],bb.max[2]); ++vi;
|
|
ivp[7]=&*vi;(*vi).P()=CoordType (bb.max[0],bb.max[1],bb.max[2]);
|
|
|
|
Allocator<MeshType>::AddFace(in,ivp[2],ivp[1],ivp[0]);
|
|
Allocator<MeshType>::AddFace(in,ivp[1],ivp[2],ivp[3]);
|
|
Allocator<MeshType>::AddFace(in,ivp[4],ivp[2],ivp[0]);
|
|
Allocator<MeshType>::AddFace(in,ivp[2],ivp[4],ivp[6]);
|
|
Allocator<MeshType>::AddFace(in,ivp[1],ivp[4],ivp[0]);
|
|
Allocator<MeshType>::AddFace(in,ivp[4],ivp[1],ivp[5]);
|
|
Allocator<MeshType>::AddFace(in,ivp[6],ivp[5],ivp[7]);
|
|
Allocator<MeshType>::AddFace(in,ivp[5],ivp[6],ivp[4]);
|
|
Allocator<MeshType>::AddFace(in,ivp[3],ivp[6],ivp[7]);
|
|
Allocator<MeshType>::AddFace(in,ivp[6],ivp[3],ivp[2]);
|
|
Allocator<MeshType>::AddFace(in,ivp[5],ivp[3],ivp[7]);
|
|
Allocator<MeshType>::AddFace(in,ivp[3],ivp[5],ivp[1]);
|
|
|
|
if (HasPerFaceFlags(in)) {
|
|
FaceIterator fi=in.face.begin();
|
|
for (int k=0; k<12; k++) {
|
|
(*fi).SetF(0); fi++;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Torus
|
|
template <class MeshType>
|
|
void Torus(MeshType &m, float hRingRadius, float vRingRadius, int hRingDiv=24, int vRingDiv=12 )
|
|
{
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef Matrix44<ScalarType> Matrix44x;
|
|
m.Clear();
|
|
ScalarType angleStepV = (2.0f*M_PI)/vRingDiv;
|
|
ScalarType angleStepH = (2.0f*M_PI)/hRingDiv;
|
|
|
|
Allocator<MeshType>::AddVertices(m,(vRingDiv+1)*(hRingDiv+1));
|
|
for(int i=0;i<hRingDiv+1;++i)
|
|
{
|
|
Matrix44x RotM; RotM.SetRotateRad(float(i%hRingDiv)*angleStepH,CoordType(0,1,0));
|
|
for(int j=0;j<vRingDiv+1;++j)
|
|
{
|
|
CoordType p;
|
|
p[0]= vRingRadius*cos(float(j%vRingDiv)*angleStepV) + hRingRadius;
|
|
p[1]= vRingRadius*sin(float(j%vRingDiv)*angleStepV);
|
|
p[2] = 0;
|
|
|
|
m.vert[i*(vRingDiv+1)+j].P() = RotM*p;
|
|
}
|
|
}
|
|
FaceGrid(m,vRingDiv+1,hRingDiv+1);
|
|
tri::Clean<MeshType>::RemoveDuplicateVertex(m);
|
|
tri::Allocator<MeshType>::CompactVertexVector(m);
|
|
|
|
}
|
|
|
|
|
|
// this function build a mesh starting from a vector of generic coords (objects having a triple of float at their beginning)
|
|
// and a vector of faces (objects having a triple of ints at theri beginning).
|
|
template <class MeshType,class V, class F >
|
|
void Build( MeshType & in, const V & v, const F & f)
|
|
{
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
|
|
in.Clear();
|
|
Allocator<MeshType>::AddVertices(in,v.size());
|
|
Allocator<MeshType>::AddFaces(in,f.size());
|
|
|
|
for(size_t i=0;i<v.size();++i)
|
|
{
|
|
float *vv=(float *)(&v[i]);
|
|
in.vert[i].P() = CoordType( vv[0],vv[1],vv[2]);
|
|
}
|
|
|
|
std::vector<VertexPointer> index(in.vn);
|
|
VertexIterator j;
|
|
int k;
|
|
for(k=0,j=in.vert.begin();j!=in.vert.end();++j,++k)
|
|
index[k] = &*j;
|
|
|
|
for(size_t i=0;i<f.size();++i)
|
|
{
|
|
int * ff=(int *)(&f[i]);
|
|
assert( ff[0]>=0 );
|
|
assert( ff[1]>=0 );
|
|
assert( ff[2]>=0 );
|
|
assert( ff[0]<in.vn );
|
|
assert( ff[1]<in.vn );
|
|
assert( ff[2]<in.vn );
|
|
in.face[i].V(0) = &in.vert[ ff[0] ];
|
|
in.face[i].V(1) = &in.vert[ ff[0] ];
|
|
in.face[i].V(2) = &in.vert[ ff[0] ];
|
|
}
|
|
|
|
tri::UpdateBounding<MeshType>::Box(in);
|
|
}
|
|
|
|
|
|
template <class MeshType,class V>
|
|
void Build( MeshType & in, const V & v)
|
|
{
|
|
std::vector<Point3i> dummyfaceVec;
|
|
Build(in,v,dummyfaceVec);
|
|
}
|
|
|
|
// Build a regular grid mesh as a typical height field mesh
|
|
// x y are the position on the grid scaled by wl and hl (at the end x is in the range 0..wl and y is in 0..hl)
|
|
// z is taken from the <data> array
|
|
// Once generated the vertex positions it uses the FaceGrid function to generate the faces;
|
|
|
|
template <class MeshType>
|
|
void Grid(MeshType & in, int w, int h, float wl, float hl, float *data=0)
|
|
{
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
|
|
in.Clear();
|
|
Allocator<MeshType>::AddVertices(in,w*h);
|
|
|
|
float wld=wl/float(w-1);
|
|
float hld=hl/float(h-1);
|
|
float zVal=0;
|
|
for(int i=0;i<h;++i)
|
|
for(int j=0;j<w;++j)
|
|
{
|
|
if(data) zVal=data[i*w+j];
|
|
in.vert[i*w+j].P()=CoordType ( j*wld, i*hld, zVal) ;
|
|
}
|
|
FaceGrid(in,w,h);
|
|
}
|
|
|
|
|
|
// Build a regular grid mesh of faces as a typical height field mesh
|
|
// Vertexes are assumed to be already be allocated.
|
|
|
|
template <class MeshType>
|
|
void FaceGrid(MeshType & in, int w, int h)
|
|
{
|
|
assert(in.vn == (int)in.vert.size()); // require a compact vertex vector
|
|
assert(in.vn >= w*h); // the number of vertices should match the number of expected grid vertices
|
|
|
|
Allocator<MeshType>::AddFaces(in,(w-1)*(h-1)*2);
|
|
|
|
// i+0,j+0 -- i+0,j+1
|
|
// | \ |
|
|
// | \ |
|
|
// | \ |
|
|
// | \ |
|
|
// i+1,j+0 -- i+1,j+1
|
|
//
|
|
for(int i=0;i<h-1;++i)
|
|
for(int j=0;j<w-1;++j)
|
|
{
|
|
in.face[2*(i*(w-1)+j)+0].V(0) = &(in.vert[(i+1)*w+j+1]);
|
|
in.face[2*(i*(w-1)+j)+0].V(1) = &(in.vert[(i+0)*w+j+1]);
|
|
in.face[2*(i*(w-1)+j)+0].V(2) = &(in.vert[(i+0)*w+j+0]);
|
|
|
|
in.face[2*(i*(w-1)+j)+1].V(0) = &(in.vert[(i+0)*w+j+0]);
|
|
in.face[2*(i*(w-1)+j)+1].V(1) = &(in.vert[(i+1)*w+j+0]);
|
|
in.face[2*(i*(w-1)+j)+1].V(2) = &(in.vert[(i+1)*w+j+1]);
|
|
}
|
|
|
|
if (HasPerFaceFlags(in)) {
|
|
for (int k=0; k<(h-1)*(w-1)*2; k++) {
|
|
in.face[k].SetF(2);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// Build a regular grid mesh of faces as a typical height field mesh
|
|
// Vertexes are assumed to be already be allocated, but not oll the grid vertexes are present.
|
|
// For this purpos a grid of indexes is also passed. negative indexes means that there is no vertex.
|
|
|
|
template <class MeshType>
|
|
void FaceGrid(MeshType & in, const std::vector<int> &grid, int w, int h)
|
|
{
|
|
assert(in.vn == (int)in.vert.size()); // require a compact vertex vector
|
|
assert(in.vn <= w*h); // the number of vertices should match the number of expected grid vertices
|
|
|
|
// V0 V1
|
|
// i+0,j+0 -- i+0,j+1
|
|
// | \ |
|
|
// | \ |
|
|
// | \ |
|
|
// | \ |
|
|
// i+1,j+0 -- i+1,j+1
|
|
// V2 V3
|
|
|
|
|
|
for(int i=0;i<h-1;++i)
|
|
for(int j=0;j<w-1;++j)
|
|
{
|
|
int V0i= grid[(i+0)*w+j+0];
|
|
int V1i= grid[(i+0)*w+j+1];
|
|
int V2i= grid[(i+1)*w+j+0];
|
|
int V3i= grid[(i+1)*w+j+1];
|
|
|
|
int ndone=0;
|
|
bool quad = (V0i>=0 && V1i>=0 && V2i>=0 && V3i>=0 ) && tri::HasPerFaceFlags(in);
|
|
|
|
if(V0i>=0 && V2i>=0 && V3i>=0 )
|
|
{
|
|
typename MeshType::FaceIterator f= Allocator<MeshType>::AddFaces(in,1);
|
|
f->V(0)=&(in.vert[V3i]);
|
|
f->V(1)=&(in.vert[V2i]);
|
|
f->V(2)=&(in.vert[V0i]);
|
|
if (quad) f->SetF(2);
|
|
ndone++;
|
|
}
|
|
if(V0i>=0 && V1i>=0 && V3i>=0 )
|
|
{
|
|
typename MeshType::FaceIterator f= Allocator<MeshType>::AddFaces(in,1);
|
|
f->V(0)=&(in.vert[V0i]);
|
|
f->V(1)=&(in.vert[V1i]);
|
|
f->V(2)=&(in.vert[V3i]);
|
|
if (quad) f->SetF(2);
|
|
ndone++;
|
|
}
|
|
|
|
if (ndone==0) { // try diag the other way
|
|
if(V2i>=0 && V0i>=0 && V1i>=0 )
|
|
{
|
|
typename MeshType::FaceIterator f= Allocator<MeshType>::AddFaces(in,1);
|
|
f->V(0)=&(in.vert[V2i]);
|
|
f->V(1)=&(in.vert[V0i]);
|
|
f->V(2)=&(in.vert[V1i]);
|
|
ndone++;
|
|
}
|
|
if(V1i>=0 && V3i>=0 && V2i>=0 )
|
|
{
|
|
typename MeshType::FaceIterator f= Allocator<MeshType>::AddFaces(in,1);
|
|
f->V(0)=&(in.vert[V1i]);
|
|
f->V(1)=&(in.vert[V3i]);
|
|
f->V(2)=&(in.vert[V2i]);
|
|
ndone++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
template <class MeshType>
|
|
void Annulus(MeshType & m, float externalRadius, float internalRadius, int slices)
|
|
{
|
|
m.Clear();
|
|
typename MeshType::VertexIterator vi = vcg::tri::Allocator<MeshType>::AddVertices(m,slices*2);
|
|
|
|
for ( int j = 0; j < slices; ++j)
|
|
{
|
|
float x = cos( 2.0 * M_PI / slices * j);
|
|
float y = sin( 2.0 * M_PI / slices * j);
|
|
|
|
(*vi).P() = typename MeshType::CoordType(x,y,0)*internalRadius;
|
|
++vi;
|
|
(*vi).P() = typename MeshType::CoordType(x,y,0)*externalRadius;
|
|
++vi;
|
|
}
|
|
typename MeshType::FaceIterator fi ;
|
|
for ( int j = 0; j < slices; ++j)
|
|
{
|
|
fi = vcg::tri::Allocator<MeshType>::AddFaces(m,1);
|
|
(*fi).V(0) = &m.vert[ ((j+0)*2+0)%(slices*2) ];
|
|
(*fi).V(1) = &m.vert[ ((j+1)*2+1)%(slices*2) ];
|
|
(*fi).V(2) = &m.vert[ ((j+0)*2+1)%(slices*2) ];
|
|
|
|
fi = vcg::tri::Allocator<MeshType>::AddFaces(m,1);
|
|
(*fi).V(0) = &m.vert[ ((j+1)*2+0)%(slices*2) ];
|
|
(*fi).V(1) = &m.vert[ ((j+1)*2+1)%(slices*2) ];
|
|
(*fi).V(2) = &m.vert[ ((j+0)*2+0)%(slices*2) ];
|
|
}
|
|
}
|
|
|
|
template <class MeshType>
|
|
void OrientedAnnulus(MeshType & m, Point3f center, Point3f norm, float externalRadius, float internalRadius, int slices)
|
|
{
|
|
Annulus(m,externalRadius,internalRadius, slices);
|
|
float angleRad = Angle(Point3f(0,0,1),norm);
|
|
Point3f axis = Point3f(0,0,1)^norm;
|
|
|
|
Matrix44f rotM;
|
|
rotM.SetRotateRad(angleRad,axis);
|
|
tri::UpdatePosition<MeshType>::Matrix(m,rotM);
|
|
tri::UpdatePosition<MeshType>::Translate(m,center);
|
|
}
|
|
|
|
|
|
template <class MeshType>
|
|
void Disk(MeshType & m, int slices)
|
|
{
|
|
m.Clear();
|
|
typename MeshType::VertexIterator vi = vcg::tri::Allocator<MeshType>::AddVertices(m,slices+1);
|
|
(*vi).P() = typename MeshType::CoordType(0,0,0);
|
|
++vi;
|
|
|
|
for ( int j = 0; j < slices; ++j)
|
|
{
|
|
float x = cos( 2.0 * M_PI / slices * j);
|
|
float y = sin( 2.0 * M_PI / slices * j);
|
|
|
|
(*vi).P() = typename MeshType::CoordType(x,y,0);
|
|
++vi;
|
|
}
|
|
typename MeshType::FaceIterator fi ;
|
|
for ( int j = 0; j < slices; ++j)
|
|
{
|
|
int a = 1+(j+0)%slices;
|
|
int b = 1+(j+1)%slices;
|
|
fi = vcg::tri::Allocator<MeshType>::AddFaces(m,1);
|
|
(*fi).V(0) = &m.vert[ 0 ];
|
|
(*fi).V(1) = &m.vert[ a ];
|
|
(*fi).V(2) = &m.vert[ b ];
|
|
}
|
|
}
|
|
|
|
template <class MeshType>
|
|
void OrientedDisk(MeshType &m, int slices, Point3f center, Point3f norm, float radius)
|
|
{
|
|
Disk(m,slices);
|
|
tri::UpdatePosition<MeshType>::Scale(m,radius);
|
|
float angleRad = Angle(Point3f(0,0,1),norm);
|
|
Point3f axis = Point3f(0,0,1)^norm;
|
|
|
|
Matrix44f rotM;
|
|
rotM.SetRotateRad(angleRad,axis);
|
|
tri::UpdatePosition<MeshType>::Matrix(m,rotM);
|
|
tri::UpdatePosition<MeshType>::Translate(m,center);
|
|
}
|
|
|
|
template <class MeshType>
|
|
void OrientedEllipticPrism(MeshType & m, const Point3f origin, const Point3f end, float radius, float xScale, float yScale,bool capped, int slices=32, int stacks=4 )
|
|
{
|
|
Cylinder(slices,stacks,m,capped);
|
|
tri::UpdatePosition<MeshType>::Translate(m,Point3f(0,1,0));
|
|
tri::UpdatePosition<MeshType>::Scale(m,Point3f(1,0.5f,1));
|
|
tri::UpdatePosition<MeshType>::Scale(m,Point3f(xScale,1.0f,yScale));
|
|
|
|
float height = Distance(origin,end);
|
|
tri::UpdatePosition<MeshType>::Scale(m,Point3f(radius,height,radius));
|
|
Point3f norm = end-origin;
|
|
float angleRad = Angle(Point3f(0,1,0),norm);
|
|
Point3f axis = Point3f(0,1,0)^norm;
|
|
Matrix44f rotM;
|
|
rotM.SetRotateRad(angleRad,axis);
|
|
tri::UpdatePosition<MeshType>::Matrix(m,rotM);
|
|
tri::UpdatePosition<MeshType>::Translate(m,origin);
|
|
|
|
}
|
|
|
|
template <class MeshType>
|
|
void OrientedCylinder(MeshType & m, const Point3f origin, const Point3f end, float radius, bool capped, int slices=32, int stacks=4 )
|
|
{
|
|
OrientedEllipticPrism(m,origin,end,radius,1.0f,1.0f,capped,slices,stacks);
|
|
}
|
|
|
|
|
|
template <class MeshType>
|
|
void Cylinder(int slices, int stacks, MeshType & m, bool capped=false)
|
|
{
|
|
m.Clear();
|
|
typename MeshType::VertexIterator vi = vcg::tri::Allocator<MeshType>::AddVertices(m,slices*(stacks+1));
|
|
for ( int i = 0; i < stacks+1; ++i)
|
|
for ( int j = 0; j < slices; ++j)
|
|
{
|
|
float x,y,h;
|
|
x = cos( 2.0 * M_PI / slices * j);
|
|
y = sin( 2.0 * M_PI / slices * j);
|
|
h = 2 * i / (float)(stacks) - 1;
|
|
|
|
(*vi).P() = typename MeshType::CoordType(x,h,y);
|
|
++vi;
|
|
}
|
|
|
|
for ( int j = 0; j < stacks; ++j)
|
|
for ( int i = 0; i < slices; ++i)
|
|
{
|
|
int a,b,c,d;
|
|
a = (j+0)*slices + i;
|
|
b = (j+1)*slices + i;
|
|
c = (j+1)*slices + (i+1)%slices;
|
|
d = (j+0)*slices + (i+1)%slices;
|
|
if(((i+j)%2) == 0){
|
|
vcg::tri::Allocator<MeshType>::AddFace(m, &m.vert[ a ], &m.vert[ b ], &m.vert[ c ]);
|
|
vcg::tri::Allocator<MeshType>::AddFace(m, &m.vert[ c ], &m.vert[ d ], &m.vert[ a ]);
|
|
}
|
|
else{
|
|
vcg::tri::Allocator<MeshType>::AddFace(m, &m.vert[ b ], &m.vert[ c ], &m.vert[ d ]);
|
|
vcg::tri::Allocator<MeshType>::AddFace(m, &m.vert[ d ], &m.vert[ a ], &m.vert[ b ]);
|
|
}
|
|
}
|
|
|
|
if(capped)
|
|
{
|
|
tri::Allocator<MeshType>::AddVertex(m,typename MeshType::CoordType(0,-1,0));
|
|
tri::Allocator<MeshType>::AddVertex(m,typename MeshType::CoordType(0, 1,0));
|
|
int base = 0;
|
|
for ( int i = 0; i < slices; ++i)
|
|
vcg::tri::Allocator<MeshType>::AddFace(m, &m.vert[ m.vn-2 ], &m.vert[ base+i ], &m.vert[ base+(i+1)%slices ]);
|
|
base = (stacks)*slices;
|
|
for ( int i = 0; i < slices; ++i)
|
|
vcg::tri::Allocator<MeshType>::AddFace(m, &m.vert[ m.vn-1 ], &m.vert[ base+(i+1)%slices ], &m.vert[ base+i ]);
|
|
}
|
|
if (HasPerFaceFlags(m)) {
|
|
for (typename MeshType::FaceIterator fi=m.face.begin(); fi!=m.face.end(); fi++) {
|
|
(*fi).SetF(2);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
class _SphFace;
|
|
class _SphVertex;
|
|
struct _SphUsedTypes : public UsedTypes< Use<_SphVertex> ::AsVertexType,
|
|
Use<_SphFace> ::AsFaceType>{};
|
|
|
|
class _SphVertex : public Vertex<_SphUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::BitFlags >{};
|
|
class _SphFace : public Face< _SphUsedTypes, face::VertexRef, face::Normal3f, face::BitFlags, face::FFAdj > {};
|
|
class _SphMesh : public tri::TriMesh< vector<_SphVertex>, vector<_SphFace> > {};
|
|
|
|
|
|
template <class MeshType>
|
|
void BuildPrismFaceShell(MeshType &mIn, MeshType &mOut, float height=0, float inset=0, bool smoothFlag=true )
|
|
{
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
if(height==0) height = mIn.bbox.Diag()/100.0f;
|
|
if(inset==0) inset = mIn.bbox.Diag()/200.0f;
|
|
tri::UpdateFlags<MeshType>::FaceClearV(mIn);
|
|
for(size_t i=0;i<mIn.face.size();++i) if(!mIn.face[i].IsV())
|
|
{
|
|
_SphMesh faceM;
|
|
std::vector<VertexPointer> vertVec;
|
|
std::vector<FacePointer> faceVec;
|
|
tri::PolygonSupport<MeshType,MeshType>::ExtractPolygon(&(mIn.face[i]),vertVec,faceVec);
|
|
size_t vn = vertVec.size();
|
|
|
|
CoordType nf(0,0,0);
|
|
for(size_t j=0;j<faceVec.size();++j)
|
|
nf+=faceVec[j]->N().Normalize() * DoubleArea(*faceVec[j]);
|
|
nf.Normalize();
|
|
nf = nf*height/2.0f;
|
|
|
|
CoordType bary(0,0,0);
|
|
for(size_t j=0;j<faceVec.size();++j)
|
|
bary+= Barycenter(*faceVec[j]);
|
|
bary/=float(faceVec.size());
|
|
|
|
// Add vertices (alternated top and bottom)
|
|
tri::Allocator<_SphMesh>::AddVertex(faceM, bary-nf);
|
|
tri::Allocator<_SphMesh>::AddVertex(faceM, bary+nf);
|
|
for(size_t j=0;j<vn;++j){
|
|
CoordType delta = (vertVec[j]->P() - bary);
|
|
delta.Normalize();
|
|
delta = delta*inset;
|
|
tri::Allocator<_SphMesh>::AddVertex(faceM, vertVec[j]->P()-delta-nf);
|
|
tri::Allocator<_SphMesh>::AddVertex(faceM, vertVec[j]->P()-delta+nf);
|
|
}
|
|
|
|
// Build top and bottom faces
|
|
for(size_t j=0;j<vn;++j)
|
|
tri::Allocator<_SphMesh>::AddFace(faceM, 0, 2+(j+0)*2, 2+((j+1)%vn)*2 );
|
|
for(size_t j=0;j<vn;++j)
|
|
tri::Allocator<_SphMesh>::AddFace(faceM, 1, 3+((j+1)%vn)*2, 3+(j+0)*2 );
|
|
|
|
// Build side strip
|
|
for(size_t j=0;j<vn;++j){
|
|
size_t j0=j;
|
|
size_t j1=(j+1)%vn;
|
|
tri::Allocator<_SphMesh>::AddFace(faceM, 2+ j0*2 + 0 , 2+ j0*2+1, 2+j1*2+0);
|
|
tri::Allocator<_SphMesh>::AddFace(faceM, 2+ j0*2 + 1 , 2+ j1*2+1, 2+j1*2+0);
|
|
}
|
|
|
|
for(size_t j=0;j<2*vn;++j)
|
|
faceM.face[j].SetS();
|
|
|
|
tri::UpdateTopology<_SphMesh>::FaceFace(faceM);
|
|
tri::UpdateFlags<_SphMesh>::FaceBorderFromFF(faceM);
|
|
tri::Refine(faceM, MidPoint<_SphMesh>(&faceM),0,true);
|
|
tri::Refine(faceM, MidPoint<_SphMesh>(&faceM),0,true);
|
|
tri::UpdateSelection<_SphMesh>::VertexFromFaceStrict(faceM);
|
|
tri::Smooth<_SphMesh>::VertexCoordLaplacian(faceM,2,true,true);
|
|
|
|
tri::Append<MeshType,_SphMesh>::Mesh(mOut,faceM);
|
|
|
|
} // end main loop for each face;
|
|
}
|
|
|
|
|
|
template <class MeshType>
|
|
void BuildCylinderEdgeShell(MeshType &mIn, MeshType &mOut, float radius=0, int slices=16, int stacks=1 )
|
|
{
|
|
if(radius==0) radius = mIn.bbox.Diag()/100.0f;
|
|
typedef typename tri::UpdateTopology<MeshType>::PEdge PEdge;
|
|
std::vector<PEdge> edgeVec;
|
|
tri::UpdateTopology<MeshType>::FillUniqueEdgeVector(mIn,edgeVec,false);
|
|
for(size_t i=0;i<edgeVec.size();++i)
|
|
{
|
|
MeshType mCyl;
|
|
tri::OrientedCylinder(mCyl,edgeVec[i].v[0]->P(),edgeVec[i].v[1]->P(),radius,false,slices,stacks);
|
|
tri::Append<MeshType,MeshType>::Mesh(mOut,mCyl);
|
|
}
|
|
}
|
|
|
|
template <class MeshType>
|
|
void BuildSphereVertexShell(MeshType &mIn, MeshType &mOut, float radius=0, int recDiv=2 )
|
|
{
|
|
if(radius==0) radius = mIn.bbox.Diag()/100.0f;
|
|
for(size_t i=0;i<mIn.vert.size();++i)
|
|
{
|
|
_SphMesh mSph;
|
|
tri::Sphere(mSph,recDiv);
|
|
tri::UpdatePosition<_SphMesh>::Scale(mSph,radius);
|
|
tri::UpdatePosition<_SphMesh>::Translate(mSph,mIn.vert[i].P());
|
|
tri::Append<MeshType,_SphMesh>::Mesh(mOut,mSph);
|
|
}
|
|
}
|
|
|
|
template <class MeshType>
|
|
void BuildCylinderVertexShell(MeshType &mIn, MeshType &mOut, float radius=0, float height=0 )
|
|
{
|
|
if(radius==0) radius = mIn.bbox.Diag()/100.0f;
|
|
if(height==0) height = mIn.bbox.Diag()/200.0f;
|
|
for(size_t i=0;i<mIn.vert.size();++i)
|
|
{
|
|
Point3f p = mIn.vert[i].P();
|
|
Point3f n = mIn.vert[i].N().Normalize();
|
|
|
|
MeshType mCyl;
|
|
tri::OrientedCylinder(mCyl,p-n*height,p+n*height,radius,true);
|
|
tri::Append<MeshType,MeshType>::Mesh(mOut,mCyl);
|
|
}
|
|
}
|
|
|
|
|
|
template <class MeshType>
|
|
void GenerateCameraMesh(MeshType &in){
|
|
typedef typename MeshType::CoordType MV;
|
|
MV vv[52]={
|
|
MV(-0.000122145 , -0.2 ,0.35),
|
|
MV(0.000122145 , -0.2 ,-0.35),MV(-0.000122145 , 0.2 ,0.35),MV(0.000122145 , 0.2 ,-0.35),MV(0.999878 , -0.2 ,0.350349),MV(1.00012 , -0.2 ,-0.349651),MV(0.999878 , 0.2 ,0.350349),MV(1.00012 , 0.2 ,-0.349651),MV(1.28255 , 0.1 ,0.754205),MV(1.16539 , 0.1 ,1.03705),MV(0.88255 , 0.1 ,1.15421),
|
|
MV(0.599707 , 0.1 ,1.03705),MV(0.48255 , 0.1 ,0.754205),MV(0.599707 , 0.1 ,0.471362),MV(0.88255 , 0.1 ,0.354205),MV(1.16539 , 0.1 ,0.471362),MV(1.28255 , -0.1 ,0.754205),MV(1.16539 , -0.1 ,1.03705),MV(0.88255 , -0.1 ,1.15421),MV(0.599707 , -0.1 ,1.03705),MV(0.48255 , -0.1 ,0.754205),
|
|
MV(0.599707 , -0.1 ,0.471362),MV(1.16539 , -0.1 ,0.471362),MV(0.88255 , -0.1 ,0.354205),MV(3.49164e-005 , 0 ,-0.1),MV(1.74582e-005 , -0.0866025 ,-0.05),MV(-1.74582e-005 , -0.0866025 ,0.05),MV(-3.49164e-005 , 8.74228e-009 ,0.1),MV(-1.74582e-005 , 0.0866025 ,0.05),MV(1.74582e-005 , 0.0866025 ,-0.05),MV(-0.399913 , 1.99408e-022 ,-0.25014),
|
|
MV(-0.399956 , -0.216506 ,-0.12514),MV(-0.400044 , -0.216506 ,0.12486),MV(-0.400087 , 2.18557e-008 ,0.24986),MV(-0.400044 , 0.216506 ,0.12486),MV(-0.399956 , 0.216506 ,-0.12514),MV(0.479764 , 0.1 ,0.754205),MV(0.362606 , 0.1 ,1.03705),MV(0.0797637 , 0.1 ,1.15421),MV(-0.203079 , 0.1 ,1.03705),MV(-0.320236 , 0.1 ,0.754205),
|
|
MV(-0.203079 , 0.1 ,0.471362),MV(0.0797637 , 0.1 ,0.354205),MV(0.362606 , 0.1 ,0.471362),MV(0.479764 , -0.1 ,0.754205),MV(0.362606 , -0.1 ,1.03705),MV(0.0797637 , -0.1 ,1.15421),MV(-0.203079 , -0.1 ,1.03705),MV(-0.320236 , -0.1 ,0.754205),MV(0.0797637 , -0.1 ,0.354205),MV(0.362606 , -0.1 ,0.471362),
|
|
MV(-0.203079 , -0.1 ,0.471362), };
|
|
int ff[88][3]={
|
|
{0,2,3},
|
|
{3,1,0},{4,5,7},{7,6,4},{0,1,5},{5,4,0},{1,3,7},{7,5,1},{3,2,6},{6,7,3},{2,0,4},
|
|
{4,6,2},{10,9,8},{10,12,11},{10,13,12},{10,14,13},{10,15,14},{10,8,15},{8,17,16},{8,9,17},{9,18,17},
|
|
{9,10,18},{10,19,18},{10,11,19},{11,20,19},{11,12,20},{12,21,20},{12,13,21},{13,23,21},{13,14,23},{14,22,23},
|
|
{14,15,22},{15,16,22},{15,8,16},{23,16,17},{23,17,18},{23,18,19},{23,19,20},{23,20,21},{23,22,16},{25,27,26},
|
|
{25,28,27},{25,29,28},{25,24,29},{24,31,30},{24,25,31},{25,32,31},{25,26,32},{26,33,32},{26,27,33},{27,34,33},
|
|
{27,28,34},{28,35,34},{28,29,35},{29,30,35},{29,24,30},{35,30,31},{35,31,32},{35,32,33},{35,33,34},{42,37,36},
|
|
{42,38,37},{42,39,38},{42,40,39},{42,41,40},{42,36,43},{36,45,44},{36,37,45},{37,46,45},{37,38,46},{38,47,46},
|
|
{38,39,47},{39,48,47},{39,40,48},{40,51,48},{40,41,51},{41,49,51},{41,42,49},{42,50,49},{42,43,50},{43,44,50},
|
|
{43,36,44},{51,44,45},{51,45,46},{51,46,47},{51,47,48},{51,49,50},{51,50,44},
|
|
};
|
|
|
|
in.Clear();
|
|
Allocator<MeshType>::AddVertices(in,52);
|
|
Allocator<MeshType>::AddFaces(in,88);
|
|
|
|
in.vn=52;in.fn=88;
|
|
int i,j;
|
|
for(i=0;i<in.vn;i++)
|
|
in.vert[i].P()=vv[i];;
|
|
|
|
std::vector<typename MeshType::VertexPointer> index(in.vn);
|
|
|
|
typename MeshType::VertexIterator vi;
|
|
for(j=0,vi=in.vert.begin();j<in.vn;++j,++vi) index[j] = &*vi;
|
|
for(j=0;j<in.fn;++j)
|
|
{
|
|
in.face[j].V(0)=index[ff[j][0]];
|
|
in.face[j].V(1)=index[ff[j][1]];
|
|
in.face[j].V(2)=index[ff[j][2]];
|
|
}
|
|
}
|
|
|
|
template <class MeshType>
|
|
void OrientedRect(MeshType &square, float width, float height, Point3f c, Point3f dir=Point3f(0,0,0), float angleDeg=0,Point3f preRotTra = Point3f(0,0,0))
|
|
{
|
|
float zeros[4]={0,0,0,0};
|
|
square.Clear();
|
|
Matrix44f rotM;
|
|
tri::Grid(square,2,2,width,height,zeros);
|
|
tri::UpdatePosition<MeshType>::Translate(square,Point3f(-width/2.0f,-height/2.0f,0.0f));
|
|
if(angleDeg!=0){
|
|
tri::UpdatePosition<MeshType>::Translate(square,preRotTra);
|
|
rotM.SetRotateDeg(angleDeg,dir);
|
|
tri::UpdatePosition<MeshType>::Matrix(square,rotM);
|
|
}
|
|
tri::UpdatePosition<MeshType>::Translate(square,c);
|
|
tri::UpdateBounding<MeshType>::Box(square);
|
|
}
|
|
|
|
template <class MeshType>
|
|
void OrientedSquare(MeshType &square, float width, Point3f c, Point3f dir=Point3f(0,0,0), float angleDeg=0,Point3f preRotTra = Point3f(0,0,0))
|
|
{
|
|
OrientedRect(square,width,width,c,dir,angleDeg,preRotTra);
|
|
}
|
|
|
|
|
|
|
|
//@}
|
|
|
|
} // End Namespace TriMesh
|
|
} // End Namespace vcg
|
|
#endif
|