vcglib/vcg/complex/algorithms/parametrization/voronoi_atlas.h

253 lines
8.0 KiB
C++

#ifndef VORONOI_ATLAS_H
#define VORONOI_ATLAS_H
#include<vcg/complex/algorithms/parametrization/poisson_solver.h>
#include<vcg/complex/algorithms/parametrization/uv_utils.h>
#include<vcg/complex/algorithms/parametrization/distortion.h>
#include<vcg/space/outline2_packer.h>
#include<vcg/space/rasterized_outline2_packer.h>
#include<vcg/complex/algorithms/update/texture.h>
#include<vcg/complex/algorithms/point_sampling.h>
#include<vcg/complex/algorithms/voronoi_processing.h>
//#include<wrap/qt/outline2_rasterizer.h>
namespace vcg {
namespace tri {
template <class MeshType>
class VoronoiAtlas
{
//private:
public:
class VoroEdge;
class VoroFace;
class VoroVertex;
struct VoroUsedTypes : public UsedTypes< Use<VoroVertex> ::template AsVertexType,
Use<VoroEdge> ::template AsEdgeType,
Use<VoroFace> ::template AsFaceType>{};
class VoroVertex : public Vertex< VoroUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::TexCoord2f, vertex::VFAdj , vertex::Qualityf, vertex::Color4b, vertex::BitFlags >{};
class VoroFace : public Face< VoroUsedTypes, face::VertexRef, face::BitFlags, face::FFAdj ,face::VFAdj , face::WedgeTexCoord2f> {};
class VoroEdge : public Edge< VoroUsedTypes>{};
class VoroMesh : public tri::TriMesh< std::vector<VoroVertex>, std::vector<VoroFace> , std::vector<VoroEdge> > {};
typedef typename VoroMesh::FaceIterator FaceIterator;
typedef typename VoroMesh::VertexType VertexType;
typedef typename VoroMesh::FaceType FaceType;
static void CollectUVBorder(VoroMesh *rm, std::vector<Point2f> &uvBorder)
{
tri::UpdateTopology<VoroMesh>::FaceFace(*rm);
tri::UpdateFlags<VoroMesh>::FaceClearV(*rm);
for(FaceIterator fi=rm->face.begin();fi!=rm->face.end();++fi)
{
for(int j=0;j<3;++j)
if(face::IsBorder(*fi,j) && !(fi->IsV()))
{
face::Pos<FaceType> pp(&*fi,j,fi->V(j));
assert(pp.IsBorder());
face::Pos<FaceType> startPos = pp;
do
{
uvBorder.push_back( pp.F()->WT(pp.VInd()).P() );
pp.F()->SetV();
pp.NextB();
} while(pp != startPos);
}
}
}
// take a mesh and rescale its uv so that they are in the 0..1 range
static void RegularizeTexArea(VoroMesh &m)
{
float areaTex=0;
float areaGeo=0;
vcg::Box2f UVBox = tri::UV_Utils<VoroMesh>::PerWedgeUVBox(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
areaTex+= fabs((fi->WT(1).P() - fi->WT(0).P()) ^ (fi->WT(2).P() - fi->WT(0).P())) ;
areaGeo+= DoubleArea(*fi);
}
float ratio = sqrt(areaGeo/areaTex);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
for(int j=0;j<3;++j)
fi->WT(j).P() = (fi->WT(j).P()-UVBox.min) *ratio;
}
}
public:
struct VoronoiAtlasParam
{
VoronoiAtlasParam()
{
maxIterNum = 5;
sampleNum=10;
overlap=false;
}
struct Stat
{
void clear() { iterNum=totalTime=unwrapTime=voronoiTime=samplingTime=0;}
int totalTime;
int unwrapTime;
int voronoiTime;
int samplingTime;
int regionNum;
int iterNum;
};
int sampleNum;
bool overlap;
Stat vas;
int maxIterNum;
};
// Main parametrization function:
// it takes a startMesh, copy it and
static void Build( MeshType &startMesh, MeshType &paraMesh, VoronoiAtlasParam &pp)
{
pp.vas.clear();
int t0=clock();
VoroMesh m; // the mesh used for the processing is a copy of the passed one.
tri::Append<VoroMesh, MeshType>::Mesh(m, startMesh);
tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m);
tri::Allocator<VoroMesh>::CompactVertexVector(m);
tri::Allocator<VoroMesh>::CompactFaceVector(m);
tri::UpdateBounding<VoroMesh>::Box(m);
std::vector<VoroMesh *> meshRegionVec;
std::vector< std::vector<Point2f> > uvBorders;
// Main processing loop
do
{
// qDebug("************ ITERATION %i sampling mesh of %i with %i ************",pp.vas.iterNum,m.fn,pp.sampleNum);
int st0=clock();
std::vector<Point3f> PoissonSamples;
float diskRadius=0;
tri::PoissonSampling(m,PoissonSamples,pp.sampleNum,diskRadius);
int st1=clock();
pp.vas.samplingTime+= st1-st0;
// qDebug("Sampling created a new mesh of %lu points\n",PoissonSamples.size());
EuclideanDistance<VoroMesh> edFunc;
std::vector<VertexType *> seedVec;
tri::VoronoiProcessing<VoroMesh>::SeedToVertexConversion(m,PoissonSamples,seedVec);
tri::UpdateTopology<VoroMesh>::VertexFace(m);
tri::VoronoiProcessing<VoroMesh>::ComputePerVertexSources(m,seedVec,edFunc);
tri::VoronoiProcessing<VoroMesh>::FaceAssociateRegion(m);
tri::VoronoiProcessing<VoroMesh>::VoronoiColoring(m,true);
std::vector<VoroMesh *> badRegionVec;
int st2=clock();
pp.vas.voronoiTime+=st2-st1;
for(size_t i=0; i<seedVec.size();++i)
{
VoroMesh *rm = new VoroMesh();
int selCnt = tri::VoronoiProcessing<VoroMesh>::FaceSelectAssociateRegion(m,seedVec[i]);
//qDebug("Region %i of %i faces",i,selCnt);
if(selCnt==0) continue;
assert(selCnt>0);
if(pp.overlap){
tri::UpdateSelection<VoroMesh>::VertexFromFaceLoose(m);
tri::UpdateSelection<VoroMesh>::FaceFromVertexLoose(m);
}
tri::Append<VoroMesh,VoroMesh>::Mesh(*rm, m, true);
int tp0=clock();
tri::PoissonSolver<VoroMesh> PS(*rm);
if(PS.IsFeaseable())
{
PS.Init();
PS.FixDefaultVertices();
PS.SolvePoisson(false);
tri::UpdateTexture<VoroMesh>::WedgeTexFromVertexTex(*rm);
RegularizeTexArea(*rm);
std::vector<Point2f> uvBorder;
CollectUVBorder(rm,uvBorder);
meshRegionVec.push_back(rm);
uvBorders.push_back(uvBorder);
int foldedCnt = tri::Distortion<VoroMesh,false>::Folded(*rm);
if( foldedCnt > rm->fn/10)
{
badRegionVec.push_back(rm);
// qDebug("-- region %i Parametrized but with %i fold on %i!",i,foldedCnt,rm->fn);
}
// else qDebug("-- region %i Parametrized!",i);
} else
{
// qDebug("-- region %i is NOT homeomorphic to a disk\n",i);
badRegionVec.push_back(rm);
}
int tp1=clock();
pp.vas.unwrapTime +=tp1-tp0;
++pp.vas.iterNum;
}
// qDebug("\n -- Completed (%i bad regions) -- \n", badRegionVec.size());
VoroMesh *rm = new VoroMesh();
tri::VoronoiProcessing<VoroMesh>::FaceSelectAssociateRegion(m,0);
tri::Append<VoroMesh,VoroMesh>::Mesh(*rm, m, true);
if(rm->fn>0)
{
// qDebug("ACH - unreached faces %i fn\n",rm->fn);
badRegionVec.push_back(rm);
}
m.Clear();
pp.sampleNum = 10;
if(!badRegionVec.empty())
{
for(size_t i=0;i<badRegionVec.size();++i)
if(badRegionVec[i]->fn>50)
tri::Append<VoroMesh,VoroMesh>::Mesh(m, *badRegionVec[i], false);
tri::Clean<VoroMesh>::RemoveDuplicateFace(m);
tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m);
tri::Allocator<VoroMesh>::CompactVertexVector(m);
tri::Allocator<VoroMesh>::CompactFaceVector(m);
}
} while (m.fn>0);
std::vector<Similarity2f> trVec;
Point2f finalSize;
//PolyPacker<float>::WritePolyVec(uvBorders,"borders.poly");
PolyPacker<float>::PackAsObjectOrientedRect(uvBorders,Point2i(1024,1024),trVec,finalSize);
// RasterizedOutline2Packer<float,QtOutline2Rasterizer>::Parameters prp;
// RasterizedOutline2Packer<float,QtOutline2Rasterizer>::Pack(uvBorders,Point2i(1024,1024),trVec,prp);
// loop again over all the patches
pp.vas.regionNum=meshRegionVec.size();
for(size_t i=0; i<meshRegionVec.size();++i)
{
VoroMesh *rm = meshRegionVec[i];
for(FaceIterator fi=rm->face.begin();fi!=rm->face.end();++fi)
{
for(int j=0;j<3;++j)
{
Point2f pp(fi->WT(j).U(),fi->WT(j).V());
Point2f newpp=trVec[i]*pp;
fi->WT(j).U()=newpp[0]/1024.0f;
fi->WT(j).V()=newpp[1]/1024.0f;
}
}
tri::Append<MeshType,VoroMesh>::Mesh(paraMesh, *rm, false);
}
int t2=clock();
pp.vas.totalTime=t2-t0;
}
}; //end
} // end namespace vcg
} // end namespace tri
#endif // VORONOI_ATLAS_H