1716 lines
64 KiB
C++
1716 lines
64 KiB
C++
/****************************************************************************
|
|
* MeshLab o o *
|
|
* A versatile mesh processing toolbox o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2005 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef VORONOI_PROCESSING_H
|
|
#define VORONOI_PROCESSING_H
|
|
|
|
#include<vcg/complex/algorithms/geodesic.h>
|
|
#include<vcg/complex/algorithms/update/color.h>
|
|
#include<vcg/complex/algorithms/refine.h>
|
|
#include<vcg/complex/algorithms/smooth.h>
|
|
#include<vcg/space/fitting3.h>
|
|
|
|
|
|
namespace vcg
|
|
{
|
|
namespace tri
|
|
{
|
|
|
|
struct VoronoiProcessingParameter
|
|
{
|
|
enum {
|
|
None=0,
|
|
DistanceFromSeed=1,
|
|
DistanceFromBorder=2,
|
|
RegionArea=3
|
|
};
|
|
|
|
VoronoiProcessingParameter()
|
|
{
|
|
colorStrategy = DistanceFromSeed;
|
|
areaThresholdPerc=0;
|
|
deleteUnreachedRegionFlag=false;
|
|
constrainSelectedSeed=false;
|
|
preserveFixedSeed=false;
|
|
collapseShortEdge=false;
|
|
collapseShortEdgePerc = 0.01f;
|
|
triangulateRegion=false;
|
|
unbiasedSeedFlag = true;
|
|
geodesicRelaxFlag = true;
|
|
relaxOnlyConstrainedFlag=false;
|
|
refinementRatio = 5.0f;
|
|
}
|
|
int colorStrategy;
|
|
|
|
float areaThresholdPerc;
|
|
bool deleteUnreachedRegionFlag;
|
|
|
|
bool unbiasedSeedFlag;
|
|
bool constrainSelectedSeed; /// If true the selected vertexes define a constraining domain:
|
|
/// During relaxation all selected seeds are constrained to move
|
|
/// only on other selected vertices.
|
|
/// In this way you can constrain some seed to move only on certain
|
|
/// domains, for example moving only along some linear features
|
|
/// like border of creases.
|
|
|
|
bool relaxOnlyConstrainedFlag;
|
|
|
|
bool preserveFixedSeed; /// If true the 'fixed' seeds are not moved during relaxation.
|
|
/// \see FixVertexVector function to see how to fix a set of seeds.
|
|
|
|
float refinementRatio; /// It defines how much the input mesh has to be refined in order to have a supporting
|
|
/// triangulation that is dense enough to well approximate the voronoi diagram.
|
|
/// reasonable values are in the range 4..10. It is used by PreprocessForVoronoi and this value
|
|
/// says how many triangles you should expect in a voronoi region of a given radius.
|
|
|
|
// Convertion to Voronoi Diagram Parameters
|
|
|
|
bool triangulateRegion; /// If true when building the voronoi diagram mesh each region is a
|
|
/// triangulated polygon. Otherwise it each voronoi region is a star
|
|
/// triangulation with the original seed in the center.
|
|
|
|
bool collapseShortEdge;
|
|
float collapseShortEdgePerc;
|
|
|
|
bool geodesicRelaxFlag;
|
|
};
|
|
|
|
template <class MeshType, class DistanceFunctor = EuclideanDistance<MeshType> >
|
|
class VoronoiProcessing
|
|
{
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FaceContainer FaceContainer;
|
|
typedef typename tri::Geodesic<MeshType>::VertDist VertDist;
|
|
|
|
public:
|
|
|
|
typedef typename MeshType::template PerVertexAttributeHandle<VertexPointer> PerVertexPointerHandle;
|
|
typedef typename MeshType::template PerVertexAttributeHandle<bool> PerVertexBoolHandle;
|
|
typedef typename MeshType::template PerFaceAttributeHandle<VertexPointer> PerFacePointerHandle;
|
|
|
|
|
|
|
|
// Given a vector of point3f it finds the closest vertices on the mesh.
|
|
static void SeedToVertexConversion(MeshType &m,std::vector<CoordType> &seedPVec,std::vector<VertexType *> &seedVVec, bool compactFlag = true)
|
|
{
|
|
typedef typename vcg::SpatialHashTable<VertexType, ScalarType> HashVertexGrid;
|
|
seedVVec.clear();
|
|
|
|
HashVertexGrid HG;
|
|
HG.Set(m.vert.begin(),m.vert.end());
|
|
|
|
const float dist_upper_bound=m.bbox.Diag()/10.0;
|
|
|
|
typename std::vector<CoordType>::iterator pi;
|
|
for(pi=seedPVec.begin();pi!=seedPVec.end();++pi)
|
|
{
|
|
float dist;
|
|
VertexPointer vp;
|
|
vp=tri::GetClosestVertex<MeshType,HashVertexGrid>(m, HG, *pi, dist_upper_bound, dist);
|
|
if(vp)
|
|
{
|
|
seedVVec.push_back(vp);
|
|
}
|
|
}
|
|
if(compactFlag)
|
|
{
|
|
std::sort(seedVVec.begin(),seedVVec.end());
|
|
typename std::vector<VertexType *>::iterator vi = std::unique(seedVVec.begin(),seedVVec.end());
|
|
seedVVec.resize( std::distance(seedVVec.begin(),vi) );
|
|
}
|
|
}
|
|
|
|
|
|
static void ComputePerVertexSources(MeshType &m, std::vector<VertexType *> &seedVec, DistanceFunctor &df)
|
|
{
|
|
tri::Allocator<MeshType>::DeletePerVertexAttribute(m,"sources"); // delete any conflicting handle regardless of the type...
|
|
PerVertexPointerHandle vertexSources = tri::Allocator<MeshType>:: template AddPerVertexAttribute<VertexPointer> (m,"sources");
|
|
|
|
tri::Allocator<MeshType>::DeletePerFaceAttribute(m,"sources"); // delete any conflicting handle regardless of the type...
|
|
PerFacePointerHandle faceSources = tri::Allocator<MeshType>:: template AddPerFaceAttribute<VertexPointer> (m,"sources");
|
|
|
|
assert(tri::Allocator<MeshType>::IsValidHandle(m,vertexSources));
|
|
|
|
tri::Geodesic<MeshType>::Compute(m,seedVec,df,std::numeric_limits<ScalarType>::max(),0,&vertexSources);
|
|
}
|
|
|
|
static void VoronoiColoring(MeshType &m, bool frontierFlag=true)
|
|
{
|
|
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
assert(tri::Allocator<MeshType>::IsValidHandle(m,sources));
|
|
|
|
if(frontierFlag)
|
|
{
|
|
//static_cast<VertexPointer>(NULL) has been introduced just to avoid an error in the MSVS2010's compiler confusing pointer with int. You could use nullptr to avoid it, but it's not supported by all compilers.
|
|
//The error should have been removed from MSVS2012
|
|
std::pair<float,VertexPointer> zz(0.0f,static_cast<VertexPointer>(NULL));
|
|
std::vector< std::pair<float,VertexPointer> > regionArea(m.vert.size(),zz);
|
|
std::vector<VertexPointer> frontierVec;
|
|
GetAreaAndFrontier(m, sources, regionArea, frontierVec);
|
|
tri::Geodesic<MeshType>::Compute(m,frontierVec);
|
|
}
|
|
tri::UpdateColor<MeshType>::PerVertexQualityRamp(m);
|
|
}
|
|
|
|
static void VoronoiAreaColoring(MeshType &m,std::vector<VertexType *> &seedVec,
|
|
std::vector< std::pair<float,VertexPointer> > ®ionArea)
|
|
{
|
|
PerVertexPointerHandle vertexSources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
float meshArea = tri::Stat<MeshType>::ComputeMeshArea(m);
|
|
float expectedArea = meshArea/float(seedVec.size());
|
|
for(size_t i=0;i<m.vert.size();++i)
|
|
m.vert[i].C()=Color4b::ColorRamp(expectedArea *0.75f ,expectedArea*1.25f, regionArea[tri::Index(m,vertexSources[i])].first);
|
|
}
|
|
// It associates the faces with a given vertex according to the vertex associations
|
|
//
|
|
// It READS the PerVertex attribute 'sources'
|
|
// It WRITES the PerFace attribute 'sources'
|
|
|
|
static void FaceAssociateRegion(MeshType &m)
|
|
{
|
|
PerFacePointerHandle faceSources = tri::Allocator<MeshType>:: template GetPerFaceAttribute<VertexPointer> (m,"sources");
|
|
PerVertexPointerHandle vertexSources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
faceSources[fi]=0;
|
|
std::vector<VertexPointer> vp(3);
|
|
for(int i=0;i<3;++i) vp[i]=vertexSources[fi->V(i)];
|
|
|
|
for(int i=0;i<3;++i) // First try to associate to the most reached vertex
|
|
{
|
|
if(vp[0]==vp[1] && vp[0]==vp[2]) faceSources[fi] = vp[0];
|
|
else
|
|
{
|
|
if(vp[0]==vp[1] && vp[0]->Q()< vp[2]->Q()) faceSources[fi] = vp[0];
|
|
if(vp[0]==vp[2] && vp[0]->Q()< vp[1]->Q()) faceSources[fi] = vp[0];
|
|
if(vp[1]==vp[2] && vp[1]->Q()< vp[0]->Q()) faceSources[fi] = vp[1];
|
|
}
|
|
}
|
|
}
|
|
tri::UpdateTopology<MeshType>::FaceFace(m);
|
|
int unassCnt=0;
|
|
do
|
|
{
|
|
unassCnt=0;
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
if(faceSources[fi]==0)
|
|
{
|
|
std::vector<VertexPointer> vp(3);
|
|
for(int i=0;i<3;++i)
|
|
vp[i]=faceSources[fi->FFp(i)];
|
|
|
|
if(vp[0]!=0 && (vp[0]==vp[1] || vp[0]==vp[2]))
|
|
faceSources[fi] = vp[0];
|
|
else if(vp[1]!=0 && (vp[1]==vp[2]))
|
|
faceSources[fi] = vp[1];
|
|
else
|
|
faceSources[fi] = std::max(vp[0],std::max(vp[1],vp[2]));
|
|
if(faceSources[fi]==0) unassCnt++;
|
|
}
|
|
}
|
|
}
|
|
while(unassCnt>0);
|
|
}
|
|
|
|
// Select all the faces with a given source vertex <vp>
|
|
// It reads the PerFace attribute 'sources'
|
|
|
|
static int FaceSelectAssociateRegion(MeshType &m, VertexPointer vp)
|
|
{
|
|
PerFacePointerHandle sources = tri::Allocator<MeshType>:: template FindPerFaceAttribute<VertexPointer> (m,"sources");
|
|
assert(tri::Allocator<MeshType>::IsValidHandle(m,sources));
|
|
tri::UpdateSelection<MeshType>::Clear(m);
|
|
int selCnt=0;
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
if(sources[fi]==vp)
|
|
{
|
|
fi->SetS();
|
|
++selCnt;
|
|
}
|
|
}
|
|
return selCnt;
|
|
}
|
|
|
|
// Given a seed <vp>, it selects all the faces that have the minimal distance vertex sourced by the given <vp>.
|
|
// <vp> can be null (it search for unreached faces...)
|
|
// returns the number of selected faces;
|
|
//
|
|
// It reads the PerVertex attribute 'sources'
|
|
static int FaceSelectRegion(MeshType &m, VertexPointer vp)
|
|
{
|
|
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
assert(tri::Allocator<MeshType>::IsValidHandle(m,sources));
|
|
tri::UpdateSelection<MeshType>::Clear(m);
|
|
int selCnt=0;
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
int minInd = 0; float minVal=std::numeric_limits<float>::max();
|
|
for(int i=0;i<3;++i)
|
|
{
|
|
if((*fi).V(i)->Q()<minVal)
|
|
{
|
|
minInd=i;
|
|
minVal=(*fi).V(i)->Q();
|
|
}
|
|
}
|
|
|
|
if( sources[(*fi).V(minInd)] == vp)
|
|
{
|
|
fi->SetS();
|
|
selCnt++;
|
|
}
|
|
}
|
|
return selCnt;
|
|
}
|
|
|
|
/// Given a mesh with for each vertex the link to the closest seed
|
|
/// (e.g. for all vertexes we know what is the corresponding voronoi region)
|
|
/// we compute:
|
|
/// area of all the voronoi regions
|
|
/// the vector of the frontier vertexes (e.g. vert of faces shared by at least two regions)
|
|
///
|
|
/// Area is computed only for triangles that fully belong to a given source.
|
|
|
|
static void GetAreaAndFrontier(MeshType &m, PerVertexPointerHandle &sources,
|
|
std::vector< std::pair<float, VertexPointer> > ®ionArea, // for each seed we store area
|
|
std::vector<VertexPointer> &frontierVec)
|
|
{
|
|
tri::UpdateFlags<MeshType>::VertexClearV(m);
|
|
frontierVec.clear();
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
VertexPointer s0 = sources[(*fi).V(0)];
|
|
VertexPointer s1 = sources[(*fi).V(1)];
|
|
VertexPointer s2 = sources[(*fi).V(2)];
|
|
assert(s0 && s1 && s2);
|
|
if((s0 != s1) || (s0 != s2) )
|
|
{
|
|
for(int i=0;i<3;++i)
|
|
if(!fi->V(i)->IsV())
|
|
{
|
|
frontierVec.push_back(fi->V(i));
|
|
fi->V(i)->SetV();
|
|
}
|
|
}
|
|
else // the face belongs to a single region; accumulate area;
|
|
{
|
|
if(s0 != 0)
|
|
{
|
|
int seedIndex = tri::Index(m,s0);
|
|
regionArea[seedIndex].first+=DoubleArea(*fi)*0.5f;
|
|
regionArea[seedIndex].second=s0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// Given a mesh with for each vertex the link to the closest seed
|
|
/// we compute:
|
|
/// the vector of the corner faces (ie the faces shared exactly by three regions)
|
|
/// the vector of the frontier faces that are on the boundary.
|
|
|
|
static void GetFaceCornerVec(MeshType &m, PerVertexPointerHandle &sources,
|
|
std::vector<FacePointer> &cornerVec,
|
|
std::vector<FacePointer> &borderCornerVec)
|
|
{
|
|
tri::UpdateFlags<MeshType>::VertexClearV(m);
|
|
cornerVec.clear();
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
VertexPointer s0 = sources[(*fi).V(0)];
|
|
VertexPointer s1 = sources[(*fi).V(1)];
|
|
VertexPointer s2 = sources[(*fi).V(2)];
|
|
assert(s0 && s1 && s2);
|
|
if(s1!=s2 && s0!=s1 && s0!=s2) {
|
|
cornerVec.push_back(&*fi);
|
|
}
|
|
else
|
|
{
|
|
if(isBorderCorner(&*fi,sources))
|
|
borderCornerVec.push_back(&*fi);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool isBorderCorner(FaceType *f, typename MeshType::template PerVertexAttributeHandle<VertexPointer> &sources)
|
|
{
|
|
for(int i=0;i<3;++i)
|
|
{
|
|
if(sources[(*f).V0(i)] != sources[(*f).V1(i)] && f->IsB(i))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Given two supposedly adjacent border corner faces it finds the source common to them;
|
|
static VertexPointer CommonSourceBetweenBorderCorner(FacePointer f0, FacePointer f1, typename MeshType::template PerVertexAttributeHandle<VertexPointer> &sources)
|
|
{
|
|
assert(isBorderCorner(f0,sources));
|
|
assert(isBorderCorner(f1,sources));
|
|
int b0 =-1,b1=-1;
|
|
for(int i=0;i<3;++i)
|
|
{
|
|
if(face::IsBorder(*f0,i)) b0=i;
|
|
if(face::IsBorder(*f1,i)) b1=i;
|
|
}
|
|
assert(b0!=-1 && b1!=-1);
|
|
|
|
if( (sources[f0->V0(b0)] == sources[f1->V0(b1)]) || (sources[f0->V0(b0)] == sources[f1->V1(b1)]) )
|
|
return sources[f0->V0(b0)];
|
|
|
|
if( (sources[f0->V1(b0)] == sources[f1->V0(b1)]) || (sources[f0->V1(b0)] == sources[f1->V1(b1)]) )
|
|
return sources[f0->V1(b0)];
|
|
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void ConvertVoronoiDiagramToMesh(MeshType &m,
|
|
MeshType &outMesh, MeshType &outPoly,
|
|
std::vector<VertexType *> &seedVec,
|
|
VoronoiProcessingParameter &vpp )
|
|
{
|
|
tri::RequirePerVertexAttribute(m,"sources");
|
|
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
outMesh.Clear();
|
|
outPoly.Clear();
|
|
tri::UpdateTopology<MeshType>::FaceFace(m);
|
|
tri::UpdateFlags<MeshType>::FaceBorderFromFF(m);
|
|
|
|
std::vector<FacePointer> innerCornerVec, // Faces adjacent to three different regions
|
|
borderCornerVec; // Faces that are on the border and adjacent to at least two regions.
|
|
GetFaceCornerVec(m, sources, innerCornerVec, borderCornerVec);
|
|
|
|
// For each seed collect all the vertices and build
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
tri::Allocator<MeshType>::AddVertex(outMesh,seedVec[i]->P(),Color4b::DarkGray);
|
|
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
{
|
|
VertexPointer curSeed=seedVec[i];
|
|
vector<Point3f> pt;
|
|
for(size_t j=0;j<innerCornerVec.size();++j)
|
|
for(int qq=0;qq<3;qq++)
|
|
if(sources[innerCornerVec[j]->V(qq)] == curSeed)
|
|
{
|
|
pt.push_back(Barycenter(*innerCornerVec[j]));
|
|
break;
|
|
}
|
|
for(size_t j=0;j<borderCornerVec.size();++j)
|
|
for(int qq=0;qq<3;qq++)
|
|
if(sources[borderCornerVec[j]->V(qq)] == curSeed)
|
|
{
|
|
Point3f edgeCenter;
|
|
for(int jj=0;jj<3;++jj) if(face::IsBorder(*(borderCornerVec[j]),jj))
|
|
edgeCenter=(borderCornerVec[j]->P0(jj)+borderCornerVec[j]->P1(jj))/2.0f;
|
|
pt.push_back(edgeCenter);
|
|
break;
|
|
}
|
|
Plane3f pl;
|
|
pt.push_back(curSeed->P());
|
|
FitPlaneToPointSet(pt,pl);
|
|
pt.pop_back();
|
|
Point3f nZ = pl.Direction();
|
|
Point3f nX = (pt[0]-curSeed->P()).Normalize();
|
|
Point3f nY = (nX^nZ).Normalize();
|
|
vector<std::pair<float,int> > angleVec(pt.size());
|
|
for(size_t j=0;j<pt.size();++j)
|
|
{
|
|
Point3f p = (pt[j]-curSeed->P()).Normalize();
|
|
float angle = 180.0f+math::ToDeg(atan2(p*nY,p*nX));
|
|
angleVec[j] = make_pair(angle,j);
|
|
}
|
|
std::sort(angleVec.begin(),angleVec.end());
|
|
// Now build another piece of mesh.
|
|
int curRegionStart=outMesh.vert.size();
|
|
|
|
|
|
for(size_t j=0;j<pt.size();++j)
|
|
tri::Allocator<MeshType>::AddVertex(outMesh,pt[angleVec[j].second],Color4b::LightGray);
|
|
|
|
for(size_t j=0;j<pt.size();++j){
|
|
float curAngle = angleVec[(j+1)%pt.size()].first - angleVec[j].first;
|
|
// printf("seed %4i (%i) - face %i angle %5.1f %5.1f %5.1f\n",i,curRegionStart,j,angleVec[j].first,angleVec[(j+1)%pt.size()].first,curAngle);
|
|
if(curAngle < 0) curAngle += 360.0;
|
|
if(curAngle < 170.0)
|
|
tri::Allocator<MeshType>::AddFace(outMesh,
|
|
&outMesh.vert[i ],
|
|
&outMesh.vert[curRegionStart + j ],
|
|
&outMesh.vert[curRegionStart + ((j+1)%pt.size())]);
|
|
outMesh.face.back().SetF(0);
|
|
outMesh.face.back().SetF(2);
|
|
}
|
|
} // end for each seed.
|
|
tri::Clean<MeshType>::RemoveDuplicateVertex(outMesh);
|
|
tri::UpdateTopology<MeshType>::FaceFace(outMesh);
|
|
bool oriented,orientable;
|
|
tri::Clean<MeshType>::OrientCoherentlyMesh(outMesh,oriented,orientable);
|
|
tri::UpdateTopology<MeshType>::FaceFace(outMesh);
|
|
|
|
// last loop to remove faux edges bit that are now on the boundary.
|
|
for(FaceIterator fi=outMesh.face.begin();fi!=outMesh.face.end();++fi)
|
|
for(int i=0;i<3;++i)
|
|
if(face::IsBorder(*fi,i) && fi->IsF(i)) fi->ClearF(i);
|
|
|
|
std::vector< typename tri::UpdateTopology<MeshType>::PEdge> EdgeVec;
|
|
|
|
// ******************* star to tri conversion *********
|
|
// If requested the voronoi regions are converted from a star arragned polygon
|
|
// with vertex on the seed to a simple triangulated polygon by mean of a simple edge collapse
|
|
if(vpp.triangulateRegion)
|
|
{
|
|
tri::UpdateFlags<MeshType>::FaceBorderFromFF(outMesh);
|
|
tri::UpdateFlags<MeshType>::VertexBorderFromFace(outMesh);
|
|
for(FaceIterator fi=outMesh.face.begin();fi!=outMesh.face.end();++fi) if(!fi->IsD())
|
|
{
|
|
for(int i=0;i<3;++i)
|
|
{
|
|
bool b0 = fi->V0(i)->IsB();
|
|
bool b1 = fi->V1(i)->IsB();
|
|
if( ((b0 && b1) || (fi->IsF(i) && !b0) ) &&
|
|
tri::Index(outMesh,fi->V0(i))<seedVec.size())
|
|
{
|
|
if(!seedVec[tri::Index(outMesh,fi->V0(i))]->IsS())
|
|
if(face::FFLinkCondition(*fi, i))
|
|
{
|
|
face::FFEdgeCollapse(outMesh, *fi,i); // we delete vertex fi->V0(i)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now a plain conversion of the non faux edges into a polygonal mesh
|
|
tri::UpdateTopology<MeshType>::FillUniqueEdgeVector(outMesh,EdgeVec,false);
|
|
tri::UpdateTopology<MeshType>::AllocateEdge(outMesh);
|
|
for(size_t i=0;i<outMesh.vert.size();++i)
|
|
tri::Allocator<MeshType>::AddVertex(outPoly,outMesh.vert[i].P());
|
|
for(size_t i=0;i<EdgeVec.size();++i)
|
|
{
|
|
size_t e0 = tri::Index(outMesh,EdgeVec[i].v[0]);
|
|
size_t e1 = tri::Index(outMesh,EdgeVec[i].v[1]);
|
|
assert(e0<outPoly.vert.size());
|
|
tri::Allocator<MeshType>::AddEdge(outPoly,&(outPoly.vert[e0]),&(outPoly.vert[e1]));
|
|
}
|
|
|
|
}
|
|
|
|
/// \brief Build a mesh of voronoi diagram from the given seeds
|
|
///
|
|
/// This function assumes that you have just run a geodesic like algorithm over your mesh using
|
|
/// a seed set as starting points and that there is an PerVertex Attribute called 'sources'
|
|
/// with pointers to the seed source. Usually you can initialize it with something like
|
|
///
|
|
/// DistanceFunctor &df,
|
|
/// tri::Geodesic<MeshType>::Compute(m, seedVec, df, std::numeric_limits<ScalarType>::max(),0,&sources);
|
|
///
|
|
|
|
static void ConvertVoronoiDiagramToMeshOld(MeshType &m,
|
|
MeshType &outMesh, MeshType &outPoly,
|
|
std::vector<VertexType *> &seedVec,
|
|
VoronoiProcessingParameter &vpp )
|
|
{
|
|
tri::RequirePerVertexAttribute(m,"sources");
|
|
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
|
|
outMesh.Clear();
|
|
outPoly.Clear();
|
|
tri::UpdateTopology<MeshType>::FaceFace(m);
|
|
tri::UpdateFlags<MeshType>::FaceBorderFromFF(m);
|
|
|
|
std::map<VertexPointer, int> seedMap; // It says if a given vertex of m is a seed (and what position it has in the seed vector)
|
|
for(size_t i=0;i<m.vert.size();++i)
|
|
seedMap[&(m.vert[i])]=-1;
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
seedMap[seedVec[i]]=i;
|
|
|
|
// Consistency Checks
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
{
|
|
assert(sources[vi] != 0); // all vertices mush have a source must be seeds.
|
|
int ind=tri::Index(m,sources[vi]);
|
|
assert((ind>=0) && (ind<m.vn)); // the source must be a vertex of the mesh
|
|
assert(seedMap[sources[vi]]!=-1); // the source must be one of the seedVec
|
|
}
|
|
|
|
std::vector<FacePointer> innerCornerVec, // Faces adjacent to three different regions
|
|
borderCornerVec; // Faces that are on the border and adjacent to at least two regions.
|
|
GetFaceCornerVec(m, sources, innerCornerVec, borderCornerVec);
|
|
|
|
std::map<FacePointer,int> vertexIndCornerMap; // Given a cornerFace (border or inner) what is the corresponding vertex?
|
|
for(size_t i=0;i<m.face.size();++i)
|
|
vertexIndCornerMap[&(m.face[i])]=-1;
|
|
|
|
// First add all the needed vertices: seeds and corners
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
tri::Allocator<MeshType>::AddVertex(outMesh, seedVec[i]->P(),Color4b::White);
|
|
|
|
for(size_t i=0;i<innerCornerVec.size();++i){
|
|
tri::Allocator<MeshType>::AddVertex(outMesh, vcg::Barycenter(*(innerCornerVec[i])),Color4b::Gray);
|
|
vertexIndCornerMap[innerCornerVec[i]] = outMesh.vn-1;
|
|
}
|
|
for(size_t i=0;i<borderCornerVec.size();++i){
|
|
Point3f edgeCenter;
|
|
for(int j=0;j<3;++j) if(face::IsBorder(*(borderCornerVec[i]),j))
|
|
edgeCenter=(borderCornerVec[i]->P0(j)+borderCornerVec[i]->P1(j))/2.0f;
|
|
tri::Allocator<MeshType>::AddVertex(outMesh, edgeCenter,Color4b::Gray);
|
|
vertexIndCornerMap[borderCornerVec[i]] = outMesh.vn-1;
|
|
}
|
|
tri::Append<MeshType,MeshType>::MeshCopy(outPoly,outMesh);
|
|
|
|
// There is a voronoi edge if there are two corner face that share two sources.
|
|
// In such a case we add a pair of triangles with an edge connecting these two corner faces
|
|
// and with the two involved sources
|
|
// For each pair of adjacent seed we store the first of the two corner that we encounter.
|
|
std::map<std::pair<VertexPointer,VertexPointer>, FacePointer > VoronoiEdge;
|
|
|
|
// 1) Build internal triangles
|
|
// Loop build all the triangles connecting seeds with internal corners
|
|
// we loop over the all the voronoi corner (triangles with three different sources)
|
|
// we build
|
|
for(size_t i=0;i<innerCornerVec.size();++i)
|
|
{
|
|
for(int j=0;j<3;++j)
|
|
{
|
|
VertexPointer v0 = sources[innerCornerVec[i]->V0(j)];
|
|
VertexPointer v1 = sources[innerCornerVec[i]->V1(j)];
|
|
assert(seedMap[v0]>=0);assert(seedMap[v1]>=0);
|
|
|
|
if(v1<v0) std::swap(v0,v1); assert(v1!=v0);
|
|
|
|
if(VoronoiEdge[std::make_pair(v0,v1)] == 0)
|
|
VoronoiEdge[std::make_pair(v0,v1)] = innerCornerVec[i];
|
|
else
|
|
{
|
|
FacePointer otherCorner = VoronoiEdge[std::make_pair(v0,v1)];
|
|
VertexPointer corner0 = &(outMesh.vert[vertexIndCornerMap[innerCornerVec[i]]]);
|
|
VertexPointer corner1 = &(outMesh.vert[vertexIndCornerMap[otherCorner]]);
|
|
tri::Allocator<MeshType>::AddFace(outMesh,&(outMesh.vert[seedMap[v0]]), corner0, corner1);
|
|
tri::Allocator<MeshType>::AddFace(outMesh,&(outMesh.vert[seedMap[v1]]), corner1, corner0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// 2) build the boundary facets:
|
|
// We loop over border corners and build triangles with seed vertex
|
|
// we do **only** triangles with a bordercorner and a internal 'corner'
|
|
for(size_t i=0;i<borderCornerVec.size();++i)
|
|
{
|
|
VertexPointer s0 = sources[borderCornerVec[i]->V(0)]; // All bordercorner faces have only two different regions
|
|
VertexPointer s1 = sources[borderCornerVec[i]->V(1)];
|
|
if(s1==s0) s1 = sources[borderCornerVec[i]->V(2)];
|
|
if(s1<s0) std::swap(s0,s1); assert(s1!=s0);
|
|
|
|
FacePointer innerCorner = VoronoiEdge[std::make_pair(s0,s1)] ;
|
|
if(innerCorner)
|
|
{
|
|
VertexPointer corner0 = &(outMesh.vert[vertexIndCornerMap[innerCorner]]);
|
|
VertexPointer corner1 = &(outMesh.vert[vertexIndCornerMap[borderCornerVec[i]]]);
|
|
tri::Allocator<MeshType>::AddFace(outMesh,&(outMesh.vert[seedMap[s0]]), corner0, corner1);
|
|
tri::Allocator<MeshType>::AddFace(outMesh,&(outMesh.vert[seedMap[s1]]), corner0, corner1);
|
|
}
|
|
}
|
|
|
|
// Final pass
|
|
tri::UpdateFlags<MeshType>::FaceClearV(m);
|
|
bool AllFaceVisited = false;
|
|
while(!AllFaceVisited)
|
|
{
|
|
// search for a unvisited boundary face
|
|
face::Pos<FaceType> pos,startPos;
|
|
AllFaceVisited=true;
|
|
for(size_t i=0; (AllFaceVisited) && (i<borderCornerVec.size()); ++i)
|
|
if(!borderCornerVec[i]->IsV())
|
|
{
|
|
for(int j=0;j<3;++j)
|
|
if(face::IsBorder(*(borderCornerVec[i]),j))
|
|
{
|
|
pos.Set(borderCornerVec[i],j,borderCornerVec[i]->V(j));
|
|
AllFaceVisited =false;
|
|
}
|
|
}
|
|
if(AllFaceVisited) break;
|
|
assert(pos.IsBorder());
|
|
startPos=pos;
|
|
bool foundBorderSeed=false;
|
|
FacePointer curBorderCorner = pos.F();
|
|
do
|
|
{
|
|
pos.F()->SetV();
|
|
pos.NextB();
|
|
if(sources[pos.V()]==pos.V())
|
|
foundBorderSeed=true;
|
|
assert(isBorderCorner(curBorderCorner,sources));
|
|
if(isBorderCorner(pos.F(),sources))
|
|
if(pos.F() != curBorderCorner)
|
|
{
|
|
VertexPointer curReg = CommonSourceBetweenBorderCorner(curBorderCorner, pos.F(),sources);
|
|
VertexPointer curSeed = &(outMesh.vert[seedMap[curReg]]);
|
|
int otherCorner0 = vertexIndCornerMap[pos.F() ];
|
|
int otherCorner1 = vertexIndCornerMap[curBorderCorner];
|
|
VertexPointer corner0 = &(outMesh.vert[otherCorner0]);
|
|
VertexPointer corner1 = &(outMesh.vert[otherCorner1]);
|
|
if(!foundBorderSeed)
|
|
tri::Allocator<MeshType>::AddFace(outMesh,curSeed,corner0,corner1);
|
|
foundBorderSeed=false;
|
|
curBorderCorner=pos.F();
|
|
}
|
|
}
|
|
while(pos!=startPos);
|
|
}
|
|
|
|
//**************** CLEANING ***************
|
|
// 1) reorient
|
|
bool oriented,orientable;
|
|
tri::UpdateTopology<MeshType>::FaceFace(outMesh);
|
|
tri::Clean<MeshType>::OrientCoherentlyMesh(outMesh,oriented,orientable);
|
|
// assert(orientable);
|
|
// check that the normal of the input mesh are consistent with the result
|
|
tri::UpdateNormal<MeshType>::PerVertexNormalizedPerFaceNormalized(outMesh);
|
|
tri::UpdateNormal<MeshType>::PerVertexNormalizedPerFaceNormalized(m);
|
|
if(seedVec[0]->N() * outMesh.vert[0].N() < 0 )
|
|
tri::Clean<MeshType>::FlipMesh(outMesh);
|
|
|
|
tri::UpdateTopology<MeshType>::FaceFace(outMesh);
|
|
tri::UpdateFlags<MeshType>::FaceBorderFromFF(outMesh);
|
|
|
|
// 2) Remove Flips
|
|
tri::UpdateNormal<MeshType>::PerFaceNormalized(outMesh);
|
|
tri::UpdateFlags<MeshType>::FaceClearV(outMesh);
|
|
for(FaceIterator fi=outMesh.face.begin();fi!=outMesh.face.end();++fi)
|
|
{
|
|
int badDiedralCnt=0;
|
|
for(int i=0;i<3;++i)
|
|
if(fi->N() * fi->FFp(i)->N() <0 ) badDiedralCnt++;
|
|
|
|
if(badDiedralCnt == 2) fi->SetV();
|
|
}
|
|
for(FaceIterator fi=outMesh.face.begin();fi!=outMesh.face.end();++fi)
|
|
if(fi->IsV()) Allocator<MeshType>::DeleteFace(outMesh,*fi);
|
|
tri::Allocator<MeshType>::CompactEveryVector(outMesh);
|
|
tri::UpdateTopology<MeshType>::FaceFace(outMesh);
|
|
tri::UpdateFlags<MeshType>::FaceBorderFromFF(outMesh);
|
|
tri::UpdateFlags<MeshType>::VertexBorderFromFace(outMesh);
|
|
|
|
// 3) set up faux bits
|
|
for(FaceIterator fi=outMesh.face.begin();fi!=outMesh.face.end();++fi)
|
|
for(int i=0;i<3;++i)
|
|
{
|
|
size_t v0 = tri::Index(outMesh,fi->V0(i) );
|
|
size_t v1 = tri::Index(outMesh,fi->V1(i) );
|
|
if (v0 < seedVec.size() && !(seedVec[v0]->IsB() && fi->IsB(i))) fi->SetF(i);
|
|
if (v1 < seedVec.size() && !(seedVec[v1]->IsB() && fi->IsB(i))) fi->SetF(i);
|
|
}
|
|
|
|
if(vpp.collapseShortEdge)
|
|
{
|
|
float distThr = m.bbox.Diag() * vpp.collapseShortEdgePerc;
|
|
for(FaceIterator fi=outMesh.face.begin();fi!=outMesh.face.end();++fi) if(!fi->IsD())
|
|
{
|
|
for(int i=0;i<3;++i)
|
|
if((Distance(fi->P0(i),fi->P1(i))<distThr) && !fi->IsF(i))
|
|
{
|
|
// printf("Collapsing face %i:%i e%i \n",tri::Index(outMesh,*fi),tri::Index(outMesh,fi->FFp(i)),i);
|
|
if ((!fi->V(i)->IsB())&&(face::FFLinkCondition(*fi, i)))
|
|
face::FFEdgeCollapse(outMesh, *fi,i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//******************** END OF CLEANING ****************
|
|
|
|
|
|
// ******************* star to tri conversion *********
|
|
// If requested the voronoi regions are converted from a star arragned polygon
|
|
// with vertex on the seed to a simple triangulated polygon by mean of a simple edge collapse
|
|
if(vpp.triangulateRegion)
|
|
{
|
|
for(FaceIterator fi=outMesh.face.begin();fi!=outMesh.face.end();++fi) if(!fi->IsD())
|
|
{
|
|
for(int i=0;i<3;++i)
|
|
{
|
|
bool b0 = fi->V0(i)->IsB();
|
|
bool b1 = fi->V1(i)->IsB();
|
|
if( ((b0 && b1) || (fi->IsF(i) && !b0 && !b1) ) &&
|
|
tri::Index(outMesh,fi->V(i))<seedVec.size())
|
|
{
|
|
if(!seedVec[tri::Index(outMesh,fi->V(i))]->IsS())
|
|
if(face::FFLinkCondition(*fi, i))
|
|
{
|
|
face::FFEdgeCollapse(outMesh, *fi,i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now a plain conversion of the non faux edges into a polygonal mesh
|
|
std::vector< typename tri::UpdateTopology<MeshType>::PEdge> EdgeVec;
|
|
tri::UpdateTopology<MeshType>::FillUniqueEdgeVector(outMesh,EdgeVec,false);
|
|
tri::UpdateTopology<MeshType>::AllocateEdge(outMesh);
|
|
|
|
for(size_t i=0;i<EdgeVec.size();++i)
|
|
{
|
|
size_t e0 = tri::Index(outMesh,EdgeVec[i].v[0]);
|
|
size_t e1 = tri::Index(outMesh,EdgeVec[i].v[1]);
|
|
assert(e0<outPoly.vert.size());
|
|
tri::Allocator<MeshType>::AddEdge(outPoly,&(outPoly.vert[e0]),&(outPoly.vert[e1]));
|
|
}
|
|
}
|
|
|
|
class VoronoiEdge
|
|
{
|
|
public:
|
|
VertexPointer r0,r1;
|
|
FacePointer f0,f1;
|
|
bool operator == (const VoronoiEdge &ve) const {return ve.r0==r0 && ve.r1==r1; }
|
|
bool operator < (const VoronoiEdge &ve) const { return (ve.r0==r0)?ve.r1<r1:ve.r0<r0; }
|
|
float Len() const { return Distance(vcg::Barycenter(*f0), vcg::Barycenter(*f1)); }
|
|
};
|
|
|
|
static void BuildVoronoiEdgeVec(MeshType &m, std::vector<VoronoiEdge> &edgeVec)
|
|
{
|
|
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
|
|
edgeVec.clear();
|
|
std::vector<FacePointer> cornerVec;
|
|
std::vector<FacePointer> borderCornerVec;
|
|
GetFaceCornerVec(m,sources,cornerVec,borderCornerVec);
|
|
// Now find all the voronoi edges: each edge (a *face pair) is identified by two voronoi regions
|
|
typedef std::map< std::pair<VertexPointer,VertexPointer>, std::pair<FacePointer,FacePointer> > EdgeMapType;
|
|
EdgeMapType EdgeMap;
|
|
printf("cornerVec.size() %i\n",(int)cornerVec.size());
|
|
|
|
for(size_t i=0;i<cornerVec.size();++i)
|
|
{
|
|
for(int j=0;j<3;++j)
|
|
{
|
|
VertexPointer v0 = sources[cornerVec[i]->V0(j)];
|
|
VertexPointer v1 = sources[cornerVec[i]->V1(j)];
|
|
assert(v0!=v1);
|
|
if(v0>v1) std::swap(v1,v0);
|
|
std::pair<VertexPointer,VertexPointer> adjRegion = std::make_pair(v0,v1);
|
|
if(EdgeMap[adjRegion].first==0)
|
|
EdgeMap[adjRegion].first = cornerVec[i];
|
|
else
|
|
EdgeMap[adjRegion].second = cornerVec[i];
|
|
}
|
|
}
|
|
for(size_t i=0;i<borderCornerVec.size();++i)
|
|
{
|
|
VertexPointer v0 = sources[borderCornerVec[i]->V(0)];
|
|
VertexPointer v1 = sources[borderCornerVec[i]->V(1)];
|
|
if(v0==v1) v1 = sources[borderCornerVec[i]->V(2)];
|
|
assert(v0!=v1);
|
|
if(v0>v1) std::swap(v1,v0);
|
|
std::pair<VertexPointer,VertexPointer> adjRegion = std::make_pair(v0,v1);
|
|
if(EdgeMap[adjRegion].first==0)
|
|
EdgeMap[adjRegion].first = borderCornerVec[i];
|
|
else
|
|
EdgeMap[adjRegion].second = borderCornerVec[i];
|
|
|
|
}
|
|
typename EdgeMapType::iterator mi;
|
|
for(mi=EdgeMap.begin();mi!=EdgeMap.end();++mi)
|
|
{
|
|
if((*mi).second.first && (*mi).second.second)
|
|
{
|
|
assert((*mi).first.first && (*mi).first.second);
|
|
edgeVec.push_back(VoronoiEdge());
|
|
edgeVec.back().r0 = (*mi).first.first;
|
|
edgeVec.back().r1 = (*mi).first.second;
|
|
edgeVec.back().f0 = (*mi).second.first;
|
|
edgeVec.back().f1 = (*mi).second.second;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void BuildBiasedSeedVec(MeshType &m,
|
|
DistanceFunctor &df,
|
|
std::vector<VertexPointer> &seedVec,
|
|
std::vector<VertexPointer> &frontierVec,
|
|
std::vector<VertDist> &biasedFrontierVec,
|
|
VoronoiProcessingParameter &vpp)
|
|
{
|
|
(void)df;
|
|
biasedFrontierVec.clear();
|
|
if(vpp.unbiasedSeedFlag)
|
|
{
|
|
for(size_t i=0;i<frontierVec.size();++i)
|
|
biasedFrontierVec.push_back(VertDist(frontierVec[i],0));
|
|
assert(biasedFrontierVec.size() == frontierVec.size());
|
|
return;
|
|
}
|
|
|
|
std::vector<VoronoiEdge> edgeVec;
|
|
BuildVoronoiEdgeVec(m,edgeVec);
|
|
printf("Found %lu edges on a diagram of %lu seeds\n",edgeVec.size(),seedVec.size());
|
|
|
|
std::map<VertexPointer,std::vector<VoronoiEdge *> > SeedToEdgeVecMap;
|
|
std::map< std::pair<VertexPointer,VertexPointer>, VoronoiEdge *> SeedPairToEdgeMap;
|
|
float totalLen=0;
|
|
for(size_t i=0;i<edgeVec.size();++i)
|
|
{
|
|
SeedToEdgeVecMap[edgeVec[i].r0].push_back(&(edgeVec[i]));
|
|
SeedToEdgeVecMap[edgeVec[i].r1].push_back(&(edgeVec[i]));
|
|
SeedPairToEdgeMap[std::make_pair(edgeVec[i].r0, edgeVec[i].r1)]=&(edgeVec[i]);
|
|
assert (edgeVec[i].r0 < edgeVec[i].r1);
|
|
totalLen +=edgeVec[i].Len();
|
|
}
|
|
|
|
// compute the perimeter of each region
|
|
std::map <VertexPointer, float> regionPerymeter;
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
{
|
|
for(size_t j=0;j<SeedToEdgeVecMap[seedVec[i]].size();++j)
|
|
{
|
|
VoronoiEdge *vep = SeedToEdgeVecMap[seedVec[i]][j];
|
|
regionPerymeter[seedVec[i]]+=vep->Len();
|
|
}
|
|
printf("perimeter of region %i is %f\n",(int)i,regionPerymeter[seedVec[i]]);
|
|
}
|
|
|
|
|
|
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
// The real bias for each edge is (perim)/(edge)
|
|
// each source can belong to two edges max. so the weight is
|
|
std::map<VertexPointer,float> weight;
|
|
std::map<VertexPointer,int> cnt;
|
|
float biasSum = totalLen/5.0f;
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
for(int i=0;i<3;++i)
|
|
{
|
|
VertexPointer s0 = sources[(*fi).V0(i)];
|
|
VertexPointer s1 = sources[(*fi).V1(i)];
|
|
if(s0!=s1)
|
|
{
|
|
if(s0>s1) std::swap(s0,s1);
|
|
VoronoiEdge *ve = SeedPairToEdgeMap[std::make_pair(s0,s1)];
|
|
if(!ve) printf("v %i %i \n",(int)tri::Index(m,s0),(int)tri::Index(m,s1));
|
|
assert(ve);
|
|
float el = ve->Len();
|
|
weight[(*fi).V0(i)] += (regionPerymeter[s0]+biasSum)/(el+biasSum) ;
|
|
weight[(*fi).V1(i)] += (regionPerymeter[s1]+biasSum)/(el+biasSum) ;
|
|
cnt[(*fi).V0(i)]++;
|
|
cnt[(*fi).V1(i)]++;
|
|
}
|
|
}
|
|
}
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
{
|
|
if(cnt[&*vi]>0)
|
|
{
|
|
// float bias = weight[&*vi]/float(cnt[&*vi]);
|
|
float bias = weight[&*vi]/float(cnt[&*vi]) + totalLen;
|
|
biasedFrontierVec.push_back(VertDist(&*vi, bias));
|
|
}
|
|
}
|
|
printf("Collected %i frontier vertexes\n",(int)biasedFrontierVec.size());
|
|
}
|
|
|
|
|
|
static void DeleteUnreachedRegions(MeshType &m, PerVertexPointerHandle &sources)
|
|
{
|
|
tri::UpdateFlags<MeshType>::VertexClearV(m);
|
|
for(size_t i=0;i<m.vert.size();++i)
|
|
if(sources[i]==0) m.vert[i].SetV();
|
|
|
|
for(FaceIterator fi=m.face.begin(); fi!=m.face.end();++fi)
|
|
if(fi->V(0)->IsV() || fi->V(1)->IsV() || fi->V(2)->IsV() )
|
|
{
|
|
face::VFDetach(*fi);
|
|
tri::Allocator<MeshType>::DeleteFace(m,*fi);
|
|
}
|
|
// qDebug("Deleted faces not reached: %i -> %i",int(m.face.size()),m.fn);
|
|
tri::Clean<MeshType>::RemoveUnreferencedVertex(m);
|
|
tri::Allocator<MeshType>::CompactEveryVector(m);
|
|
}
|
|
|
|
/// Let f_p(q) be the squared distance of q from p
|
|
/// f_p(q) = (p_x-q_x)^2 + (p_y-q_y)^2 + (p_z-q_z)^2
|
|
/// f_p(q) = p_x^2 -2p_xq_x +q_x^2 + ... + p_z^2 -2p_zq_z +q_z^2
|
|
///
|
|
|
|
struct QuadricSumDistance
|
|
{
|
|
ScalarType a;
|
|
ScalarType c;
|
|
CoordType b;
|
|
QuadricSumDistance() {a=0; c=0; b[0]=0; b[1]=0; b[2]=0;}
|
|
void AddPoint(CoordType p)
|
|
{
|
|
a+=1;
|
|
assert(c>=0);
|
|
c+=p*p;
|
|
b[0]+= -2.0f*p[0];
|
|
b[1]+= -2.0f*p[1];
|
|
b[2]+= -2.0f*p[2];
|
|
}
|
|
|
|
ScalarType Eval(CoordType p) const
|
|
{
|
|
ScalarType d = a*(p*p) + b*p + c;
|
|
assert(d>=0);
|
|
return d;
|
|
}
|
|
|
|
CoordType Min() const
|
|
{
|
|
return b * -0.5f;
|
|
}
|
|
};
|
|
|
|
/// \brief Relax the seeds of a Voronoi diagram according to the quadric distance rule.
|
|
///
|
|
/// For each region it search the vertex that minimize the sum of the squared distance
|
|
/// from all the points of the region.
|
|
///
|
|
/// It uses a vector of QuadricSumDistances;
|
|
/// for simplicity it is sized as the vertex vector even if only the ones of the quadric
|
|
/// corresponding to seeds are actually used.
|
|
///
|
|
/// It return true if at least one seed changed position.
|
|
///
|
|
static bool QuadricRelax(MeshType &m, std::vector<VertexType *> &seedVec,
|
|
std::vector<VertexPointer> &frontierVec,
|
|
std::vector<VertexType *> &newSeeds,
|
|
DistanceFunctor &df,
|
|
VoronoiProcessingParameter &vpp)
|
|
{
|
|
(void)seedVec;
|
|
(void)frontierVec;
|
|
(void)df;
|
|
newSeeds.clear();
|
|
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
PerVertexBoolHandle fixed = tri::Allocator<MeshType>:: template GetPerVertexAttribute<bool> (m,"fixed");
|
|
|
|
QuadricSumDistance dz;
|
|
std::vector<QuadricSumDistance> dVec(m.vert.size(),dz);
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
{
|
|
assert(sources[vi]!=0);
|
|
int seedIndex = tri::Index(m,sources[vi]);
|
|
// When constraining seeds movement we move selected seeds only onto other selected vertices
|
|
if(vpp.constrainSelectedSeed)
|
|
{ // So we sum only the contribs of the selected vertices
|
|
if( (sources[vi]->IsS() && vi->IsS()) || (!sources[vi]->IsS()))
|
|
dVec[seedIndex].AddPoint(vi->P());
|
|
}
|
|
else
|
|
dVec[seedIndex].AddPoint(vi->P());
|
|
}
|
|
|
|
// Search the local maxima for each region and use them as new seeds
|
|
std::pair<float,VertexPointer> zz(std::numeric_limits<ScalarType>::max(), static_cast<VertexPointer>(0));
|
|
std::vector< std::pair<float,VertexPointer> > seedMaximaVec(m.vert.size(),zz);
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
{
|
|
assert(sources[vi]!=0);
|
|
int seedIndex = tri::Index(m,sources[vi]);
|
|
ScalarType val = dVec[seedIndex].Eval(vi->P());
|
|
vi->Q()=val;
|
|
// if constrainSelectedSeed we search only among selected vertices
|
|
if(!vpp.constrainSelectedSeed || !sources[vi]->IsS() || vi->IsS())
|
|
{
|
|
if(seedMaximaVec[seedIndex].first > val)
|
|
{
|
|
seedMaximaVec[seedIndex].first = val;
|
|
seedMaximaVec[seedIndex].second = &*vi;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(vpp.colorStrategy==VoronoiProcessingParameter::DistanceFromBorder)
|
|
tri::UpdateColor<MeshType>::PerVertexQualityRamp(m);
|
|
|
|
// tri::io::ExporterPLY<MeshType>::Save(m,"last.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY );
|
|
bool seedChanged=false;
|
|
// update the seedvector with the new maxima (For the vertex not fixed)
|
|
for(size_t i=0;i<m.vert.size();++i)
|
|
if(seedMaximaVec[i].second) // Most of the seedMaximaVec is unused: only the updated entries have a non zero pointer
|
|
{
|
|
VertexPointer curSrc = sources[seedMaximaVec[i].second];
|
|
if(vpp.preserveFixedSeed && fixed[curSrc])
|
|
newSeeds.push_back(curSrc);
|
|
else
|
|
{
|
|
newSeeds.push_back(seedMaximaVec[i].second);
|
|
if(curSrc != seedMaximaVec[i].second)
|
|
seedChanged=true;
|
|
}
|
|
}
|
|
|
|
return seedChanged;
|
|
}
|
|
|
|
/// \brief Relax the Seeds of a Voronoi diagram according to the geodesic rule.
|
|
///
|
|
/// For each region, given the frontiers, it chooses the point with the highest distance from the frontier
|
|
/// This strategy automatically moves the vertices onto the boundary (if any).
|
|
///
|
|
/// It return true if at least one seed changed position.
|
|
///
|
|
|
|
static bool GeodesicRelax(MeshType &m, std::vector<VertexType *> &seedVec, std::vector<VertexPointer> &frontierVec,
|
|
std::vector<VertexType *> &newSeeds,
|
|
DistanceFunctor &df, VoronoiProcessingParameter &vpp)
|
|
{
|
|
newSeeds.clear();
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> sources;
|
|
sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
typename MeshType::template PerVertexAttributeHandle<bool> fixed;
|
|
fixed = tri::Allocator<MeshType>:: template GetPerVertexAttribute<bool> (m,"fixed");
|
|
|
|
std::vector<typename tri::Geodesic<MeshType>::VertDist> biasedFrontierVec;
|
|
BuildBiasedSeedVec(m,df,seedVec,frontierVec,biasedFrontierVec,vpp);
|
|
tri::Geodesic<MeshType>::Visit(m,biasedFrontierVec,df);
|
|
if(vpp.colorStrategy == VoronoiProcessingParameter::DistanceFromSeed)
|
|
tri::UpdateColor<MeshType>::PerVertexQualityRamp(m);
|
|
// tri::io::ExporterPLY<MeshType>::Save(m,"last.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY );
|
|
|
|
if(vpp.colorStrategy == VoronoiProcessingParameter::DistanceFromBorder)
|
|
tri::UpdateColor<MeshType>::PerVertexQualityRamp(m);
|
|
|
|
// Search the local maxima for each region and use them as new seeds
|
|
std::pair<float,VertexPointer> zz(0.0f,static_cast<VertexPointer>(NULL));
|
|
std::vector< std::pair<float,VertexPointer> > seedMaximaVec(m.vert.size(),zz);
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
{
|
|
assert(sources[vi]!=0);
|
|
int seedIndex = tri::Index(m,sources[vi]);
|
|
|
|
if(!vpp.constrainSelectedSeed || !sources[vi]->IsS() || vi->IsS())
|
|
{
|
|
if(seedMaximaVec[seedIndex].first < (*vi).Q())
|
|
{
|
|
seedMaximaVec[seedIndex].first=(*vi).Q();
|
|
seedMaximaVec[seedIndex].second=&*vi;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool seedChanged=false;
|
|
|
|
// update the seedvector with the new maxima (For the vertex not selected)
|
|
for(size_t i=0;i<seedMaximaVec.size();++i)
|
|
if(seedMaximaVec[i].second)// only updated entries have a non zero pointer
|
|
{
|
|
VertexPointer curSrc = sources[seedMaximaVec[i].second];
|
|
if(vpp.preserveFixedSeed && fixed[curSrc])
|
|
newSeeds.push_back(curSrc);
|
|
else
|
|
{
|
|
newSeeds.push_back(seedMaximaVec[i].second);
|
|
if(curSrc != seedMaximaVec[i].second) seedChanged=true;
|
|
}
|
|
}
|
|
return seedChanged;
|
|
}
|
|
|
|
static void PruneSeedByRegionArea(std::vector<VertexType *> &seedVec,
|
|
std::vector< std::pair<float,VertexPointer> > ®ionArea,
|
|
VoronoiProcessingParameter &vpp)
|
|
{
|
|
// Smaller area region are discarded
|
|
Distribution<float> H;
|
|
for(size_t i=0;i<regionArea.size();++i)
|
|
if(regionArea[i].second) H.Add(regionArea[i].first);
|
|
float areaThreshold=0;
|
|
if(vpp.areaThresholdPerc != 0) areaThreshold = H.Percentile(vpp.areaThresholdPerc);
|
|
std::vector<VertexType *> newSeedVec;
|
|
|
|
// update the seedvector with the new maxima (For the vertex not selected)
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
{
|
|
if(regionArea[i].first >= areaThreshold)
|
|
newSeedVec.push_back(seedVec[i]);
|
|
}
|
|
swap(seedVec,newSeedVec);
|
|
}
|
|
|
|
/// \brief Mark a vector of seeds to be fixed.
|
|
///
|
|
/// Vertex pointers must belong to the mesh.
|
|
/// The framework use a boolean attribute called "fixed" to store this info.
|
|
///
|
|
static void FixVertexVector(MeshType &m, std::vector<VertexType *> &vertToFixVec)
|
|
{
|
|
typename MeshType::template PerVertexAttributeHandle<bool> fixed;
|
|
fixed = tri::Allocator<MeshType>:: template GetPerVertexAttribute<bool> (m,"fixed");
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
fixed[vi]=false;
|
|
for(size_t i=0;i<vertToFixVec.size();++i)
|
|
fixed[vertToFixVec[i]]=true;
|
|
}
|
|
|
|
/// \brief Perform a Lloyd relaxation cycle over a mesh
|
|
/// It uses two conventions:
|
|
/// 1) a few vertexes can remain fixed, you have to set a per vertex bool attribute named 'fixed'
|
|
/// 2)
|
|
///
|
|
|
|
static int VoronoiRelaxing(MeshType &m, std::vector<VertexType *> &seedVec,
|
|
int relaxIter, DistanceFunctor &df,
|
|
VoronoiProcessingParameter &vpp,
|
|
vcg::CallBackPos *cb=0)
|
|
{
|
|
tri::RequireVFAdjacency(m);
|
|
tri::RequireCompactness(m);
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
assert(vi->VFp() && "Require mesh without unreferenced vertexes\n");
|
|
std::vector<VertexType *> selectedVec;
|
|
if(vpp.relaxOnlyConstrainedFlag)
|
|
{
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
if(seedVec[i]->IsS())
|
|
selectedVec.push_back(seedVec[i]);
|
|
std::swap(seedVec,selectedVec);
|
|
}
|
|
|
|
tri::UpdateFlags<MeshType>::FaceBorderFromVF(m);
|
|
tri::UpdateFlags<MeshType>::VertexBorderFromFace(m);
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> sources;
|
|
sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
typename MeshType::template PerVertexAttributeHandle<bool> fixed;
|
|
fixed = tri::Allocator<MeshType>:: template GetPerVertexAttribute<bool> (m,"fixed");
|
|
int iter;
|
|
for(iter=0;iter<relaxIter;++iter)
|
|
{
|
|
if(cb) cb(iter*100/relaxIter,"Voronoi Lloyd Relaxation: First Partitioning");
|
|
|
|
// first run: find for each point what is the closest to one of the seeds.
|
|
tri::Geodesic<MeshType>::Compute(m, seedVec, df,std::numeric_limits<ScalarType>::max(),0,&sources);
|
|
|
|
if(vpp.colorStrategy == VoronoiProcessingParameter::DistanceFromSeed)
|
|
tri::UpdateColor<MeshType>::PerVertexQualityRamp(m);
|
|
// Delete all the (hopefully) small regions that have not been reached by the seeds;
|
|
|
|
if(vpp.deleteUnreachedRegionFlag) DeleteUnreachedRegions(m,sources);
|
|
std::pair<float,VertexPointer> zz(0.0f,static_cast<VertexPointer>(NULL));
|
|
std::vector< std::pair<float,VertexPointer> > regionArea(m.vert.size(),zz);
|
|
std::vector<VertexPointer> frontierVec;
|
|
|
|
GetAreaAndFrontier(m, sources, regionArea, frontierVec);
|
|
assert(frontierVec.size()>0);
|
|
|
|
if(vpp.colorStrategy == VoronoiProcessingParameter::RegionArea) VoronoiAreaColoring(m, seedVec, regionArea);
|
|
|
|
// qDebug("We have found %i regions range (%f %f), avg area is %f, Variance is %f 10perc is %f",(int)seedVec.size(),H.Min(),H.Max(),H.Avg(),H.StandardDeviation(),areaThreshold);
|
|
|
|
if(cb) cb(iter*100/relaxIter,"Voronoi Lloyd Relaxation: Searching New Seeds");
|
|
std::vector<VertexPointer> newSeedVec;
|
|
|
|
bool changed;
|
|
if(vpp.geodesicRelaxFlag)
|
|
changed = GeodesicRelax(m,seedVec, frontierVec, newSeedVec, df,vpp);
|
|
else
|
|
changed = QuadricRelax(m,seedVec,frontierVec, newSeedVec, df,vpp);
|
|
|
|
assert(newSeedVec.size() == seedVec.size());
|
|
PruneSeedByRegionArea(newSeedVec,regionArea,vpp);
|
|
|
|
for(size_t i=0;i<frontierVec.size();++i)
|
|
frontierVec[i]->C() = Color4b::Gray;
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
seedVec[i]->C() = Color4b::Black;
|
|
for(size_t i=0;i<newSeedVec.size();++i)
|
|
newSeedVec[i]->C() = Color4b::White;
|
|
|
|
swap(newSeedVec,seedVec);
|
|
if(!changed) break;
|
|
}
|
|
|
|
// Last run: Needed if we have changed the seed set to leave the sources handle correct.
|
|
if(iter==relaxIter)
|
|
tri::Geodesic<MeshType>::Compute(m, seedVec, df,std::numeric_limits<ScalarType>::max(),0,&sources);
|
|
|
|
if(vpp.relaxOnlyConstrainedFlag)
|
|
{
|
|
std::swap(seedVec,selectedVec);
|
|
size_t i,j;
|
|
for(i=0,j=0;i<seedVec.size();++i){
|
|
if(seedVec[i]->IsS())
|
|
{
|
|
seedVec[i]=selectedVec[j];
|
|
fixed[seedVec[i]]=true;
|
|
++j;
|
|
}
|
|
}
|
|
}
|
|
return iter;
|
|
}
|
|
|
|
|
|
// Base vertex voronoi coloring algorithm.
|
|
// it assumes VF adjacency. No attempt of computing real geodesic distnace is done. Just a BFS visit starting from the seeds.
|
|
static void TopologicalVertexColoring(MeshType &m, std::vector<VertexType *> &seedVec)
|
|
{
|
|
std::queue<VertexPointer> VQ;
|
|
|
|
tri::UpdateQuality<MeshType>::VertexConstant(m,0);
|
|
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
{
|
|
VQ.push(seedVec[i]);
|
|
seedVec[i]->Q()=i+1;
|
|
}
|
|
|
|
while(!VQ.empty())
|
|
{
|
|
VertexPointer vp = VQ.front();
|
|
VQ.pop();
|
|
|
|
std::vector<VertexPointer> vertStar;
|
|
vcg::face::VVStarVF<FaceType>(vp,vertStar);
|
|
for(typename std::vector<VertexPointer>::iterator vv = vertStar.begin();vv!=vertStar.end();++vv)
|
|
{
|
|
if((*vv)->Q()==0)
|
|
{
|
|
(*vv)->Q()=vp->Q();
|
|
VQ.push(*vv);
|
|
}
|
|
}
|
|
} // end while(!VQ.empty())
|
|
|
|
}
|
|
|
|
|
|
template <class genericType>
|
|
static std::pair<genericType, genericType> ordered_pair(const genericType &a, const genericType &b)
|
|
{
|
|
if(a<b) return std::make_pair(a,b);
|
|
return std::make_pair(b,a);
|
|
}
|
|
|
|
/// For each edge of the delaunay triangulation it search a 'good' middle point:
|
|
/// E.g the point that belongs on the corresponding edge of the voronoi diagram (e.g. on a frontier face)
|
|
/// and that has minimal distance from the two seeds.
|
|
///
|
|
/// Note: if the edge connects two "constrained" vertices (e.g. selected) we must search only among the constrained.
|
|
///
|
|
///
|
|
static void GenerateMidPointMap(MeshType &m,
|
|
map<std::pair<VertexPointer,VertexPointer>, VertexPointer > &midMap)
|
|
{
|
|
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
|
|
for(FaceIterator fi = m.face.begin(); fi!=m.face.end(); ++fi)
|
|
{
|
|
VertexPointer vp[3],sp[3];
|
|
vp[0] = (*fi).V(0); vp[1] = (*fi).V(1); vp[2] = (*fi).V(2);
|
|
sp[0] = sources[vp[0]]; sp[1] = sources[vp[1]]; sp[2] = sources[vp[2]];
|
|
if((sp[0] == sp[1]) && (sp[0] == sp[2])) continue; // skip internal faces
|
|
// if((sp[0] != sp[1]) && (sp[0] != sp[2]) && (sp[1] != sp[2])) continue; // skip corner faces
|
|
|
|
for(int i=0;i<3;++i) // for each edge of a frontier face
|
|
{
|
|
int i0 = i;
|
|
int i1 = (i+1)%3;
|
|
// if((sp[i0]->IsS() && sp[i1]->IsS()) && !( vp[i0]->IsS() || vp[i1]->IsS() ) ) continue;
|
|
|
|
VertexPointer closestVert = vp[i0];
|
|
if( vp[i1]->Q() < closestVert->Q()) closestVert = vp[i1];
|
|
|
|
if(sp[i0]->IsS() && sp[i1]->IsS())
|
|
{
|
|
if ( (vp[i0]->IsS()) && !(vp[i1]->IsS()) ) closestVert = vp[i0];
|
|
if (!(vp[i0]->IsS()) && (vp[i1]->IsS()) ) closestVert = vp[i1];
|
|
if ( (vp[i0]->IsS()) && (vp[i1]->IsS()) ) closestVert = (vp[i0]->Q() < vp[i1]->Q()) ? vp[i0]:vp[i1];
|
|
}
|
|
|
|
if(midMap[ordered_pair(sp[i0],sp[i1])] == 0 ) {
|
|
midMap[ordered_pair(sp[i0],sp[i1])] = closestVert;
|
|
}
|
|
else {
|
|
if(sp[i0]->IsS() && sp[i1]->IsS()) // constrained edge
|
|
{
|
|
if(!(midMap[ordered_pair(sp[i0],sp[i1])]->IsS()) && closestVert->IsS())
|
|
midMap[ordered_pair(sp[i0],sp[i1])] = closestVert;
|
|
if( midMap[ordered_pair(sp[i0],sp[i1])]->IsS() && closestVert->IsS() &&
|
|
closestVert->Q() < midMap[ordered_pair(sp[i0],sp[i1])]->Q())
|
|
{
|
|
midMap[ordered_pair(sp[i0],sp[i1])] = closestVert;
|
|
}
|
|
}
|
|
else // UNCOSTRAINED EDGE
|
|
{
|
|
if(closestVert->Q() < midMap[ordered_pair(sp[i0],sp[i1])]->Q())
|
|
midMap[ordered_pair(sp[i0],sp[i1])] = closestVert;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Check the topological correcteness of the induced Voronoi diagram
|
|
///
|
|
/// This function assumes that you have just run a geodesic like algorithm over your mesh using
|
|
/// a seed set as starting points and that there is an PerVertex Attribute called 'sources'
|
|
/// with pointers to the seed source. Usually you can initialize it with something like
|
|
///
|
|
/// DistanceFunctor &df,
|
|
/// tri::Geodesic<MeshType>::Compute(m, seedVec, df, std::numeric_limits<ScalarType>::max(),0,&sources);
|
|
|
|
static bool CheckVoronoiTopology(MeshType& m,std::vector<VertexType *> &seedVec)
|
|
{
|
|
tri::RequirePerVertexAttribute(m,"sources");
|
|
tri::RequireCompactness(m);
|
|
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> sources;
|
|
sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
|
|
std::map<VertexPointer, int> seedMap; // It says if a given vertex of m is a seed (and its index in seedVec)
|
|
BuildSeedMap(m,seedVec,seedMap);
|
|
|
|
// Very basic check: each vertex must have a source that is a seed.
|
|
for(int i=0;i<m.vn;++i)
|
|
{
|
|
VertexPointer vp = sources[i];
|
|
int seedInd = seedMap[vp];
|
|
if(seedInd <0)
|
|
return false;
|
|
}
|
|
|
|
std::vector<MeshType *> regionVec(seedVec.size(),0);
|
|
for(int i=0; i< seedVec.size();i++) regionVec[i] = new MeshType;
|
|
|
|
for(int i=0;i<m.fn;++i)
|
|
{
|
|
int vi0 = seedMap[sources[m.face[i].V(0)]];
|
|
int vi1 = seedMap[sources[m.face[i].V(1)]];
|
|
int vi2 = seedMap[sources[m.face[i].V(2)]];
|
|
assert(vi0>=0 && vi1>=0 && vi2>=0);
|
|
tri::Allocator<MeshType>::AddFace(*regionVec[vi0], m.face[i].cP(0),m.face[i].cP(1),m.face[i].cP(2));
|
|
|
|
if(vi1 != vi0)
|
|
tri::Allocator<MeshType>::AddFace(*regionVec[vi1], m.face[i].cP(0),m.face[i].cP(1),m.face[i].cP(2));
|
|
|
|
if((vi2 != vi0) && (vi2 != vi1) )
|
|
tri::Allocator<MeshType>::AddFace(*regionVec[vi2], m.face[i].cP(0),m.face[i].cP(1),m.face[i].cP(2));
|
|
}
|
|
|
|
bool AllDiskRegion=true;
|
|
for(int i=0; i< seedVec.size();i++)
|
|
{
|
|
MeshType &rm = *(regionVec[i]);
|
|
tri::Clean<MeshType>::RemoveDuplicateVertex(rm);
|
|
tri::Allocator<MeshType>::CompactEveryVector(rm);
|
|
tri::UpdateTopology<MeshType>::FaceFace(rm);
|
|
// char buf[100]; sprintf(buf,"disk%04i.ply",i); tri::io::ExporterPLY<MeshType>::Save(rm,buf,tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY );
|
|
|
|
int NNmanifoldE=tri::Clean<MeshType>::CountNonManifoldEdgeFF(rm);
|
|
if (NNmanifoldE!=0)
|
|
AllDiskRegion= false;
|
|
int G=tri::Clean<MeshType>::MeshGenus(rm);
|
|
int numholes=tri::Clean<MeshType>::CountHoles(rm);
|
|
if (numholes!=1)
|
|
AllDiskRegion= false;
|
|
if(G!=0) AllDiskRegion= false;
|
|
delete regionVec[i];
|
|
}
|
|
|
|
if(!AllDiskRegion) return false;
|
|
|
|
// **** Final step build a rough delaunay tri and check that it is manifold
|
|
MeshType delaMesh;
|
|
std::vector<FacePointer> innerCornerVec, // Faces adjacent to three different regions
|
|
borderCornerVec; // Faces that are on the border and adjacent to at least two regions.
|
|
GetFaceCornerVec(m, sources, innerCornerVec, borderCornerVec);
|
|
|
|
// First add all the needed vertices: seeds and corners
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
tri::Allocator<MeshType>::AddVertex(delaMesh, seedVec[i]->P());
|
|
|
|
// Now just add one face for each inner corner
|
|
for(size_t i=0;i<innerCornerVec.size();++i)
|
|
{
|
|
VertexPointer v0 = & delaMesh.vert[seedMap[sources[innerCornerVec[i]->V(0)]]];
|
|
VertexPointer v1 = & delaMesh.vert[seedMap[sources[innerCornerVec[i]->V(1)]]];
|
|
VertexPointer v2 = & delaMesh.vert[seedMap[sources[innerCornerVec[i]->V(2)]]];
|
|
tri::Allocator<MeshType>::AddFace(delaMesh,v0,v1,v2);
|
|
}
|
|
Clean<MeshType>::RemoveUnreferencedVertex(delaMesh);
|
|
tri::Allocator<MeshType>::CompactVertexVector(delaMesh);
|
|
tri::UpdateTopology<MeshType>::FaceFace(delaMesh);
|
|
|
|
int nonManif = tri::Clean<MeshType>::CountNonManifoldEdgeFF(delaMesh);
|
|
if(nonManif>0) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void BuildSeedMap(MeshType &m, std::vector<VertexType *> &seedVec, std::map<VertexPointer, int> &seedMap)
|
|
{
|
|
seedMap.clear();
|
|
for(size_t i=0;i<m.vert.size();++i)
|
|
seedMap[&(m.vert[i])]=-1;
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
seedMap[seedVec[i]]=i;
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
assert(tri::Index(m,seedVec[i])>=0 && tri::Index(m,seedVec[i])<m.vn);
|
|
}
|
|
|
|
/// \brief Build a mesh of the Delaunay triangulation induced by the given seeds
|
|
///
|
|
/// This function assumes that you have just run a geodesic like algorithm over your mesh using
|
|
/// a seed set as starting points and that there is an PerVertex Attribute called 'sources'
|
|
/// with pointers to the seed source. Usually you can initialize it with something like
|
|
///
|
|
/// DistanceFunctor &df,
|
|
/// tri::Geodesic<MeshType>::Compute(m, seedVec, df, std::numeric_limits<ScalarType>::max(),0,&sources);
|
|
///
|
|
/// The function can also
|
|
static void ConvertDelaunayTriangulationToMesh(MeshType &m,
|
|
MeshType &outMesh,
|
|
std::vector<VertexType *> &seedVec, bool refineFlag=true)
|
|
{
|
|
tri::RequirePerVertexAttribute(m,"sources");
|
|
tri::RequireCompactness(m);
|
|
tri::RequireVFAdjacency(m);
|
|
|
|
PerVertexPointerHandle sources = tri::Allocator<MeshType>:: template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
|
|
outMesh.Clear();
|
|
tri::UpdateTopology<MeshType>::FaceFace(m);
|
|
tri::UpdateFlags<MeshType>::FaceBorderFromFF(m);
|
|
|
|
std::map<VertexPointer, int> seedMap; // It says if a given vertex of m is a seed (and its index in seedVec)
|
|
BuildSeedMap(m,seedVec,seedMap);
|
|
|
|
std::vector<FacePointer> innerCornerVec, // Faces adjacent to three different regions
|
|
borderCornerVec; // Faces that are on the border and adjacent to at least two regions.
|
|
GetFaceCornerVec(m, sources, innerCornerVec, borderCornerVec);
|
|
|
|
// First add all the needed vertices: seeds and corners
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
tri::Allocator<MeshType>::AddVertex(outMesh, seedVec[i]->P(),Color4b::White);
|
|
|
|
map<std::pair<VertexPointer,VertexPointer>, int > midMapInd;
|
|
|
|
// Given a pair of sources gives the index of the mid vertex
|
|
map<std::pair<VertexPointer,VertexPointer>, VertexPointer > midMapPt;
|
|
if(refineFlag)
|
|
{
|
|
GenerateMidPointMap(m, midMapPt);
|
|
typename std::map<std::pair<VertexPointer,VertexPointer>, VertexPointer >::iterator mi;
|
|
for(mi=midMapPt.begin(); mi!=midMapPt.end(); ++mi)
|
|
{
|
|
midMapInd[ordered_pair(mi->first.first, mi->first.second)]=outMesh.vert.size();
|
|
tri::Allocator<MeshType>::AddVertex(outMesh, mi->second->cP(), Color4b::LightBlue);
|
|
}
|
|
}
|
|
|
|
// Now just add one (or four) face for each inner corner
|
|
for(size_t i=0;i<innerCornerVec.size();++i)
|
|
{
|
|
VertexPointer s0 = sources[innerCornerVec[i]->V(0)];
|
|
VertexPointer s1 = sources[innerCornerVec[i]->V(1)];
|
|
VertexPointer s2 = sources[innerCornerVec[i]->V(2)];
|
|
assert ( (s0!=s1) && (s0!=s2) && (s1!=s2) );
|
|
VertexPointer v0 = & outMesh.vert[seedMap[s0]];
|
|
VertexPointer v1 = & outMesh.vert[seedMap[s1]];
|
|
VertexPointer v2 = & outMesh.vert[seedMap[s2]];
|
|
if(refineFlag)
|
|
{
|
|
VertexPointer mp01 = & outMesh.vert[ midMapInd[ordered_pair(s0,s1)]];
|
|
VertexPointer mp02 = & outMesh.vert[ midMapInd[ordered_pair(s0,s2)]];
|
|
VertexPointer mp12 = & outMesh.vert[ midMapInd[ordered_pair(s1,s2)]];
|
|
assert ( (mp01!=mp02) && (mp01!=mp12) && (mp02!=mp12) );
|
|
tri::Allocator<MeshType>::AddFace(outMesh,v0,mp01,mp02);
|
|
tri::Allocator<MeshType>::AddFace(outMesh,v1,mp12,mp01);
|
|
tri::Allocator<MeshType>::AddFace(outMesh,v2,mp02,mp12);
|
|
tri::Allocator<MeshType>::AddFace(outMesh,mp01,mp12,mp02);
|
|
}
|
|
else
|
|
tri::Allocator<MeshType>::AddFace(outMesh,v0,v1,v2);
|
|
}
|
|
Clean<MeshType>::RemoveUnreferencedVertex(outMesh);
|
|
tri::Allocator<MeshType>::CompactVertexVector(outMesh);
|
|
}
|
|
|
|
template <class MidPointType >
|
|
static void PreprocessForVoronoi(MeshType &m, float radius,
|
|
MidPointType mid,
|
|
VoronoiProcessingParameter &vpp)
|
|
{
|
|
const int maxSubDiv = 10;
|
|
tri::RequireFFAdjacency(m);
|
|
tri::UpdateTopology<MeshType>::FaceFace(m);
|
|
tri::Clean<MeshType>::RemoveUnreferencedVertex(m);
|
|
ScalarType edgeLen = tri::Stat<MeshType>::ComputeFaceEdgeLengthAverage(m);
|
|
|
|
for(int i=0;i<maxSubDiv;++i)
|
|
{
|
|
bool ret = tri::Refine<MeshType, MidPointType >(m,mid,min(edgeLen*2.0f,radius/vpp.refinementRatio));
|
|
if(!ret) break;
|
|
}
|
|
tri::Allocator<MeshType>::CompactEveryVector(m);
|
|
tri::UpdateTopology<MeshType>::VertexFace(m);
|
|
}
|
|
|
|
static void PreprocessForVoronoi(MeshType &m, float radius, VoronoiProcessingParameter &vpp)
|
|
{
|
|
tri::MidPoint<MeshType> mid(&m);
|
|
PreprocessForVoronoi<tri::MidPoint<MeshType> >(m, radius,mid,vpp);
|
|
}
|
|
|
|
static void RelaxRefineTriangulationSpring(MeshType &m, MeshType &delaMesh, int refineStep=3, int relaxStep=10 )
|
|
{
|
|
tri::RequireCompactness(m);
|
|
tri::RequireCompactness(delaMesh);
|
|
tri::RequireVFAdjacency(delaMesh);
|
|
tri::RequireFFAdjacency(delaMesh);
|
|
tri::RequirePerFaceMark(delaMesh);
|
|
|
|
const float convergenceThr = 0.001f;
|
|
const float eulerStep = 0.1f;
|
|
|
|
tri::UpdateNormal<MeshType>::PerVertexNormalizedPerFaceNormalized(m);
|
|
|
|
typedef GridStaticPtr<FaceType, ScalarType> TriMeshGrid;
|
|
TriMeshGrid ug;
|
|
ug.Set(m.face.begin(),m.face.end());
|
|
|
|
typedef typename vcg::SpatialHashTable<VertexType, ScalarType> HashVertexGrid;
|
|
HashVertexGrid HG;
|
|
HG.Set(m.vert.begin(),m.vert.end());
|
|
|
|
PerVertexBoolHandle fixed = tri::Allocator<MeshType>:: template GetPerVertexAttribute<bool> (m,"fixed");
|
|
|
|
const ScalarType maxDist = m.bbox.Diag()/4.f;
|
|
for(int kk=0;kk<refineStep;kk++)
|
|
{
|
|
tri::UpdateTopology<MeshType>::FaceFace(delaMesh);
|
|
|
|
if(kk!=0) // first step do not refine;
|
|
{
|
|
int nonManif = tri::Clean<MeshType>::CountNonManifoldEdgeFF(delaMesh);
|
|
if(nonManif) return;
|
|
tri::Refine<MeshType, tri::MidPoint<MeshType> >(delaMesh,tri::MidPoint<MeshType>(&delaMesh));
|
|
}
|
|
tri::UpdateTopology<MeshType>::VertexFace(delaMesh);
|
|
const float dist_upper_bound=m.bbox.Diag()/10.0;
|
|
float dist;
|
|
|
|
for(int k=0;k<relaxStep;k++)
|
|
{
|
|
std::vector<Point3f> avgForce(delaMesh.vn);
|
|
std::vector<float> avgLenVec(delaMesh.vn,0);
|
|
for(int i=0;i<delaMesh.vn;++i)
|
|
{
|
|
vector<VertexPointer> starVec;
|
|
face::VVStarVF<FaceType>(&delaMesh.vert[i],starVec);
|
|
|
|
for(int j=0;j<starVec.size();++j)
|
|
avgLenVec[i] +=Distance(delaMesh.vert[i].cP(),starVec[j]->cP());
|
|
avgLenVec[i] /= float(starVec.size());
|
|
|
|
avgForce[i] =Point3f(0,0,0);
|
|
for(int j=0;j<starVec.size();++j)
|
|
{
|
|
Point3f force = delaMesh.vert[i].cP()-starVec[j]->cP();
|
|
float len = force.Norm();
|
|
force.Normalize();
|
|
avgForce[i] += force * (avgLenVec[i]-len);
|
|
}
|
|
}
|
|
bool changed=false;
|
|
for(int i=0;i<delaMesh.vn;++i)
|
|
{
|
|
VertexPointer vp = tri::GetClosestVertex<MeshType,HashVertexGrid>(m, HG, delaMesh.vert[i].P(), dist_upper_bound, dist);
|
|
if(!fixed[vp] && !(vp->IsS())) // update only non fixed vertices
|
|
{
|
|
delaMesh.vert[i].P() += (avgForce[i]*eulerStep);
|
|
CoordType closest;
|
|
float dist;
|
|
tri::GetClosestFaceBase(m,ug,delaMesh.vert[i].cP(), maxDist,dist,closest);
|
|
assert(dist!=maxDist);
|
|
if(Distance(closest,delaMesh.vert[i].P()) > avgLenVec[i]*convergenceThr) changed = true;
|
|
delaMesh.vert[i].P()=closest;
|
|
}
|
|
}
|
|
|
|
if(!changed) k=relaxStep;
|
|
} // end for k
|
|
}
|
|
}
|
|
|
|
static void RelaxRefineTriangulationLaplacian(MeshType &m, MeshType &delaMesh, int refineStep=3, int relaxStep=10 )
|
|
{
|
|
tri::RequireCompactness(m);
|
|
tri::RequireCompactness(delaMesh);
|
|
tri::RequireFFAdjacency(delaMesh);
|
|
tri::RequirePerFaceMark(delaMesh);
|
|
tri::UpdateTopology<MeshType>::FaceFace(delaMesh);
|
|
|
|
typedef GridStaticPtr<FaceType, ScalarType> TriMeshGrid;
|
|
TriMeshGrid ug;
|
|
ug.Set(m.face.begin(),m.face.end());
|
|
const ScalarType maxDist = m.bbox.Diag()/4.f;
|
|
|
|
int origVertNum = delaMesh.vn;
|
|
|
|
for(int k=0;k<refineStep;++k)
|
|
{
|
|
tri::UpdateSelection<MeshType>::VertexClear(delaMesh);
|
|
|
|
tri::Refine<MeshType, tri::MidPoint<MeshType> >(delaMesh,tri::MidPoint<MeshType>(&delaMesh));
|
|
|
|
for(int j=0;j<relaxStep;++j)
|
|
{
|
|
// tri::Smooth<MeshType>::VertexCoordLaplacian(delaMesh,1,true);
|
|
for(int i=origVertNum;i<delaMesh.vn;++i)
|
|
{
|
|
float dist;
|
|
delaMesh.vert[i].SetS();
|
|
CoordType closest;
|
|
tri::GetClosestFaceBase(m,ug,delaMesh.vert[i].cP(), maxDist,dist,closest);
|
|
assert(dist!=maxDist);
|
|
delaMesh.vert[i].P()= (delaMesh.vert[i].P()+closest)/2.0f;
|
|
}
|
|
tri::Smooth<MeshType>::VertexCoordLaplacianBlend(delaMesh,1,0.2f,true);
|
|
}
|
|
}
|
|
for(int i=origVertNum;i<delaMesh.vn;++i) delaMesh.vert[i].C()=Color4b::LightBlue;
|
|
}
|
|
}; // end class VoronoiProcessing
|
|
|
|
} // end namespace tri
|
|
} // end namespace vcg
|
|
#endif
|