vcglib/apps/unsupported/pivoting/pivot.h

754 lines
24 KiB
C++

#ifndef VCG_PIVOT_H
#define VCG_PIVOT_H
#include <vector>
#include <list>
#include "vcg/space/index/grid_static_ptr.h"
#include "vcg/complex/algorithms/closest.h"
namespace vcg {
namespace tri {
struct Hinge {
int v0, v1, v2; //v0, v1 represent the Hinge, v2 the other vertex in the face
//this Hinge belongs to
int face; //corresponding face
Point3f center; //center of the sphere touching the face
int count; //test delay touch Hinges.
//the loops in the front are mantained as a double linked list
std::list<Hinge>::iterator next;
std::list<Hinge>::iterator previous;
Hinge() {}
Hinge(int _v0, int _v1, int _v2, int _face, Point3f &_center):
v0(_v0), v1(_v1), v2(_v2),
face(_face), center(_center), count(0) {
assert(v0 != v1 && v1 != v2 && v0 != v2);
}
};
template <class MESH>
class Pivot {
public:
// typedef CMesh MESH;
typedef GridStaticPtr<typename MESH::VertexType, typename MESH::ScalarType > StaticGrid;
float radius; //default 1 (not meaningful
float mindist; //minimum distance between points in the mesh (% of radius)
float crease; // -0.5
Box3f box;
MESH &mesh;
StaticGrid grid;
/* front Hinges of the mesh:
to expand the front we get the first Hinge
if an Hinge cannot create a new triangle it is marked dead and moved
to the end of the list
the new Hinges are inserted to the back (before dead_begin) */
std::list<Hinge> front;
std::list<Hinge> deads;
std::vector<int> nb; //number of fronts a vertex is into,
//this is used for the Visited and Border flags
//but adding topology may not be needed anymode
Pivot(MESH &_mesh, float _radius, float _mindist = 0.05, float _crease = -0.5):
mesh(_mesh), radius(_radius), mindist(_mindist), crease(_crease) {
//Compute bounding box. (this may be passed as a parameter?
for(int i = 0; i < mesh.vert.size(); i++)
box.Add(mesh.vert[i].P());
/* we need to enlarge the grid to allow queries from little outside of the box
Someone is a bit lazy... */
box.Offset(4*radius);
grid.Set(mesh.vert.begin(), mesh.vert.end(), box);
nb.clear();
nb.resize(mesh.vert.size(), 0);
for(int i = 0; i < mesh.vert.size(); i++)
mesh.vert[i].ClearFlags();
}
/* select a vertex at random, a small group of nearby vertices and looks
for a sphere that touches 3 and contains none.
Use the center of the box to get a sphere inside (or outside) the model
You may be unlucky... */
bool seed(bool outside = true, int start = -1) {
//pick a random point (well...)
if(start == -1) start = rand()%mesh.vert.size();
//get a sphere of neighbours
std::vector<int> targets;
std::vector<float> dists;
int n = getInSphere(mesh.vert[start].P(), 2*radius, targets, dists);
if(n < 3) {
//bad luck. we should call seed again (assuming random pick) up to
//some maximum tries. im lazy.
return false;
}
int v0, v1, v2;
bool found = false;
//find a triplet that does not contains any other point
Point3f center;
for(int i = 0; i < n; i++) {
v0 = targets[i];
CVertex &vv0 = mesh.vert[v0];
if(vv0.IsD() || vv0.IsB() || vv0.IsV()) continue;
Point3f &p0 = mesh.vert[v0].P();
Point3f out = (p0 - box.Center());
if(!outside) out = -out;
for(int k = i+1; k < n; k++) {
v1 = targets[k];
CVertex &vv1 = mesh.vert[v1];
if(vv1.IsD() || vv1.IsB() || vv1.IsV()) continue;
Point3f &p1 = mesh.vert[v1].P();
if((p1 - p0).Norm() < mindist*radius) continue;
for(int j = k+1; j < n; j++) {
v2 = targets[j];
CVertex &vv2 = mesh.vert[v2];
if(vv2.IsD() || vv2.IsB() || vv2.IsV()) continue;
Point3f &p2 = mesh.vert[v2].P();
if((p2 - p0).Norm() < mindist*radius) continue;
if((p2 - p1).Norm() < mindist*radius) continue;
Point3f normal = (p1 - p0)^(p2 - p0);
//check normal pointing inside
if(normal * out < 0) continue;
if(!findSphere(p0, p1, p2, center)) continue;
bool failed = false;
//check no other point inside
for(int t = 0; t < n; t++) {
Point3f &p = mesh.vert[targets[t]].P();
if((center - p).Norm() <= radius) {
failed = true;
break;
}
}
if(failed) continue;
found = true;
i = k = j = n;
}
}
}
if(!found) //see bad luck above
return false;
assert(!front.size());
//TODO: should i check the Hinges too?
addFace(v0, v1, v2);
//create the border of the first face
std::list<Hinge>::iterator e = front.end();
std::list<Hinge>::iterator last;
for(int i = 0; i < 3; i++) {
int v0 = (int)(mesh.face.back().V0(i));
int v1 = (int)(mesh.face.back().V1(i));
int v2 = (int)(mesh.face.back().V2(i));
nb[v0] = 1;
assert(!mesh.vert[v0].IsB());
mesh.vert[v0].SetB();
Hinge Hinge(v0, v1, v2, 0, center);
Hinge.previous = e;
e = front.insert(front.begin(), Hinge);
if(i == 0) last = e;
(*Hinge.previous).next = e;
cluster(v0);
}
//connect last and first
(*e).next = last;
(*last).previous = e;
return true;
}
/* expand the front adding 1 face. Return false on failure (id when
all Hinges are dead returns:
1: added a face
0: added nothing
-1: finished */
int addFace() {
//We try to seed again
if(!mesh.face.size()) {
for(int i = 0; i < 100; i++)
if(seed()) return 1;
return -1;
}
if(!front.size()) {
//maybe there are unconnected parts of the mesh:
//find a non D, V, B point and try to seed if failed D it.
for(int i = 0; i < mesh.vert.size();i ++) {
CVertex &v = mesh.vert[i];
if(v.IsD() || v.IsV() || v.IsB()) continue;
if(seed(true, i)) return 1;
v.SetD();
}
return -1;
}
std::list<Hinge>::iterator ei = front.begin();
Hinge &e = *ei;
Hinge &previous = *e.previous;
Hinge &next = *e.next;
int v0 = e.v0, v1 = e.v1;
//last triangle missing. or it is the first?
if(0 &&next.next == e.previous) {
int v[3] = { previous.v0, next.v0, e.v0 };
int c[3] = { 0, 0, 0 };
for(int k = 0; k < 3; k++) {
int vert = v[k];
nb[vert]--;
if(nb[vert] == 0) {
mesh.vert[vert].SetV();
mesh.vert[vert].ClearB();
}
}
assert(previous.previous == e.next);
addFace(previous.v0, next.v0, e.v0);
front.erase(e.previous);
front.erase(e.next);
front.erase(ei);
return 1;
}
int v2;
Point3f center;
std::vector<int> targets;
bool success = pivot(e, v2, center, targets);
//if no pivoting move this thing to the end and try again
//or we are trying to connect to the inside of the mesh. BAD.
if(!success || mesh.vert[v2].IsV()) {
killHinge(ei);
return 0;
}
//does v2 belongs to a front? (and which?)
std::list<Hinge>::iterator touch = touches(v2, ei);
assert(v2 != v0 && v2 != v1);
int fn = mesh.face.size();
if(touch != front.end()) {
if(!checkHinge(v0, v2) || !checkHinge(v2, v1)) {
killHinge(ei);
return 0;
}
if(v2 == previous.v0) {
/*touching previous Hinge (we reuse previous)
next
------->v2 -----> v1------>
\ /
\ /
previous \ / e
\ /
v0 */
detach(v0);
previous.v1 = v1;
previous.v2 = v0;
previous.face = fn;
previous.center = center;
previous.next = e.next;
next.previous = e.previous;
moveBack(e.previous);
//this checks if we can glue something to e.previous
trovamiunnome(e.previous);
front.erase(ei);
} else if(v2 == next.v1) {
/*touching previous Hinge (we reuse next)
previous
------->v0 -----> v2------>
\ /
\ /
\ / next
\ /
v1 */
detach(v1);
next.v0 = v0;
next.v2 = v1;
next.face = fn;
next.center = center;
next.previous = e.previous;
previous.next = e.next;
// moveBack(e.next);
//this checks if we can glue something to e.previous
trovamiunnome(e.next);
front.erase(ei);
} else {
/* this code would delay the joining Hinge to avoid bad situations not used but..
if(e.count < 2) {
e.count++;
moveBack(ei);
return true;
}*/
//touching some loop: split (or merge it is local does not matter.
//like this
/*
left right
<--------v2-<------
/|\
/ \
up / \ down
/ \
/ V
----v0 - - - > v1---------
e */
std::list<Hinge>::iterator left = touch;
std::list<Hinge>::iterator right = (*touch).previous;
std::list<Hinge>::iterator up = ei;
if(v1 == (*right).v0 || v0 == (*left).v1) {
// cout << "Bad join.\n";
killHinge(ei);
return 0;
}
nb[v2]++;
std::list<Hinge>::iterator down = newHinge(Hinge(v2, v1, v0, fn, center));
(*right).next = down;
(*down).previous = right;
(*down).next = e.next;
next.previous = down;
(*left).previous = up;
(*up).next = left;
(*up).v2 = v1;
(*up).v1 = v2;
(*up).face = fn;
(*up).center = center;
moveBack(ei);
}
} else {
assert(!mesh.vert[v2].IsB()); //fatal error! a new point is already a border?
/* adding a new vertex
v2
/|\
/ \
up / \ down
/ \
/ V
----v0 - - - > v1--------- */
cluster(v2);
nb[v2]++;
mesh.vert[v2].SetB();
std::list<Hinge>::iterator down = newHinge(Hinge(v2, v1, v0, fn, center));
(*down).previous = ei;
(*down).next = e.next;
next.previous = down;
e.v2 = v1;
e.v1 = v2;
e.face = fn;
e.center = center;
e.next = down;
moveBack(ei);
}
addFace(v0, v2, v1);
return 1;
}
/* return new vertex and the center of the new sphere pivoting from Hinge
if the vertex belongs to another Hinge, touch points to it. */
bool pivot(Hinge &Hinge, int &candidate, Point3f &end_pivot, std::vector<int> &targets) {
Point3f v0 = mesh.vert[Hinge.v0].P();
Point3f v1 = mesh.vert[Hinge.v1].P();
Point3f v2 = mesh.vert[Hinge.v2].P();
/* TODO why using the face normals everything goes wrong? should be
exactly the same................................................
Check if the e.face is correct.
Point3f &normal = mesh.face[Hinge.face].N();
*/
Point3f normal = ((v1 - v0)^(v2 - v0)).Normalize();
Point3f middle = (v0 + v1)/2;
Point3f start_pivot = Hinge.center - middle;
Point3f axis = (v1 - v0);
float axis_len = axis.SquaredNorm();
if(axis_len > 4*radius*radius) return false;
axis.Normalize();
// r is the radius of the thorus of all possible spheres passing throug v0 and v1
float r = sqrt(radius*radius - axis_len/4);
std::vector<float> dists;
getInSphere(middle, r + radius, targets, dists);
if(targets.size() == 0) return false; //this really would be strange but one never knows.
candidate = -1;
float minangle = 0;
Point3f center; //to be computed for each sample
for(int i = 0; i < targets.size(); i++) {
int id = targets[i];
if(id == Hinge.v0 || id == Hinge.v1 || id == Hinge.v2) continue;
if(mesh.vert[id].IsD()) {
continue;
}
Point3f p = mesh.vert[id].P();
/* Prevent 360 Hinges, also often reject ~ 50% points */
Point3f n = ((p - v0)^(v1 - v0)).Normalize();
if(n * normal < -0.5) {
continue;
}
/* Find the sphere through v0, p, v1 (store center on end_pivot */
if(!findSphere(v0, p, v1, center)) {
continue;
}
/* Angle between old center and new center */
float alpha = angle(start_pivot, center - middle, axis);
/* adding a small bias to already chosen vertices.
doesn't solve numerical problems, but helps. */
if(mesh.vert[id].IsB()) alpha -= 0.001;
/* Sometimes alpha might be little less then M_PI while it should be 0,
by numerical errors: happens for example pivoting
on the diagonal of a square. */
if(alpha > 2*M_PI - 0.8) {
// Angle between old center and new *point*
//TODO is this really overshooting? shouldbe enough to alpha -= 2*M_PI
Point3f proj = p - axis * (axis * p - axis * middle);
float beta = angle(start_pivot, proj - middle, axis);
if(alpha > beta) alpha -= 2*M_PI;
}
if(candidate == -1 || alpha < minangle) {
candidate = id;
minangle = alpha;
end_pivot = center;
}
}
//found no point suitable.
if(candidate == -1) {
return false;
}
assert(candidate != Hinge.v0 && candidate != Hinge.v1);
return true;
}
private:
//front management:
//Add a new Hinge to the back of the queue
std::list<Hinge>::iterator newHinge(Hinge e) {
return front.insert(front.end(), e);
}
//move an Hinge among the dead ones
void killHinge(std::list<Hinge>::iterator e) {
deads.splice(deads.end(), front, e);
}
//move an Hinge to the back of the queue
void moveBack(std::list<Hinge>::iterator e) {
front.splice(front.end(), front, e);
}
void moveFront(std::list<Hinge>::iterator e) {
front.splice(front.begin(), front, e);
}
bool checkHinge(int v0, int v1) {
int tot = 0;
//HACK to speed up things until i can use a seach structure
int i = mesh.face.size() - 2*(front.size());
// i = 0;
if(i < 0) i = 0;
for(; i < mesh.face.size(); i++) {
CFace &f = mesh.face[i];
for(int k = 0; k < 3; k++) {
if(v1== (int)f.V(k) && v0 == (int)f.V((k+1)%3)) ++tot;
else if(v0 == (int)f.V(k) && v1 == (int)f.V((k+1)%3)) { //orientation non constistent
return false;
}
}
if(tot >= 2) { //non manifold
return false;
}
}
return true;
}
void Pivot::cluster(int v) {
/* clean up too close points */
std::vector<int> targets;
std::vector<float> dists;
getInSphere(mesh.vert[v].P(), mindist*radius, targets, dists);
for(int i = 0; i < targets.size(); i++) {
int id = targets[i];
if(id == v) continue;
CVertex &v = mesh.vert[id];
if(v.IsD() || v.IsV() || v.IsB()) continue;
v.SetD();
}
}
void Pivot::trovamiunnome(std::list<Hinge>::iterator e) {
if(glue((*e).previous, e)) return;
glue(e, (*e).next);
}
//glue toghether a and b (where a.next = b
bool Pivot::glue(std::list<Hinge>::iterator a, std::list<Hinge>::iterator b) {
if((*a).v0 != (*b).v1) return false;
std::list<Hinge>::iterator previous = (*a).previous;
std::list<Hinge>::iterator next = (*b).next;
(*previous).next = next;
(*next).previous = previous;
detach((*a).v1);
detach((*a).v0);
front.erase(a);
front.erase(b);
return true;
}
void Pivot::detach(int v) {
assert(nb[v] > 0);
if(--nb[v] == 0) {
mesh.vert[v].SetV();
mesh.vert[v].ClearB();
}
}
/* compute angle from p to q, using axis for orientation */
float angle(Point3f p, Point3f q, Point3f &axis) {
p.Normalize();
q.Normalize();
Point3f vec = p^q;
float angle = acos(p*q);
if(vec*axis < 0) angle = -angle;
if(angle < 0) angle += 2*M_PI;
return angle;
}
/* add a new face. compute normals. */
void addFace(int a, int b, int c) {
CFace face;
face.V(0) = (CVertex *)a;
face.V(1) = (CVertex *)b;
face.V(2) = (CVertex *)c;
Point3f &p0 = mesh.vert[a].P();
Point3f &p1 = mesh.vert[b].P();
Point3f &p2 = mesh.vert[c].P();
face.N() = ((p1 - p0)^(p2 - p0)).Normalize();
mesh.face.push_back(face);
mesh.fn++;
}
/* intersects segment [v0, v1] with the sphere of radius radius. */
bool intersect(int v0, int v1, Point3f &center) {
Point3f m = mesh.vert[v1].P() - mesh.vert[v0].P();
float t = m*(center - mesh.vert[v0].P());
if(t < 0) return false;
if(t > m*m) return false;
return true;
}
float distance(int v0, int v1, Point3f &center) {
Point3f m = mesh.vert[v1].P() - mesh.vert[v0].P();
float t = m*(center - mesh.vert[v0].P())/(m*m);
Point3f p = mesh.vert[v0].P() + m*t;
return (p - center).Norm();
}
/* return all point in a given ball, notice as i want the index
of the vertices not the pointers... this may change in future */
unsigned int getInSphere(vcg::Point3f &p, float distance,
std::vector<int> &results,
std::vector<float> &dists) {
std::vector<CVertex *> ptr;
std::vector<Point3f> points;
int n = vcg::tri::GetInSphereVertex(mesh, grid, p, distance, ptr, dists, points);
for(int i = 0; i < ptr.size(); i++)
results.push_back(ptr[i] - &(mesh.vert[0]));
return n;
}
/* returns the sphere touching p0, p1, p2 of radius r such that
the normal of the face points toward the center of the sphere */
bool findSphere(Point3f &p0, Point3f &p1, Point3f &p2, Point3f &center) {
Point3f q1 = p1 - p0;
Point3f q2 = p2 - p0;
Point3f up = q1^q2;
float uplen = up.Norm();
//the three points are aligned
if(uplen < 0.001*q1.Norm()*q2.Norm()) return false;
up /= uplen;
float a11 = q1*q1;
float a12 = q1*q2;
float a22 = q2*q2;
float m = 4*(a11*a22 - a12*a12);
float l1 = 2*(a11*a22 - a22*a12)/m;
float l2 = 2*(a11*a22 - a12*a11)/m;
center = q1*l1 + q2*l2;
float circle_r = center.Norm();
if(circle_r > radius) return false; //need too big a sphere
float height = sqrt(radius*radius - circle_r*circle_r);
center += p0 + up*height;
return true;
}
std::list<Hinge>::iterator touches(int v, std::list<Hinge>::iterator e) {
//TODO what happens when it touches more than one front?
//might still work.
std::list<Hinge>::iterator touch = front.end();
if(mesh.vert[v].IsB()) {
//test nearby Hinges: it is faster
std::list<Hinge>::iterator p = e;
p = (*e).previous;
if(v == (*p).v0) return p;
e = (*e).next;
if(v == (*e).v0) return e;
p = (*p).previous;
if(v == (*p).v0) return p;
e = (*e).next;
if(v == (*e).v0) return e;
//test all. sigh.
for(std::list<Hinge>::iterator k = front.begin(); k != front.end(); k++) {
if(v == (*k).v0) {
touch = k;
break;
}
}
for(std::list<Hinge>::iterator k = deads.begin(); k != deads.end(); k++) {
if(v == (*k).v0) {
touch = k;
break;
}
}
assert(touch != front.end());
}
return touch;
}
public:
};
}//namespace
}//namespace
/* CODE FOR PIVOTING IN A TOUCH SITUATION not used now.
//if touch we want to check the ball could really pivot around that point
if(touch != front.end() && touch != (*Hinge.next).next && touch != Hinge.previous) {
Point3f &hinge = mesh.vert[min].P();
Point3f target = (*touch).center - hinge;
float d = (target * start_pivot)/(target.Norm()*start_pivot.Norm());
if(d < -0.8) {
return false;
}
if(d < 0.5) { //they are far enough so test .
Point3f naxis = (target ^ start_pivot).Normalize();
Point3f d1 = naxis^start_pivot;
Point3f d2 = target^naxis;
for(int i = 0; i < targets.size(); i++) {
int id = targets[i];
if(id == Hinge.v0 || id == Hinge.v1 || id == Hinge.v2 || id == min) continue;
if(mesh.vert[id].IsD()) {
continue;
}
Point3f intruder = mesh.vert[targets[i]].P() - hinge;
float h = intruder*naxis;
if(fabs(h) > radius) continue;
intruder -= naxis*h;
assert(fabs(intruder *naxis) < 0.01);
float off = radius - intruder.Norm(); //(distance from the center ring of the thorus
if(h*h + off*off > radius*radius) continue; //outside of thorus
if(d1*intruder < 0 || d2*intruder < 0) continue; //ouside of sector
cout << "could not pivot while touching;\n";
return false;
}
}
}*/
#endif