vcglib/vcg/simplex/face/component_ocf.h

802 lines
27 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_FACE_PLUS_COMPONENT_OCF
#define __VCG_FACE_PLUS_COMPONENT_OCF
#ifndef __VCG_MESH
#error "This file should not be included alone. It is automatically included by complex.h"
#endif
namespace vcg {
namespace face {
/*
All the Components that can be added to a faceex should be defined in the namespace face:
*/
template <class VALUE_TYPE>
class vector_ocf: public std::vector<VALUE_TYPE> {
typedef std::vector<VALUE_TYPE> BaseType;
typedef typename vector_ocf<VALUE_TYPE>::iterator ThisTypeIterator;
public:
vector_ocf():std::vector<VALUE_TYPE>()
{
ColorEnabled=false;
CurvatureDirEnabled = false;
MarkEnabled=false;
NormalEnabled=false;
QualityEnabled=false;
WedgeTexEnabled=false;
WedgeColorEnabled=false;
WedgeNormalEnabled=false;
VFAdjacencyEnabled=false;
FFAdjacencyEnabled=false;
}
// Auxiliary types to build internal vectors
struct AdjTypePack {
typename VALUE_TYPE::FacePointer _fp[3] ;
char _zp[3] ;
// Default constructor.
// Needed because we need to know if adjacency is initialized or not
// when resizing vectors and during an allocate face.
AdjTypePack() {
_fp[0]=0;
_fp[1]=0;
_fp[2]=0;
}
};
//template <class TexCoordType>
class WedgeTexTypePack {
public:
WedgeTexTypePack() {
wt[0].U()=.5;wt[0].V()=.5;
wt[1].U()=.5;wt[1].V()=.5;
wt[2].U()=.5;wt[2].V()=.5;
wt[0].N()=-1;
wt[1].N()=-1;
wt[2].N()=-1;
}
typename VALUE_TYPE::TexCoordType wt[3];
};
class WedgeColorTypePack {
public:
WedgeColorTypePack() {
typedef typename VALUE_TYPE::ColorType::ScalarType WedgeColorScalarType;
for (int i=0; i<3; ++i)
{
wc[i][0] = WedgeColorScalarType(255);
wc[i][1] = WedgeColorScalarType(255);
wc[i][2] = WedgeColorScalarType(255);
wc[i][3] = WedgeColorScalarType(255);
}
}
typename VALUE_TYPE::ColorType wc[3];
};
class WedgeNormalTypePack {
public:
WedgeNormalTypePack() {
typedef typename VALUE_TYPE::NormalType::ScalarType WedgeNormalScalarType;
for (int i=0; i<3; ++i)
{
wn[i][0] = WedgeNormalScalarType(0);
wn[i][1] = WedgeNormalScalarType(0);
wn[i][2] = WedgeNormalScalarType(1);
}
}
typename VALUE_TYPE::NormalType wn[3];
};
////////////////////////////////////////
// All the standard methods of std::vector that can change the reallocation are
// redefined in order to manage the additional data.
void push_back(const VALUE_TYPE & v)
{
BaseType::push_back(v);
BaseType::back()._ovp = this;
if (QualityEnabled) QV.push_back(0);
if (ColorEnabled) CV.push_back(vcg::Color4b(vcg::Color4b::White));
if (MarkEnabled) MV.push_back(0);
if (NormalEnabled) NV.push_back(typename VALUE_TYPE::NormalType());
if (CurvatureDirEnabled) CDV.push_back(typename VALUE_TYPE::CurvatureDirType());
if (VFAdjacencyEnabled) AV.push_back(AdjTypePack());
if (FFAdjacencyEnabled) AF.push_back(AdjTypePack());
if (WedgeTexEnabled) WTV.push_back(WedgeTexTypePack());
if (WedgeColorEnabled) WCV.push_back(WedgeColorTypePack());
if (WedgeNormalEnabled) WNV.push_back(WedgeNormalTypePack());
}
void pop_back();
void resize(const unsigned int & _size)
{
unsigned int oldsize = BaseType::size();
BaseType::resize(_size);
if(oldsize<_size){
ThisTypeIterator firstnew = BaseType::begin();
advance(firstnew,oldsize);
_updateOVP(firstnew,(*this).end());
}
if (QualityEnabled) QV.resize(_size);
if (ColorEnabled) CV.resize(_size);
if (MarkEnabled) MV.resize(_size);
if (NormalEnabled) NV.resize(_size);
if (CurvatureDirEnabled)CDV.resize(_size);
if (VFAdjacencyEnabled) AV.resize(_size);
if (FFAdjacencyEnabled) AF.resize(_size);
if (WedgeTexEnabled) WTV.resize(_size,WedgeTexTypePack());
if (WedgeColorEnabled) WCV.resize(_size);
if (WedgeNormalEnabled) WNV.resize(_size);
}
void reserve(const unsigned int & _size)
{
BaseType::reserve(_size);
if (QualityEnabled) QV.reserve(_size);
if (ColorEnabled) CV.reserve(_size);
if (MarkEnabled) MV.reserve(_size);
if (NormalEnabled) NV.reserve(_size);
if (CurvatureDirEnabled)CDV.reserve(_size);
if (VFAdjacencyEnabled) AV.reserve(_size);
if (FFAdjacencyEnabled) AF.reserve(_size);
if (WedgeTexEnabled) WTV.reserve(_size);
if (WedgeColorEnabled) WCV.reserve(_size);
if (WedgeNormalEnabled) WNV.reserve(_size);
if( BaseType::empty()) return ;
ThisTypeIterator oldbegin=(*this).begin();
if(oldbegin!=(*this).begin()) _updateOVP((*this).begin(),(*this).end());
}
void _updateOVP(ThisTypeIterator lbegin, ThisTypeIterator lend)
{
ThisTypeIterator fi;
//for(fi=(*this).begin();vi!=(*this).end();++vi)
for(fi=lbegin;fi!=lend;++fi)
(*fi)._ovp=this;
}
// this function is called by the specialized Reorder function, that is called whenever someone call the allocator::CompactVertVector
void ReorderFace(std::vector<size_t> &newFaceIndex )
{
size_t i=0;
if (QualityEnabled) assert( QV.size() == newFaceIndex.size() );
if (ColorEnabled) assert( CV.size() == newFaceIndex.size() );
if (MarkEnabled) assert( MV.size() == newFaceIndex.size() );
if (NormalEnabled) assert( NV.size() == newFaceIndex.size() );
if (CurvatureDirEnabled)assert(CDV.size() == newFaceIndex.size() );
if (VFAdjacencyEnabled) assert( AV.size() == newFaceIndex.size() );
if (FFAdjacencyEnabled) assert( AF.size() == newFaceIndex.size() );
if (WedgeTexEnabled) assert(WTV.size() == newFaceIndex.size() );
if (WedgeColorEnabled) assert(WCV.size() == newFaceIndex.size() );
if (WedgeNormalEnabled) assert(WNV.size() == newFaceIndex.size() );
for(i=0;i<newFaceIndex.size();++i)
{
if(newFaceIndex[i] != std::numeric_limits<size_t>::max() )
{
assert(newFaceIndex[i] <= i);
if (QualityEnabled) QV[newFaceIndex[i]] = QV[i];
if (ColorEnabled) CV[newFaceIndex[i]] = CV[i];
if (MarkEnabled) MV[newFaceIndex[i]] = MV[i];
if (NormalEnabled) NV[newFaceIndex[i]] = NV[i];
if (CurvatureDirEnabled) CDV[newFaceIndex[i]] = CDV[i];
if (VFAdjacencyEnabled) AV[newFaceIndex[i]] = AV[i];
if (FFAdjacencyEnabled) AF[newFaceIndex[i]] = AF[i];
if (WedgeTexEnabled) WTV[newFaceIndex[i]] = WTV[i];
if (WedgeColorEnabled) WCV[newFaceIndex[i]] = WCV[i];
if (WedgeNormalEnabled) WNV[newFaceIndex[i]] = WNV[i];
}
}
if (QualityEnabled) QV.resize(BaseType::size());
if (ColorEnabled) CV.resize(BaseType::size());
if (MarkEnabled) MV.resize(BaseType::size());
if (NormalEnabled) NV.resize(BaseType::size());
if (CurvatureDirEnabled) CDV.resize(BaseType::size());
if (VFAdjacencyEnabled) AV.resize(BaseType::size());
if (FFAdjacencyEnabled) AF.resize(BaseType::size());
if (WedgeTexEnabled) WTV.resize(BaseType::size());
if (WedgeColorEnabled) WCV.resize(BaseType::size());
if (WedgeNormalEnabled) WNV.resize(BaseType::size());
}
////////////////////////////////////////
// Enabling Functions
bool IsQualityEnabled() const {return QualityEnabled;}
void EnableQuality() {
assert(VALUE_TYPE::HasFaceQualityOcf());
QualityEnabled=true;
QV.resize((*this).size());
}
void DisableQuality() {
assert(VALUE_TYPE::HasFaceQualityOcf());
QualityEnabled=false;
QV.clear();
}
bool IsColorEnabled() const {return ColorEnabled;}
void EnableColor() {
assert(VALUE_TYPE::HasFaceColorOcf());
ColorEnabled=true;
CV.resize((*this).size());
}
void DisableColor() {
assert(VALUE_TYPE::HasFaceColorOcf());
ColorEnabled=false;
CV.clear();
}
bool IsMarkEnabled() const {return MarkEnabled;}
void EnableMark() {
assert(VALUE_TYPE::HasFaceMarkOcf());
MarkEnabled=true;
MV.resize((*this).size());
}
void DisableMark() {
assert(VALUE_TYPE::HasFaceMarkOcf());
MarkEnabled=false;
MV.clear();
}
bool IsNormalEnabled() const {return NormalEnabled;}
void EnableNormal() {
assert(VALUE_TYPE::HasFaceNormalOcf());
NormalEnabled=true;
NV.resize((*this).size());
}
void DisableNormal() {
assert(VALUE_TYPE::HasFaceNormalOcf());
NormalEnabled=false;
NV.clear();
}
bool IsCurvatureDirEnabled() const {return CurvatureDirEnabled;}
void EnableCurvatureDir() {
assert(VALUE_TYPE::HasCurvatureDirOcf());
CurvatureDirEnabled=true;
CDV.resize((*this).size());
}
void DisableCurvatureDir() {
assert(VALUE_TYPE::HasCurvatureDirOcf());
CurvatureDirEnabled=false;
CDV.clear();
}
bool IsVFAdjacencyEnabled() const {return VFAdjacencyEnabled;}
void EnableVFAdjacency() {
assert(VALUE_TYPE::HasVFAdjacencyOcf());
VFAdjacencyEnabled=true;
AV.resize((*this).size());
}
void DisableVFAdjacency() {
assert(VALUE_TYPE::HasVFAdjacencyOcf());
VFAdjacencyEnabled=false;
AV.clear();
}
bool IsFFAdjacencyEnabled() const {return FFAdjacencyEnabled;}
void EnableFFAdjacency() {
assert(VALUE_TYPE::HasFFAdjacencyOcf());
FFAdjacencyEnabled=true;
AF.resize((*this).size());
}
void DisableFFAdjacency() {
assert(VALUE_TYPE::HasFFAdjacencyOcf());
FFAdjacencyEnabled=false;
AF.clear();
}
bool IsWedgeTexEnabled() const {return WedgeTexEnabled;}
void EnableWedgeTex() {
assert(VALUE_TYPE::HasWedgeTexCoordOcf());
WedgeTexEnabled=true;
WTV.resize((*this).size(),WedgeTexTypePack());
}
void DisableWedgeTex() {
assert(VALUE_TYPE::HasWedgeTexCoordOcf());
WedgeTexEnabled=false;
WTV.clear();
}
bool IsWedgeColorEnabled() const {return WedgeColorEnabled;}
void EnableWedgeColor() {
assert(VALUE_TYPE::HasWedgeColorOcf());
WedgeColorEnabled=true;
WCV.resize((*this).size(),WedgeColorTypePack());
}
void DisableWedgeColor() {
assert(VALUE_TYPE::HasWedgeColorOcf());
WedgeColorEnabled=false;
WCV.clear();
}
bool IsWedgeNormalEnabled() const {return WedgeNormalEnabled;}
void EnableWedgeNormal() {
assert(VALUE_TYPE::HasWedgeNormalOcf());
WedgeNormalEnabled=true;
WNV.resize((*this).size(),WedgeNormalTypePack());
}
void DisableWedgeNormal() {
assert(VALUE_TYPE::HasWedgeNormalOcf());
WedgeNormalEnabled=false;
WNV.clear();
}
public:
std::vector<typename VALUE_TYPE::ColorType> CV;
std::vector<typename VALUE_TYPE::CurvatureDirType> CDV;
std::vector<int> MV;
std::vector<typename VALUE_TYPE::NormalType> NV;
std::vector<float> QV;
std::vector<class WedgeColorTypePack> WCV;
std::vector<class WedgeNormalTypePack> WNV;
std::vector<class WedgeTexTypePack> WTV;
std::vector<struct AdjTypePack> AV;
std::vector<struct AdjTypePack> AF;
bool ColorEnabled;
bool CurvatureDirEnabled;
bool MarkEnabled;
bool NormalEnabled;
bool QualityEnabled;
bool WedgeColorEnabled;
bool WedgeNormalEnabled;
bool WedgeTexEnabled;
bool VFAdjacencyEnabled;
bool FFAdjacencyEnabled;
}; // end class vector_ocf
/*----------------------------- VFADJ ------------------------------*/
template <class T> class VFAdjOcf: public T {
public:
typename T::FacePointer &VFp(const int j) {
assert((*this).Base().VFAdjacencyEnabled);
return (*this).Base().AV[(*this).Index()]._fp[j];
}
typename T::FacePointer cVFp(const int j) const {
if(! (*this).Base().VFAdjacencyEnabled ) return 0;
else return (*this).Base().AV[(*this).Index()]._fp[j];
}
char &VFi(const int j) {
assert((*this).Base().VFAdjacencyEnabled);
return (*this).Base().AV[(*this).Index()]._zp[j];
}
template <class LeftF>
void ImportData(const LeftF & leftF){
T::ImportData(leftF);
}
static bool HasVFAdjacency() { return true; }
static bool HasVFAdjacencyOcf() { return true; }
private:
};
/*----------------------------- FFADJ ------------------------------*/
template <class T> class FFAdjOcf: public T {
public:
typename T::FacePointer &FFp(const int j) {
assert((*this).Base().FFAdjacencyEnabled);
return (*this).Base().AF[(*this).Index()]._fp[j];
}
typename T::FacePointer cFFp(const int j) const {
if(! (*this).Base().FFAdjacencyEnabled ) return 0;
else return (*this).Base().AF[(*this).Index()]._fp[j];
}
char &FFi(const int j) {
assert((*this).Base().FFAdjacencyEnabled);
return (*this).Base().AF[(*this).Index()]._zp[j];
}
char cFFi(const int j) const {
assert((*this).Base().FFAdjacencyEnabled);
return (*this).Base().AF[(*this).Index()]._zp[j];
}
typename T::FacePointer &FFp1( const int j ) { return FFp((j+1)%3);}
typename T::FacePointer &FFp2( const int j ) { return FFp((j+2)%3);}
typename T::FacePointer cFFp1( const int j ) const { return FFp((j+1)%3);}
typename T::FacePointer cFFp2( const int j ) const { return FFp((j+2)%3);}
typename T::FacePointer &Neigh( const int j ) { return FFp(j);}
typename T::FacePointer cNeigh( const int j ) const { return cFFp(j);}
unsigned int SizeNeigh(){return 3;}
template <class LeftF>
void ImportData(const LeftF & leftF){
T::ImportData(leftF);
}
static bool HasFFAdjacency() { return true; }
static bool HasFFAdjacencyOcf() { return true; }
};
/*------------------------- Normal -----------------------------------------*/
template <class A, class T> class NormalOcf: public T {
public:
typedef A NormalType;
static bool HasFaceNormal() { return true; }
static bool HasFaceNormalOcf() { return true; }
NormalType &N() {
// you cannot use Normals before enabling them with: yourmesh.face.EnableNormal()
assert((*this).Base().NormalEnabled);
return (*this).Base().NV[(*this).Index()]; }
NormalType cN() const {
// you cannot use Normals before enabling them with: yourmesh.face.EnableNormal()
assert((*this).Base().NormalEnabled);
return (*this).Base().NV[(*this).Index()]; }
template <class LeftF>
void ImportData(const LeftF & leftF){
if((*this).Base().NormalEnabled && LeftF::HasNormal())
N() = leftF.cN();
T::ImportData(leftF);
}
};
template <class T> class Normal3sOcf: public NormalOcf<vcg::Point3s, T> {};
template <class T> class Normal3fOcf: public NormalOcf<vcg::Point3f, T> {};
template <class T> class Normal3dOcf: public NormalOcf<vcg::Point3d, T> {};
/*------------------------- CurvatureDir -----------------------------------------*/
template <class S>
struct CurvatureDirOcfBaseType{
typedef Point3<S> VecType;
typedef S ScalarType;
CurvatureDirOcfBaseType () {}
Point3<S>max_dir,min_dir; // max and min curvature direction
S k1,k2;// max and min curvature values
};
template <class A, class T> class CurvatureDirOcf: public T {
public:
typedef A CurvatureDirType;
typedef typename CurvatureDirType::VecType VecType;
typedef typename CurvatureDirType::ScalarType ScalarType;
static bool HasCurvatureDir() { return true; }
static bool HasCurvatureDirOcf() { return true; }
VecType &PD1() {
assert((*this).Base().CurvatureDirEnabled);
return (*this).Base().CDV[(*this).Index()].max_dir;
}
VecType &PD2() {
assert((*this).Base().CurvatureDirEnabled);
return (*this).Base().CDV[(*this).Index()].min_dir;
}
VecType cPD1() const {
assert((*this).Base().CurvatureDirEnabled);
return (*this).Base().CDV[(*this).Index()].max_dir;
}
VecType cPD2() const {
assert((*this).Base().CurvatureDirEnabled);
return (*this).Base().CDV[(*this).Index()].min_dir;
}
ScalarType &K1() {
// you cannot use Normals before enabling them with: yourmesh.face.EnableNormal()
assert((*this).Base().NormalEnabled);
return (*this).Base().CDV[(*this).Index()].k1;
}
ScalarType &K2() {
// you cannot use Normals before enabling them with: yourmesh.face.EnableNormal()
assert((*this).Base().NormalEnabled);
return (*this).Base().CDV[(*this).Index()].k2;
}
ScalarType cK1() const {
// you cannot use Normals before enabling them with: yourmesh.face.EnableNormal()
assert((*this).Base().NormalEnabled);
return (*this).Base().CDV[(*this).Index()].k1;
}
ScalarType cK2() const {
// you cannot use Normals before enabling them with: yourmesh.face.EnableNormal()
assert((*this).Base().NormalEnabled);
return (*this).Base().CDV[(*this).Index()].k2;
}
template <class LeftF>
void ImportData(const LeftF & leftF){
if((*this).Base().CurvatureDirEnabled && LeftF::HasCurvatureDir())
PD1() = leftF.cPD1();
PD2() = leftF.cPD2();
K1() = leftF.cK1();
K2() = leftF.cK2();
T::ImportData(leftF);
}
};
template <class T> class CurvatureDirfOcf: public CurvatureDirOcf<CurvatureDirOcfBaseType<float>, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDirfOcf"));T::Name(name);}
};
template <class T> class CurvatureDirdOcf: public CurvatureDirOcf<CurvatureDirOcfBaseType<double>, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDirdOcf"));T::Name(name);}
};
///*-------------------------- QUALITY ----------------------------------*/
template <class A, class T> class QualityOcf: public T {
public:
typedef A QualityType;
QualityType &Q() {
assert((*this).Base().QualityEnabled);
return (*this).Base().QV[(*this).Index()];
}
QualityType cQ() const {
assert((*this).Base().QualityEnabled);
return (*this).Base().QV[(*this).Index()];
}
template <class LeftF>
void ImportData(const LeftF & leftF){
if((*this).Base().QualityEnabled && LeftF::HasFaceQuality())
Q() = leftF.cQ();
T::ImportData(leftF);
}
static bool HasFaceQuality() { return true; }
static bool HasFaceQualityOcf() { return true; }
};
template <class T> class QualityfOcf: public QualityOcf<float, T> {};
///*-------------------------- COLOR ----------------------------------*/
template <class A, class T> class ColorOcf: public T {
public:
typedef A ColorType;
ColorType &C() {
assert((*this).Base().ColorEnabled);
return (*this).Base().CV[(*this).Index()];
}
ColorType cC() const {
assert((*this).Base().ColorEnabled);
return (*this).Base().CV[(*this).Index()];
}
template <class LeftF>
void ImportData(const LeftF & leftF){
if((*this).Base().ColorEnabled && LeftF::HasFaceColor())
C() = leftF.cC();
T::ImportData(leftF);
}
static bool HasFaceColor() { return true; }
static bool HasFaceColorOcf() { return true; }
};
template <class T> class Color4bOcf: public ColorOcf<vcg::Color4b, T> {};
///*-------------------------- MARK ----------------------------------*/
template <class T> class MarkOcf: public T {
public:
inline int &IMark() {
assert((*this).Base().MarkEnabled);
return (*this).Base().MV[(*this).Index()];
}
inline int cIMark() const {
assert((*this).Base().MarkEnabled);
return (*this).Base().MV[(*this).Index()];
} ;
template <class LeftF>
void ImportData(const LeftF & leftF){
if((*this).Base().MarkEnabled && LeftF::HasFaceMark())
IMark() = leftF.cIMark();
T::ImportData(leftF);
}
static bool HasFaceMark() { return true; }
static bool HasFaceMarkOcf() { return true; }
inline void InitIMark() { IMark() = 0; }
};
///*-------------------------- WEDGE TEXCOORD ----------------------------------*/
template <class A, class TT> class WedgeTexCoordOcf: public TT {
public:
WedgeTexCoordOcf(){ }
typedef A TexCoordType;
TexCoordType &WT(const int i) { assert((*this).Base().WedgeTexEnabled); return (*this).Base().WTV[(*this).Index()].wt[i]; }
TexCoordType cWT(const int i) const { assert((*this).Base().WedgeTexEnabled); return (*this).Base().WTV[(*this).Index()].wt[i]; }
template <class LeftF>
void ImportData(const LeftF & leftF){
//if(this->Base().WedgeTexEnabled && leftF.Base().WedgeTexEnabled) // WRONG I do not know anything about leftV!
if(this->Base().WedgeTexEnabled && LeftF::HasWedgeTexCoord())
{ WT(0) = leftF.cWT(0); WT(1) = leftF.cWT(1); WT(2) = leftF.cWT(2); }
TT::ImportData(leftF);
}
static bool HasWedgeTexCoord() { return true; }
static bool HasWedgeTexCoordOcf() { return true; }
};
template <class T> class WedgeTexCoordfOcf: public WedgeTexCoordOcf<TexCoord2<float,1>, T> {};
///*-------------------------- WEDGE COLOR ----------------------------------*/
template <class A, class TT> class WedgeColorOcf: public TT {
public:
WedgeColorOcf(){ }
typedef A ColorType;
ColorType &WC(const int i) { assert((*this).Base().WedgeColorEnabled); return (*this).Base().WCV[(*this).Index()].wc[i]; }
const ColorType cWC(const int i) const { assert((*this).Base().WedgeColorEnabled); return (*this).Base().WCV[(*this).Index()].wc[i]; }
template <class LeftF>
void ImportData(const LeftF & leftF){
if(this->Base().WedgeColorEnabled && LeftF::HasWedgeColor())
{ WC(0) = leftF.cWC(0); WC(1) = leftF.cWC(1); WC(2) = leftF.cWC(2); }
TT::ImportData(leftF);
}
static bool HasWedgeColor() { return true; }
static bool HasWedgeColorOcf() { return true; }
};
template <class T> class WedgeColor4bOcf: public WedgeColorOcf<vcg::Color4b, T> {};
///*-------------------------- WEDGE NORMAL ----------------------------------*/
template <class A, class TT> class WedgeNormalOcf: public TT {
public:
WedgeNormalOcf(){ }
typedef A NormalType;
NormalType &WN(const int i) { assert((*this).Base().WedgeNormalEnabled); return (*this).Base().WNV[(*this).Index()].wn[i]; }
NormalType const &cWN(const int i) const { assert((*this).Base().WedgeNormalEnabled); return (*this).Base().WNV[(*this).Index()].wn[i]; }
template <class LeftF>
void ImportData(const LeftF & leftF){
if(this->Base().WedgeNormalEnabled && LeftF::HasWedgeNormal())
{ WN(0) = leftF.cWN(0); WN(1) = leftF.cWN(1); WN(2) = leftF.cWN(2); }
TT::ImportData(leftF);
}
static bool HasWedgeNormal() { return true; }
static bool HasWedgeNormalOcf() { return true; }
};
template <class T> class WedgeNormal3sOcf: public WedgeNormalOcf<vcg::Point3s, T> {};
template <class T> class WedgeNormal3fOcf: public WedgeNormalOcf<vcg::Point3f, T> {};
template <class T> class WedgeNormal3dOcf: public WedgeNormalOcf<vcg::Point3d, T> {};
///*-------------------------- InfoOpt ----------------------------------*/
template < class T> class InfoOcf: public T {
public:
// You should never ever try to copy a vertex that has OCF stuff.
// use ImportData function.
inline InfoOcf &operator=(const InfoOcf & /*other*/) {
assert(0); return *this;
}
vector_ocf<typename T::FaceType> &Base() const { return *_ovp;}
template <class LeftF>
void ImportData(const LeftF & leftF){T::ImportData(leftF);}
static bool HasFaceColorOcf() { return false; }
static bool HasFaceQualityOcf() { return false; }
static bool HasFaceNormalOcf() { return false; }
static bool HasFaceCurvatureDirOcf() { return false; }
static bool HasFaceMarkOcf() { return false; }
static bool HasWedgeTexCoordOcf() { return false; }
static bool HasWedgeColorOcf() { return false; }
static bool HasWedgeNormalOcf() { return false; }
static bool HasFFAdjacencyOcf() { return false; }
static bool HasVFAdjacencyOcf() { return false; }
inline int Index() const {
typename T::FaceType const *tp=static_cast<typename T::FaceType const *>(this);
int tt2=tp- &*(_ovp->begin());
return tt2;
}
public:
// ovp Optional Vector Pointer
// Pointer to the base vector where each face element is stored.
// used to access to the vectors of the other optional members.
vector_ocf<typename T::FaceType> *_ovp;
};
} // end namespace face
template < class, class,class,class > class TriMesh;
namespace tri
{
template < class FaceType >
bool FaceVectorHasVFAdjacency(const face::vector_ocf<FaceType> &fv)
{
if(FaceType::HasVFAdjacencyOcf()) return fv.IsVFAdjacencyEnabled();
else return FaceType::HasVFAdjacency();
}
template < class FaceType >
bool FaceVectorHasFFAdjacency(const face::vector_ocf<FaceType> &fv)
{
if(FaceType::HasFFAdjacencyOcf()) return fv.IsFFAdjacencyEnabled();
else return FaceType::HasFFAdjacency();
}
template < class FaceType >
bool FaceVectorHasPerWedgeTexCoord(const face::vector_ocf<FaceType> &fv)
{
if(FaceType::HasWedgeTexCoordOcf()) return fv.IsWedgeTexEnabled();
else return FaceType::HasWedgeTexCoord();
}
template < class FaceType >
bool FaceVectorHasPerFaceColor(const face::vector_ocf<FaceType> &fv)
{
if(FaceType::HasFaceColorOcf()) return fv.IsColorEnabled();
else return FaceType::HasFaceColor();
}
template < class FaceType >
bool FaceVectorHasPerFaceQuality(const face::vector_ocf<FaceType> &fv)
{
if(FaceType::HasFaceQualityOcf()) return fv.IsQualityEnabled();
else return FaceType::HasFaceQuality();
}
template < class FaceType >
bool FaceVectorHasPerFaceMark(const face::vector_ocf<FaceType> &fv)
{
if(FaceType::HasFaceMarkOcf()) return fv.IsMarkEnabled();
else return FaceType::HasFaceMark();
}
template < class FaceType >
bool FaceVectorHasPerFaceCurvatureDir(const face::vector_ocf<FaceType> &fv)
{
if(FaceType::HasCurvatureDirOcf()) return fv.IsCurvatureDirEnabled();
else return FaceType::HasCurvatureDir();
}
template < class FaceType >
bool FaceVectorHasPerFaceNormal(const face::vector_ocf<FaceType> &fv)
{
if(FaceType::HasFaceNormalOcf()) return fv.IsNormalEnabled();
else return FaceType::HasFaceNormal();
}
template < class FaceType >
void ReorderFace( std::vector<size_t> &newFaceIndex, face::vector_ocf< FaceType > &faceVec)
{
faceVec.ReorderFace(newFaceIndex);
}
}
}// end namespace vcg
#endif