vcglib/vcg/complex/trimesh/smooth.h

499 lines
15 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
/****************************************************************************/
#ifndef __VCGLIB__SMOOTH
#define __VCGLIB__SMOOTH
#include <vcg/space/point3.h>
#include <vcg/space/line3.h>
#include <vcg/container/simple_temporary_data.h>
namespace vcg
{
template<class FLT>
class ScaleLaplacianInfo
{
public:
Point3<FLT> PntSum;
FLT LenSum;
};
// Scale dependent laplacian smoothing [fujimori 95]
// Nuova versione, l'idea e'quella di usare anche gli angoli delle facce per pesare lo spostamento.
//
// in pratica si sposta solo lungo la componente che e' parallela alla normale al vertice
// (che si suppone esserci!!)
// Non ha bisogno della topologia
// Non fa assunzioni sull'ordinamento delle facce, ma vuole che i border flag ci siano!
//
//
template<class MESH_TYPE>
void ScaleLaplacianSmooth(MESH_TYPE &m, int step, typename MESH_TYPE::ScalarType delta)
{
SimpleTempData<typename MESH_TYPE::VertContainer, ScaleLaplacianInfo<typename MESH_TYPE::ScalarType> > TD(m.vert);
ScaleLaplacianInfo<typename MESH_TYPE::ScalarType> lpz;
lpz.PntSum=typename MESH_TYPE::CoordType(0,0,0);
lpz.LenSum=0;
TD.Start(lpz);
typename MESH_TYPE::FaceIterator fi;
for(int i=0;i<step;++i)
{
typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
TD[*vi]=lpz;
typename MESH_TYPE::ScalarType a[3];
for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
{
typename MESH_TYPE::CoordType mp=((*fi).V(0)->P() + (*fi).V(1)->P() + (*fi).V(2)->P())/3.0;
typename MESH_TYPE::CoordType e0=((*fi).V(0)->P() - (*fi).V(1)->P()).Normalize();
typename MESH_TYPE::CoordType e1=((*fi).V(1)->P() - (*fi).V(2)->P()).Normalize();
typename MESH_TYPE::CoordType e2=((*fi).V(2)->P() - (*fi).V(0)->P()).Normalize();
a[0]=AngleN(-e0,e2);
a[1]=AngleN(-e1,e0);
a[2]=AngleN(-e2,e1);
//assert(fabs(M_PI -a[0] -a[1] -a[2])<0.0000001);
for(int j=0;j<3;++j){
typename MESH_TYPE::CoordType dir= (mp-(*fi).V(j)->P()).Normalize();
TD[(*fi).V(j)].PntSum+=dir*a[j];
TD[(*fi).V(j)].LenSum+=a[j];
}
}
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && TD[*vi].LenSum>0 )
(*vi).P() = (*vi).P() + (TD[*vi].PntSum/TD[*vi].LenSum ) * delta;
}
TD.Stop();
};
// Scale dependent laplacian smoothing [fujimori 95]
// Non ha bisogno della topologia
// Non fa assunzioni sull'ordinamento delle facce, ma vuole che i border flag ci siano!
//
//
template<class MESH_TYPE>
void ScaleLaplacianSmoothOld(MESH_TYPE &m, int step, typename MESH_TYPE::ScalarType delta)
{
SimpleTempData<typename MESH_TYPE::VertContainer, ScaleLaplacianInfo<typename MESH_TYPE::ScalarType> > TD(m.vert);
ScaleLaplacianInfo<typename MESH_TYPE::ScalarType> lpz;
lpz.PntSum=typename MESH_TYPE::CoordType(0,0,0);
lpz.LenSum=0;
TD.Start(lpz);
typename MESH_TYPE::FaceIterator fi;
for(int i=0;i<step;++i)
{
typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
TD[*vi]=lpz;
for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
for(int j=0;j<3;++j)
if(!(*fi).IsB(j)) {
typename MESH_TYPE::CoordType edge= (*fi).V1(j)->P() -(*fi).V(j)->P();
typename MESH_TYPE::ScalarType len=Norm(edge);
edge/=len;
TD[(*fi).V(j)].PntSum+=edge;
TD[(*fi).V1(j)].PntSum-=edge;
TD[(*fi).V(j)].LenSum+=len;
TD[(*fi).V1(j)].LenSum+=len;
}
for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
for(int j=0;j<3;++j)
// se l'edge j e' di bordo si riazzera tutto e si riparte
if((*fi).IsB(j)) {
TD[(*fi).V(j)].PntSum=typename MESH_TYPE::CoordType(0,0,0);
TD[(*fi).V1(j)].PntSum=typename MESH_TYPE::CoordType(0,0,0);
TD[(*fi).V(j)].LenSum=0;
TD[(*fi).V1(j)].LenSum=0;
}
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
typename MESH_TYPE::CoordType edge= (*fi).V1(j)->P() -(*fi).V(j)->P();
typename MESH_TYPE::ScalarType len=Norm(edge);
edge/=len;
TD[(*fi).V(j)].PntSum+=edge;
TD[(*fi).V1(j)].PntSum-=edge;
TD[(*fi).V(j)].LenSum+=len;
TD[(*fi).V1(j)].LenSum+=len;
}
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && TD[*vi].LenSum>0 )
(*vi).P() = (*vi).P() + (TD[*vi].PntSum/TD[*vi].LenSum)*delta;
}
TD.Stop();
};
template<class FLT>
class LaplacianInfo
{
public:
Point3<FLT> sum;
FLT cnt;
};
template<class MESH_TYPE>
void LaplacianSmooth(MESH_TYPE &m, int step,bool SmoothSelected=false)
{
SimpleTempData<typename MESH_TYPE::VertContainer,LaplacianInfo<typename MESH_TYPE::ScalarType> > TD(m.vert);
LaplacianInfo<typename MESH_TYPE::ScalarType> lpz;
lpz.sum=typename MESH_TYPE::CoordType(0,0,0);
lpz.cnt=0;
TD.Start(lpz);
for(int i=0;i<step;++i)
{
typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
TD[*vi]=lpz;
typename MESH_TYPE::FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if(!(*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->P();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->P();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
// si azzaera i dati per i vertici di bordo
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)]=lpz;
TD[(*fi).V1(j)]=lpz;
}
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->P();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->P();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && TD[*vi].cnt>0 )
if(!SmoothSelected || (*vi).IsS())
(*vi).P()=TD[*vi].sum/TD[*vi].cnt;
}
TD.Stop();
};
template<class FLT>
class HCSmoothInfo
{
public:
Point3<FLT> dif;
Point3<FLT> sum;
int cnt;
};
template<class MESH_TYPE>
void HCSmooth(MESH_TYPE &m, int step)
{
typename MESH_TYPE::ScalarType beta=0.5;
SimpleTempData<typename MESH_TYPE::VertContainer,HCSmoothInfo<typename MESH_TYPE::ScalarType> > TD(m.vert);
HCSmoothInfo<typename MESH_TYPE::ScalarType> lpz;
lpz.sum=typename MESH_TYPE::CoordType(0,0,0);
lpz.dif=typename MESH_TYPE::CoordType(0,0,0);
lpz.cnt=0;
TD.Start(lpz);
// First Loop compute the laplacian
typename MESH_TYPE::FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
{
for(int j=0;j<3;++j)
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->P();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->P();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
// se l'edge j e' di bordo si deve sommare due volte
if((*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->P();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->P();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
}
}
typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
TD[*vi].sum/=(float)TD[*vi].cnt;
// Second Loop compute average difference
for(fi=m.face.begin();fi!=m.face.end();++fi)
{
for(int j=0;j<3;++j)
{
TD[(*fi).V(j)].dif +=TD[(*fi).V1(j)].sum-(*fi).V1(j)->P();
TD[(*fi).V1(j)].dif+=TD[(*fi).V(j)].sum-(*fi).V(j)->P();
// se l'edge j e' di bordo si deve sommare due volte
if((*fi).IsB(j))
{
TD[(*fi).V(j)].dif +=TD[(*fi).V1(j)].sum-(*fi).V1(j)->P();
TD[(*fi).V1(j)].dif+=TD[(*fi).V(j)].sum-(*fi).V(j)->P();
}
}
}
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
{
TD[*vi].dif/=(float)TD[*vi].cnt;
(*vi).P()=TD[*vi].sum -((TD[*vi].sum-(*vi).P()*beta) + TD[*vi].dif)*(1.f-beta);
}
TD.Stop();
};
template<class FLT>
class QualitySmoothInfo
{
public:
FLT sum;
int cnt;
};
template<class MESH_TYPE>
void LaplacianSmoothQuality(MESH_TYPE &m, int step,bool SmoothSelected=false)
{
SimpleTempData<typename MESH_TYPE::VertContainer,QualitySmoothInfo<typename MESH_TYPE::ScalarType> > TD(m.vert);
QualitySmoothInfo<typename MESH_TYPE::ScalarType> lpz;
lpz.sum=0;
lpz.cnt=0;
TD.Start(lpz);
for(int i=0;i<step;++i)
{
typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
TD[*vi]=lpz;
typename MESH_TYPE::FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if(!(*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->Q();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->Q();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
// si azzaera i dati per i vertici di bordo
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)]=lpz;
TD[(*fi).V1(j)]=lpz;
}
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->Q();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->Q();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
//typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && TD[*vi].cnt>0 )
if(!SmoothSelected || (*vi).IsS())
(*vi).Q()=TD[*vi].sum/TD[*vi].cnt;
}
TD.Stop();
};
template<class MESH_TYPE>
void LaplacianSmoothNormals(MESH_TYPE &m, int step,bool SmoothSelected=false)
{
SimpleTempData<typename MESH_TYPE::VertContainer,LaplacianInfo<typename MESH_TYPE::ScalarType> > TD(m.vert);
LaplacianInfo<typename MESH_TYPE::ScalarType> lpz;
lpz.sum=typename MESH_TYPE::CoordType(0,0,0);
lpz.cnt=0;
TD.Start(lpz);
for(int i=0;i<step;++i)
{
typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
TD[*vi]=lpz;
typename MESH_TYPE::FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if(!(*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->N();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->N();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
// si azzaera i dati per i vertici di bordo
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)]=lpz;
TD[(*fi).V1(j)]=lpz;
}
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->N();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->N();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
//typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && TD[*vi].cnt>0 )
if(!SmoothSelected || (*vi).IsS())
(*vi).N()=TD[*vi].sum/TD[*vi].cnt;
}
TD.Stop();
};
// Smooth solo lungo la direzione di vista
// alpha e' compreso fra 0(no smoot) e 1 (tutto smoot)
// Nota che se smootare il bordo puo far fare bandierine.
template<class MESH_TYPE>
void DepthSmooth(MESH_TYPE &m,
const typename MESH_TYPE::CoordType & viewpoint,
const typename MESH_TYPE::ScalarType alpha,
int step, bool SmoothBorder=false )
{
typedef typename MESH_TYPE::CoordType v_type;
typedef typename MESH_TYPE::ScalarType s_type;
//const typename MESH_TYPE::CoordType viewpoint;
//const typename MESH_TYPE::ScalarType alpha;
SimpleTempData<typename MESH_TYPE::VertContainer,LaplacianInfo<typename MESH_TYPE::ScalarType> > TD(m.vert);
LaplacianInfo<typename MESH_TYPE::ScalarType> lpz;
lpz.sum=typename MESH_TYPE::CoordType(0,0,0);
lpz.cnt=0;
TD.Start(lpz);
for(int i=0;i<step;++i)
{
typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
TD[*vi]=lpz;
typename MESH_TYPE::FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if(!(*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->Supervisor_P();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->Supervisor_P();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
// si azzaera i dati per i vertici di bordo
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)]=lpz;
TD[(*fi).V1(j)]=lpz;
}
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
if(SmoothBorder)
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->Supervisor_P();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->Supervisor_P();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && TD[*vi].cnt>0 )
{
v_type np = TD[*vi].sum/TD[*vi].cnt;
v_type d = (*vi).Supervisor_P() - viewpoint; d.Normalize();
s_type s = d * ( np - (*vi).Supervisor_P() );
(*vi).Supervisor_P() += d * (s*alpha);
}
}
TD.Stop();
}
} // End namespace vcg
#endif // VCG_SMOOTH