641 lines
23 KiB
C++
641 lines
23 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
#include <vcg/simplex/face/pos.h>
|
|
#include <vcg/simplex/face/topology.h>
|
|
#include <vcg/complex/algorithms/update/quality.h>
|
|
#include <deque>
|
|
#include <functional>
|
|
#ifndef __VCGLIB_GEODESIC
|
|
#define __VCGLIB_GEODESIC
|
|
|
|
namespace vcg{
|
|
namespace tri{
|
|
|
|
template <class MeshType>
|
|
struct EuclideanDistance{
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
|
|
EuclideanDistance(){}
|
|
|
|
ScalarType operator()(const VertexType * v0, const VertexType * v1) const
|
|
{return vcg::Distance(v0->cP(),v1->cP());}
|
|
|
|
ScalarType operator()(const FacePointer f0, const FacePointer f1) const
|
|
{return vcg::Distance(Barycenter(*f0),Barycenter(*f1));}
|
|
};
|
|
|
|
|
|
template <class MeshType>
|
|
class IsotropicDistance{
|
|
private:
|
|
// The only member of this class. The attribute handle used to
|
|
typename MeshType::template PerVertexAttributeHandle<float> wH;
|
|
public:
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
|
|
/// The constructor reads per vertex quality and transfer it into a per vertex attribute mapping it into the specified range.
|
|
/// The variance parameter specify how the distance is biased by the quality
|
|
/// the distance is scaled by a factor that range from 1/variance to variance according to a linear mapping of quality range.
|
|
/// So for example if you have a quality distributed in the 0..1 range and you specify a variance of 2 it means
|
|
/// that the distance will be scaled from 0.5 to 2 their original values.
|
|
|
|
IsotropicDistance(MeshType &m, float variance)
|
|
{
|
|
// the wH attribute store the scaling factor to be applied to the distance
|
|
wH = tri::Allocator<MeshType>:: template GetPerVertexAttribute<float> (m,"distW");
|
|
float qmin = 1.0f/variance;
|
|
float qmax = variance;
|
|
float qrange = qmax-qmin;
|
|
std::pair<float,float> minmax = Stat<MeshType>::ComputePerVertexQualityMinMax(m);
|
|
float range = minmax.second-minmax.first;
|
|
for(int i=0;i<m.vert.size();++i)
|
|
wH[i]=qmin+((m.vert[i].Q()-minmax.first)/range)*qrange;
|
|
|
|
// qDebug("Range %f %f %f",minmax.first,minmax.second,range);
|
|
}
|
|
|
|
ScalarType operator()( VertexType * v0, VertexType * v1)
|
|
{
|
|
float scale = (wH[v0]+wH[v1])/2.0f;
|
|
return (1.0f/scale)*vcg::Distance(v0->cP(),v1->cP());
|
|
}
|
|
};
|
|
|
|
|
|
template <class MeshType>
|
|
struct BasicCrossFunctor
|
|
{
|
|
BasicCrossFunctor(MeshType &m) { tri::RequirePerVertexCurvatureDir(m); }
|
|
typedef typename MeshType::VertexType VertexType;
|
|
|
|
Point3f D1(VertexType &v) { return v.PD1(); }
|
|
Point3f D2(VertexType &v) { return v.PD1(); }
|
|
};
|
|
|
|
/**
|
|
* Anisotropic Distance Functor
|
|
*
|
|
* Given a couple of vertexes over the surface (usually an edge)
|
|
* it returns a distance value that is biased according to a tangential cross field.
|
|
* It is assumed that the cross field is smooth enough so that you can safely blend the two directions
|
|
*
|
|
*/
|
|
template <class MeshType>
|
|
class AnisotropicDistance{
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
|
|
typename MeshType::template PerVertexAttributeHandle<Point3f> wxH,wyH;
|
|
public:
|
|
template <class CrossFunctor > AnisotropicDistance(MeshType &m, CrossFunctor &cf)
|
|
{
|
|
wxH = tri::Allocator<MeshType>:: template GetPerVertexAttribute<Point3f> (m,"distDirX");
|
|
wyH = tri::Allocator<MeshType>:: template GetPerVertexAttribute<Point3f> (m,"distDirY");
|
|
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
{
|
|
wxH[vi]=cf.D1(*vi);
|
|
wyH[vi]=cf.D2(*vi);
|
|
}
|
|
}
|
|
|
|
ScalarType operator()( VertexType * v0, VertexType * v1)
|
|
{
|
|
Point3f dd = v0->cP()-v1->cP();
|
|
float x = (fabs(dd * wxH[v0])+fabs(dd *wxH[v1]))/2.0f;
|
|
float y = (fabs(dd * wyH[v0])+fabs(dd *wyH[v1]))/2.0f;
|
|
|
|
return sqrt(x*x+y*y);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*! \brief class for computing approximate geodesic distances on a mesh
|
|
|
|
require VF Adjacency relation
|
|
\sa trimesh_geodesic.cpp
|
|
*/
|
|
|
|
template <class MeshType>
|
|
class Geodesic{
|
|
|
|
public:
|
|
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
|
|
|
|
|
|
/* Auxiliary class for keeping the heap of vertices to visit and their estimated distance */
|
|
struct VertDist{
|
|
VertDist(){}
|
|
VertDist(VertexPointer _v, ScalarType _d):v(_v),d(_d){}
|
|
|
|
VertexPointer v;
|
|
ScalarType d;
|
|
};
|
|
|
|
|
|
struct DIJKDist{
|
|
DIJKDist(VertexPointer _v):v(_v){}
|
|
VertexPointer v;
|
|
|
|
bool operator < (const DIJKDist &o) const
|
|
{
|
|
if( v->Q() != o.v->Q())
|
|
return v->Q() > o.v->Q();
|
|
return v<o.v;
|
|
}
|
|
};
|
|
|
|
/* Auxiliary class for keeping the heap of vertices to visit and their estimated distance */
|
|
struct FaceDist{
|
|
FaceDist(FacePointer _f):f(_f){}
|
|
FacePointer f;
|
|
bool operator < (const FaceDist &o) const
|
|
{
|
|
if( f->Q() != o.f->Q())
|
|
return f->Q() > o.f->Q();
|
|
return f<o.f;
|
|
}
|
|
};
|
|
|
|
/* Temporary data to associate to all the vertices: estimated distance and boolean flag */
|
|
struct TempData{
|
|
TempData(){}
|
|
TempData(const ScalarType & _d):d(_d),source(0),parent(0){}
|
|
|
|
ScalarType d;
|
|
VertexPointer source;//closest source
|
|
VertexPointer parent;
|
|
};
|
|
|
|
typedef SimpleTempData<std::vector<VertexType>, TempData > TempDataType;
|
|
|
|
|
|
struct pred: public std::binary_function<VertDist,VertDist,bool>{
|
|
pred(){}
|
|
bool operator()(const VertDist& v0, const VertDist& v1) const
|
|
{return (v0.d > v1.d);}
|
|
};
|
|
|
|
/*
|
|
*
|
|
curr: vertex for which distance should be estimated
|
|
d_pw1: distance of pw1 from the source
|
|
d_curr: distance of curr from the source
|
|
|
|
The function estimates the distance of pw from the source
|
|
in the assumption the mesh is developable (and without holes)
|
|
along the path, so that (source,pw1,curr) from a triangle.
|
|
All the math is to comput the angles at pw1 and curr with the Erone formula.
|
|
|
|
The if cases take care of the cases where the angles are obtuse.
|
|
|
|
curr
|
|
d_pw1 +
|
|
| +pw
|
|
source+ |
|
|
d_curr +
|
|
pw1
|
|
|
|
*/
|
|
template <class DistanceFunctor>
|
|
static ScalarType Distance(DistanceFunctor &distFunc,
|
|
const VertexPointer &pw,
|
|
const VertexPointer &pw1,
|
|
const VertexPointer &curr,
|
|
const ScalarType &d_pw1,
|
|
const ScalarType &d_curr)
|
|
{
|
|
ScalarType curr_d=0;
|
|
|
|
ScalarType ew_c = distFunc(pw,curr);
|
|
ScalarType ew_w1 = distFunc(pw,pw1);
|
|
ScalarType ec_w1 = distFunc(pw1,curr);
|
|
CoordType w_c = (pw->cP()-curr->cP()).Normalize() * ew_c;
|
|
CoordType w_w1 = (pw->cP() - pw1->cP()).Normalize() * ew_w1;
|
|
CoordType w1_c = (pw1->cP() - curr->cP()).Normalize() * ec_w1;
|
|
|
|
ScalarType alpha,alpha_, beta,beta_,theta,h,delta,s,a,b;
|
|
|
|
alpha = acos((w_c.dot(w1_c))/(ew_c*ec_w1));
|
|
s = (d_curr + d_pw1+ec_w1)/2;
|
|
a = s/ec_w1;
|
|
b = a*s;
|
|
alpha_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_pw1)/d_curr)));
|
|
|
|
if ( alpha+alpha_ > M_PI){
|
|
curr_d = d_curr + ew_c;
|
|
}else
|
|
{
|
|
beta_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_curr)/d_pw1)));
|
|
beta = acos((w_w1).dot(-w1_c)/(ew_w1*ec_w1));
|
|
|
|
if ( beta+beta_ > M_PI)
|
|
curr_d = d_pw1 + ew_w1;
|
|
else
|
|
{
|
|
theta = ScalarType(M_PI)-alpha-alpha_;
|
|
delta = cos(theta)* ew_c;
|
|
h = sin(theta)* ew_c;
|
|
curr_d = sqrt( pow(h,2)+ pow(d_curr + delta,2));
|
|
}
|
|
}
|
|
return (curr_d);
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
This is the low level version of the geodesic computation framework.
|
|
Starting from the seeds, it assign a distance value to each vertex. The distance of a vertex is its
|
|
approximated geodesic distance to the closest seeds.
|
|
This is function is not meant to be called (although is not prevented). Instead, it is invoked by
|
|
wrapping function.
|
|
*/
|
|
|
|
template <class DistanceFunctor>
|
|
static VertexPointer Visit(
|
|
MeshType & m,
|
|
std::vector<VertDist> & seedVec, // the set of seeds to start from
|
|
DistanceFunctor &distFunc,
|
|
ScalarType distance_threshold = std::numeric_limits<ScalarType>::max(), // cut off distance (do no compute anything farther than this value)
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * vertSource = NULL, // if present we put in this attribute the closest source for each vertex
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * vertParent = NULL, // if present we put in this attribute the parent in the path that goes from the vertex to the closest source
|
|
std::vector<VertexPointer> *InInterval=NULL)
|
|
{
|
|
VertexPointer farthest=0;
|
|
// int t0=clock();
|
|
//Requirements
|
|
if(!HasVFAdjacency(m)) throw vcg::MissingComponentException("VFAdjacency");
|
|
if(!HasPerVertexQuality(m)) throw vcg::MissingComponentException("VertexQuality");
|
|
assert(!seedVec.empty());
|
|
|
|
TempDataType TD(m.vert, std::numeric_limits<ScalarType>::max());
|
|
|
|
// initialize Heap
|
|
std::vector<VertDist> frontierHeap;
|
|
typename std::vector <VertDist >::iterator ifr;
|
|
for(ifr = seedVec.begin(); ifr != seedVec.end(); ++ifr){
|
|
TD[(*ifr).v].d = (*ifr).d;
|
|
TD[(*ifr).v].source = (*ifr).v;
|
|
TD[(*ifr).v].parent = (*ifr).v;
|
|
frontierHeap.push_back(*ifr);
|
|
}
|
|
make_heap(frontierHeap.begin(),frontierHeap.end(),pred());
|
|
|
|
ScalarType curr_d,d_curr = 0.0,d_heap;
|
|
ScalarType max_distance=0.0;
|
|
// int t1=clock();
|
|
while(!frontierHeap.empty() && max_distance < distance_threshold)
|
|
{
|
|
pop_heap(frontierHeap.begin(),frontierHeap.end(),pred());
|
|
VertexPointer curr = (frontierHeap.back()).v;
|
|
if (InInterval!=NULL) InInterval->push_back(curr);
|
|
|
|
if(vertSource!=NULL) (*vertSource)[curr] = TD[curr].source;
|
|
if(vertParent!=NULL) (*vertParent)[curr] = TD[curr].parent;
|
|
|
|
d_heap = (frontierHeap.back()).d;
|
|
frontierHeap.pop_back();
|
|
|
|
assert(TD[curr].d <= d_heap);
|
|
if(TD[curr].d < d_heap ) // a vertex whose distance has been improved after it was inserted in the queue
|
|
continue;
|
|
assert(TD[curr].d == d_heap);
|
|
|
|
d_curr = TD[curr].d;
|
|
|
|
for(face::VFIterator<FaceType> vfi(curr) ; vfi.f!=0; ++vfi )
|
|
{
|
|
for(int k=0;k<2;++k)
|
|
{
|
|
VertexPointer pw,pw1;
|
|
if(k==0) {
|
|
pw = vfi.f->V1(vfi.z);
|
|
pw1= vfi.f->V2(vfi.z);
|
|
}
|
|
else {
|
|
pw = vfi.f->V2(vfi.z);
|
|
pw1= vfi.f->V1(vfi.z);
|
|
}
|
|
|
|
const ScalarType & d_pw1 = TD[pw1].d;
|
|
{
|
|
const ScalarType inter = distFunc(curr,pw1);//(curr->P() - pw1->P()).Norm();
|
|
const ScalarType tol = (inter + d_curr + d_pw1)*.0001f;
|
|
|
|
if ( (TD[pw1].source != TD[curr].source)||// not the same source
|
|
(inter + d_curr < d_pw1 +tol ) ||
|
|
(inter + d_pw1 < d_curr +tol ) ||
|
|
(d_curr + d_pw1 < inter +tol ) // triangular inequality
|
|
)
|
|
curr_d = d_curr + distFunc(pw,curr);//(pw->P()-curr->P()).Norm();
|
|
else
|
|
curr_d = Distance(distFunc,pw,pw1,curr,d_pw1,d_curr);
|
|
}
|
|
|
|
if(TD[pw].d > curr_d){
|
|
TD[pw].d = curr_d;
|
|
TD[pw].source = TD[curr].source;
|
|
TD[pw].parent = curr;
|
|
frontierHeap.push_back(VertDist(pw,curr_d));
|
|
push_heap(frontierHeap.begin(),frontierHeap.end(),pred());
|
|
}
|
|
// if(isLeaf){
|
|
if(d_curr > max_distance){
|
|
max_distance = d_curr;
|
|
farthest = curr;
|
|
}
|
|
// }
|
|
}
|
|
} // end for VFIterator
|
|
}// end while
|
|
// int t2=clock();
|
|
|
|
// Copy found distance onto the Quality (\todo parametric!)
|
|
if (InInterval==NULL)
|
|
{
|
|
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD())
|
|
(*vi).Q() = TD[&(*vi)].d;
|
|
}
|
|
else
|
|
{
|
|
assert(InInterval->size()>0);
|
|
for(size_t i=0;i<InInterval->size();i++)
|
|
(*InInterval)[i]->Q() = TD[(*InInterval)[i]].d;
|
|
}
|
|
// int t3=clock();
|
|
// printf("Init %6.3f\nVisit %6.3f\nFinal %6.3f\n",float(t1-t0)/CLOCKS_PER_SEC,float(t2-t1)/CLOCKS_PER_SEC,float(t3-t2)/CLOCKS_PER_SEC);
|
|
return farthest;
|
|
}
|
|
|
|
public:
|
|
/*! \brief Given a set of source vertices compute the approximate geodesic distance to all the other vertices
|
|
|
|
\param m the mesh
|
|
\param seedVec a vector of Vertex pointers with the \em sources of the flood fill
|
|
\param maxDistanceThr max distance that we travel on the mesh starting from the sources
|
|
\param withinDistanceVec a pointer to a vector for storing the vertexes reached within the passed maxDistanceThr
|
|
\param sourceSeed pointer to the handle to keep for each vertex its seed
|
|
\param parentSeed pointer to the handle to keep for each vertex its parent in the closest tree
|
|
|
|
Given a mesh and a vector of pointers to seed vertices, this function compute the approximated geodesic
|
|
distance from the given sources to all the mesh vertices within the given maximum distance threshold.
|
|
The computed distance is stored in the vertex::Quality component.
|
|
Optionally for each vertex it can store, in a passed attribute, the corresponding seed vertex
|
|
(e.g. the vertex of the source set closest to him) and the 'parent' in a tree forest that connects each vertex to the closest source.
|
|
|
|
To allocate the attributes:
|
|
\code
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> sourcesHandle;
|
|
sourcesHandle = tri::Allocator<CMeshO>::AddPerVertexAttribute<MeshType::VertexPointer> (m,"sources");
|
|
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> parentHandle;
|
|
parentHandle = tri::Allocator<CMeshO>::AddPerVertexAttribute<MeshType::VertexPointer> (m,"parent");
|
|
\endcode
|
|
|
|
It requires VF adjacency relation (e.g. vertex::VFAdj and face::VFAdj components)
|
|
It requires per vertex Quality (e.g. vertex::Quality component)
|
|
|
|
\warning that this function has ALWAYS at least a linear cost (it use additional attributes that have a linear initialization)
|
|
\todo make it O(output) by using incremental mark and persistent attributes.
|
|
*/
|
|
static bool Compute( MeshType & m,
|
|
const std::vector<VertexPointer> & seedVec)
|
|
{
|
|
EuclideanDistance<MeshType> dd;
|
|
return Compute(m,seedVec,dd);
|
|
}
|
|
|
|
template <class DistanceFunctor>
|
|
static bool Compute( MeshType & m,
|
|
const std::vector<VertexPointer> & seedVec,
|
|
DistanceFunctor &distFunc,
|
|
ScalarType maxDistanceThr = std::numeric_limits<ScalarType>::max(),
|
|
std::vector<VertexPointer> *withinDistanceVec=NULL,
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sourceSeed = NULL,
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * parentSeed = NULL
|
|
)
|
|
{
|
|
if(seedVec.empty()) return false;
|
|
std::vector<VertDist> vdSeedVec;
|
|
typename std::vector<VertexPointer>::const_iterator fi;
|
|
for( fi = seedVec.begin(); fi != seedVec.end() ; ++fi)
|
|
vdSeedVec.push_back(VertDist(*fi,0.0));
|
|
Visit(m, vdSeedVec, distFunc, maxDistanceThr, sourceSeed, parentSeed, withinDistanceVec);
|
|
return true;
|
|
}
|
|
|
|
/* \brief Assigns to each vertex of the mesh its distance to the closest vertex on the boundary
|
|
|
|
It is just a simple wrapper of the basic Compute()
|
|
|
|
Note: update the field Q() of the vertices
|
|
Note: it needs the border bit set.
|
|
*/
|
|
static bool DistanceFromBorder( MeshType & m, typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL)
|
|
{
|
|
std::vector<VertexPointer> fro;
|
|
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if( (*vi).IsB())
|
|
fro.push_back(&(*vi));
|
|
if(fro.empty()) return false;
|
|
EuclideanDistance<MeshType> dd;
|
|
tri::UpdateQuality<MeshType>::VertexConstant(m,0);
|
|
return Compute(m,fro,dd,std::numeric_limits<ScalarType>::max(),0,sources);
|
|
}
|
|
|
|
|
|
static bool ConvertPerVertexSeedToPerFaceSeed(MeshType &m, const std::vector<VertexPointer> &vertexSeedVec,
|
|
std::vector<FacePointer> &faceSeedVec)
|
|
{
|
|
tri::RequireVFAdjacency(m);
|
|
tri::RequirePerFaceMark(m);
|
|
|
|
faceSeedVec.clear();
|
|
tri::UnMarkAll(m);
|
|
for(size_t i=0;i<vertexSeedVec.size();++i)
|
|
{
|
|
for(face::VFIterator<FaceType> vfi(vertexSeedVec[i]);!vfi.End();++vfi)
|
|
{
|
|
if(tri::IsMarked(m,vfi.F())) return false;
|
|
faceSeedVec.push_back(vfi.F());
|
|
tri::Mark(m,vfi.F());
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class DistanceFunctor>
|
|
static void PerFaceDijsktraCompute(MeshType &m, const std::vector<FacePointer> &seedVec,
|
|
DistanceFunctor &distFunc,
|
|
ScalarType maxDistanceThr = std::numeric_limits<ScalarType>::max(),
|
|
std::vector<FacePointer> *InInterval=NULL,
|
|
FacePointer FaceTarget=NULL,
|
|
bool avoid_selected=false)
|
|
{
|
|
tri::RequireFFAdjacency(m);
|
|
tri::RequirePerFaceMark(m);
|
|
tri::RequirePerFaceQuality(m);
|
|
|
|
typename MeshType::template PerFaceAttributeHandle<FacePointer> sourceHandle
|
|
= tri::Allocator<MeshType>::template GetPerFaceAttribute<FacePointer> (m,"sources");
|
|
|
|
typename MeshType::template PerFaceAttributeHandle<FacePointer> parentHandle
|
|
= tri::Allocator<MeshType>::template GetPerFaceAttribute<FacePointer> (m,"parent");
|
|
|
|
std::vector<FaceDist> Heap;
|
|
tri::UnMarkAll(m);
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
{
|
|
tri::Mark(m,seedVec[i]);
|
|
seedVec[i]->Q()=0;
|
|
sourceHandle[seedVec[i]]=seedVec[i];
|
|
parentHandle[seedVec[i]]=seedVec[i];
|
|
Heap.push_back(FaceDist(seedVec[i]));
|
|
if (InInterval!=NULL) InInterval->push_back(seedVec[i]);
|
|
}
|
|
|
|
std::make_heap(Heap.begin(),Heap.end());
|
|
while(!Heap.empty())
|
|
{
|
|
pop_heap(Heap.begin(),Heap.end());
|
|
FacePointer curr = (Heap.back()).f;
|
|
if ((FaceTarget!=NULL)&&(curr==FaceTarget))return;
|
|
Heap.pop_back();
|
|
|
|
for(int i=0;i<3;++i)
|
|
{
|
|
if(!face::IsBorder(*curr,i) )
|
|
{
|
|
FacePointer nextF = curr->FFp(i);
|
|
ScalarType nextDist = curr->Q() + distFunc(curr,nextF);
|
|
if( (nextDist < maxDistanceThr) &&
|
|
(!tri::IsMarked(m,nextF) || nextDist < nextF->Q()) )
|
|
{
|
|
nextF->Q() = nextDist;
|
|
if ((avoid_selected)&&(nextF->IsS()))continue;
|
|
tri::Mark(m,nextF);
|
|
Heap.push_back(FaceDist(nextF));
|
|
push_heap(Heap.begin(),Heap.end());
|
|
if (InInterval!=NULL) InInterval->push_back(nextF);
|
|
sourceHandle[nextF] = sourceHandle[curr];
|
|
parentHandle[nextF] = curr;
|
|
// printf("Heapsize %i nextDist = %f curr face %i next face %i \n",Heap.size(), nextDist, tri::Index(m,curr), tri::Index(m,nextF));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class DistanceFunctor>
|
|
static void PerVertexDijsktraCompute(MeshType &m, const std::vector<VertexPointer> &seedVec,
|
|
DistanceFunctor &distFunc,
|
|
ScalarType maxDistanceThr = std::numeric_limits<ScalarType>::max(),
|
|
std::vector<VertexPointer> *InInterval=NULL,bool avoid_selected=false,
|
|
VertexPointer target=NULL)
|
|
{
|
|
tri::RequireVFAdjacency(m);
|
|
tri::RequirePerVertexMark(m);
|
|
tri::RequirePerVertexQuality(m);
|
|
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> sourceHandle
|
|
= tri::Allocator<MeshType>::template GetPerVertexAttribute<VertexPointer> (m,"sources");
|
|
|
|
typename MeshType::template PerVertexAttributeHandle<VertexPointer> parentHandle
|
|
= tri::Allocator<MeshType>::template GetPerVertexAttribute<VertexPointer> (m,"parent");
|
|
|
|
std::vector<DIJKDist> Heap;
|
|
tri::UnMarkAll(m);
|
|
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
{
|
|
assert(!tri::IsMarked(m,seedVec[i]));
|
|
tri::Mark(m,seedVec[i]);
|
|
seedVec[i]->Q()=0;
|
|
sourceHandle[seedVec[i]]=seedVec[i];
|
|
parentHandle[seedVec[i]]=seedVec[i];
|
|
Heap.push_back(DIJKDist(seedVec[i]));
|
|
if (InInterval!=NULL) InInterval->push_back(seedVec[i]);
|
|
}
|
|
|
|
std::make_heap(Heap.begin(),Heap.end());
|
|
while(!Heap.empty())
|
|
{
|
|
pop_heap(Heap.begin(),Heap.end());
|
|
VertexPointer curr = (Heap.back()).v;
|
|
if ((target!=NULL)&&(target==curr))return;
|
|
Heap.pop_back();
|
|
std::vector<VertexPointer> vertVec;
|
|
face::VVStarVF<FaceType>(curr,vertVec);
|
|
for(size_t i=0;i<vertVec.size();++i)
|
|
{
|
|
VertexPointer nextV = vertVec[i];
|
|
if ((avoid_selected)&&(nextV->IsS()))continue;
|
|
ScalarType nextDist = curr->Q() + distFunc(curr,nextV);
|
|
if( (nextDist < maxDistanceThr) &&
|
|
(!tri::IsMarked(m,nextV) || nextDist < nextV->Q()) )
|
|
{
|
|
nextV->Q() = nextDist;
|
|
tri::Mark(m,nextV);
|
|
Heap.push_back(DIJKDist(nextV));
|
|
push_heap(Heap.begin(),Heap.end());
|
|
if (InInterval!=NULL) InInterval->push_back(nextV);
|
|
sourceHandle[nextV] = sourceHandle[curr];
|
|
parentHandle[nextV] = curr;
|
|
// printf("Heapsize %i nextDist = %f curr vert %i next vert %i \n",Heap.size(), nextDist, tri::Index(m,curr), tri::Index(m,nextV));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
};// end class
|
|
}// end namespace tri
|
|
}// end namespace vcg
|
|
#endif
|