vcglib/vcg/complex/algorithms/outline_support.h

277 lines
8.1 KiB
C++

#ifndef OUTLINE_SUPPORT_H
#define OUTLINE_SUPPORT_H
#include <vcg/math/random_generator.h>
#include <vcg/complex/complex.h>
#include <vcg/complex/algorithms/update/topology.h>
#include <vcg/complex/algorithms/update/bounding.h>
namespace vcg {
namespace tri {
// Naming
// Outline2 just a vector of point2
// Outline3 just a vector of point2
// Outline3Vec a vector of Outline2
// Outline2Vec a vector of Outline2
// Mesh a common mesh of triangles
// EdgeMesh a polyline mesh.
template < class ScalarType>
class OutlineUtil
{
public:
/**
* Returns the area of the polygon defined by the parameter points
* @param a vector of points
* @return the area of the polygon
*/
static ScalarType Outline2Area(const std::vector< Point2<ScalarType> > &outline2)
{
float area=0;
for (size_t i=0,j=outline2.size()-1; i<outline2.size(); i++) {
area+=(outline2[j][0]+outline2[i][0])*(outline2[j][1]-outline2[i][1]);
j=i;
}
return -area*.5;
}
/**
* Returns the length of the perimeter of the polygon defined by the parameter points
* @param a vector of points
* @return the length of the perimeter
*/
static ScalarType Outline2Perimeter(const std::vector< Point2<ScalarType> > &outline2)
{
float dd=0; int sz = outline2.size();
//sums all the distances between point i and point i+1 (modulus sz)
for(int j=0; j<sz; ++j)
{
dd += Distance (Point2f(outline2[j][0],outline2[j][1]),Point2f(outline2[(j+1)%sz][0],outline2[(j+1)%sz][1]));
}
return dd;
}
/**
* Returns the bounding box of the polygon defined by the parameter points
* @param a vector of points
* @return the bounding box of the polygon
* @see Box2
*/
static Box2<ScalarType> Outline2BBox(const std::vector<Point2<ScalarType> > &outline2)
{
Box2<ScalarType> bb;
for(size_t i=0;i<outline2.size();++i)
bb.Add(outline2[i]);
return bb;
}
/**
* Returns the bounding box of the polygon defined by the parameter points
* @param a vector of points
* @return the bounding box of the polygon
* @see Box2
*/
static Box2<ScalarType> Outline2VecBBox(const std::vector<std::vector<Point2<ScalarType> > > &outline2Vec)
{
Box2<ScalarType> bb;
for(size_t j=0;j<outline2Vec.size();++j)
for(size_t i=0;i<outline2Vec[j].size();++i)
bb.Add(outline2Vec[j][i]);
return bb;
}
static void ReverseOutline2(std::vector< Point2<ScalarType> > &outline2)
{
std::reverse(outline2.begin(),outline2.end());
}
static void BuildRandomOutlineVec(int outlineNum, std::vector< std::vector< Point2f > > &outline2Vec, int seed=0)
{
vcg::math::MarsenneTwisterRNG rnd;
if(seed==0) seed=time(0);
rnd.initialize(seed);
for(int i=0;i<outlineNum;++i)
{
std::vector<Point2f> poly;
for(int j=0;j<10;j++)
poly.push_back(Point2f(0.5+0.5*rnd.generate01(),2.0f*M_PI*rnd.generate01()));
std::sort(poly.begin(),poly.end());
float ratio = rnd.generateRange(0.2,0.9);
float rot = rnd.generateRange(-M_PI,M_PI);
float scale = pow(rnd.generateRange(0.3,0.9),1);
for(size_t j=0;j<poly.size();j++)
{
poly[j].Polar2Cartesian();
poly[j][1]*=ratio;
poly[j] *= scale;
poly[j].Cartesian2Polar();
poly[j][1]+=rot;
poly[j].Polar2Cartesian();
}
Point2f randTras(rnd.generateRange(-5,5),rnd.generateRange(-5,5));
for(size_t j=0;j<poly.size();j++)
poly[j]+=randTras;
outline2Vec.push_back(poly);
}
}
static int LargestOutline2(const std::vector< std::vector< Point2f > > &outline2Vec)
{
float maxArea =0;
int maxInd=-1;
for(size_t i=0;i<outline2Vec.size();++i)
{
float curArea = fabs(Outline2Area(outline2Vec[i]));
if(curArea > maxArea)
{
maxArea=curArea;
maxInd=i;
}
}
assert(maxInd>=0);
return maxInd;
}
template<class PointType>
static bool ConvertOutline3VecToOutline2Vec(std::vector< std::vector< PointType> > &outline3Vec, std::vector< std::vector< Point2f> > &outline2Vec )
{
outline2Vec.resize(outline3Vec.size());
for(size_t i=0;i<outline3Vec.size();++i)
{
// printf("ConvertToPoint2fOutlines: Outline %4lu (%2lu) : ",i,outlineVec[i].size());
outline2Vec[i].resize(outline3Vec[i].size());
for(size_t j=0;j<outline3Vec[i].size();++j)
{
outline2Vec[i][j][0]=outline3Vec[i][j][0];
outline2Vec[i][j][1]=outline3Vec[i][j][1];
// printf("(%5.2f %5.2f)",outlineVec2f[i][j][0],outlineVec2f[i][j][1]);
}
// printf("\n");
}
return true;
}
template<class MeshType>
static int ConvertMeshBoundaryToOutline3Vec(MeshType &m, std::vector< std::vector<Point3f> > &outline3Vec)
{
typedef typename MeshType::FaceType FaceType;
std::vector<Point3f> outline;
tri::Allocator<MeshType>::CompactVertexVector(m);
tri::Allocator<MeshType>::CompactFaceVector(m);
tri::UpdateFlags<MeshType>::FaceClearV(m);
tri::UpdateFlags<MeshType>::VertexClearV(m);
tri::UpdateTopology<MeshType>::FaceFace(m);
int totalVn=0;
for(size_t i=0;i<m.face.size();i++)
{
for (int j=0;j<3;j++)
if (!m.face[i].IsV() && face::IsBorder(m.face[i],j))
{
FaceType* startB=&(m.face[i]);
face::Pos<FaceType> p(startB,j);
face::Pos<FaceType> startPos = p;
assert(p.IsBorder());
do
{
assert(p.IsManifold());
p.F()->SetV();
outline.push_back(p.V()->P());
p.NextB();
totalVn++;
}
while(p != startPos);
outline3Vec.push_back(outline);
outline.clear();
}
}
return totalVn;
}
template<class MeshType>
static void ConvertMeshBoundaryToEdgeMesh(MeshType &m, MeshType &em)
{
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::VertexPointer VertexPointer;
em.Clear();
std::vector< std::vector<Point3f> > outlines;
int nv = ConvertMeshBoundaryToOutlines(m,outlines);
if (nv<2) return;
VertexIterator vi=vcg::tri::Allocator<MeshType>::AddVertices(em,nv);
EdgeIterator ei=vcg::tri::Allocator<MeshType>::AddEdges(em,nv);
// printf("Building an edge mesh of %i v and %i e and %lu outlines\n",em.vn,em.en,outlines.size());
for (size_t i=0;i<outlines.size();i++)
{
VertexPointer firstVp = &*vi;
for(size_t j=0;j<outlines[i].size();++j,++vi,++ei)
{
(&*vi)->P()=outlines[i][j];
// printf("(%5.2f %5.2f %5.2f)",vi->cP()[0],vi->cP()[1],vi->cP()[2]);
ei->V(0)=&*vi;
if((j+1)<outlines[i].size()) ei->V(1)=&*(vi+1);
else ei->V(1)=firstVp;
}
// printf("\n");
}
}
template<class MeshType>
static bool ConvertOutline3VecToEdgeMesh(std::vector< std::vector< Point3f> > &outlineVec, MeshType &m)
{
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::EdgePointer EdgePointer;
m.Clear();
std::vector< std::vector<int> > Indexes(outlineVec.size());
for(size_t i=0;i<outlineVec.size();++i)
{
for(size_t j=0;j<outlineVec[i].size();++j)
{
Indexes[i].push_back(m.vert.size());
VertexPointer vp=&*tri::Allocator<MeshType>::AddVertices(m,1);
Point3f pp=Point3f(outlineVec[i][j][0],outlineVec[i][j][1],outlineVec[i][j][2]);
vp->P()= pp;
}
}
for(size_t i=0;i<outlineVec.size();++i)
for(size_t j=0;j<outlineVec[i].size();++j)
{ int polyLen =outlineVec[i].size();
EdgePointer ep=&*tri::Allocator<MeshType>::AddEdges(m,1);
ep->V(0)=&m.vert[Indexes[i][j]];
ep->V(1)=&m.vert[Indexes[i][(j+1)%polyLen]];
}
tri::UpdateBounding<MeshType>::Box(m);
return true;
}
template<class MeshType>
static bool ConvertOutline3VecToEdgeMesh(std::vector< Point3f> &outline, MeshType &m)
{
std::vector< std::vector< Point3f> > outlineVec;
outlineVec.push_back(outline);
return Convert3DOutlinesToEdgeMesh(outlineVec,m);
}
};
} // end namespace tri
} // end namespace vcg
#endif // OUTLINE_SUPPORT_H