228 lines
8.3 KiB
C++
228 lines
8.3 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2012 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
// This sample require gl.
|
|
#ifndef GLU_VERSIONS
|
|
#ifdef __APPLE__
|
|
#include <OpenGL/gl.h>
|
|
#else
|
|
#ifdef _WIN32
|
|
#include <windows.h>
|
|
#endif
|
|
#include <GL/gl.h>
|
|
#endif
|
|
#endif
|
|
|
|
#include<vcg/complex/complex.h>
|
|
#include<vcg/complex/append.h>
|
|
|
|
// input output
|
|
#include<wrap/io_trimesh/import.h>
|
|
#include<wrap/io_trimesh/export.h>
|
|
|
|
// topology computation
|
|
#include<vcg/complex/algorithms/update/topology.h>
|
|
#include<vcg/complex/algorithms/update/bounding.h>
|
|
#include<vcg/complex/algorithms/update/normal.h>
|
|
#include <vcg/complex/algorithms/update/position.h>
|
|
#include <vcg/complex/algorithms/update/quality.h>
|
|
#include <vcg/complex/algorithms/stat.h>
|
|
|
|
#include <vcg/complex/algorithms/intersection.h>
|
|
#include <vcg/complex/algorithms/refine.h>
|
|
#include <wrap/gl/glu_tessellator_cap.h>
|
|
|
|
using namespace vcg;
|
|
using namespace std;
|
|
|
|
class MyEdge;
|
|
class MyFace;
|
|
class MyVertex;
|
|
struct MyUsedTypes : public UsedTypes< Use<MyVertex> ::AsVertexType,
|
|
Use<MyEdge> ::AsEdgeType,
|
|
Use<MyFace> ::AsFaceType>{};
|
|
|
|
class MyVertex : public Vertex<MyUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::Qualityf,vertex::BitFlags >{};
|
|
class MyFace : public Face< MyUsedTypes, face::FFAdj, face::VertexRef, face::BitFlags >{};
|
|
class MyEdge : public Edge<MyUsedTypes, edge::VertexRef,edge::BitFlags,edge::EEAdj>{};
|
|
class MyMesh : public tri::TriMesh< vector<MyVertex>, vector<MyFace> , vector<MyEdge> > {};
|
|
|
|
|
|
|
|
void CapHole(MyMesh &m, MyMesh &capMesh, bool reverseFlag)
|
|
{
|
|
capMesh.Clear();
|
|
std::vector< std::vector<Point3f> > outlines;
|
|
std::vector<Point3f> outline;
|
|
|
|
tri::Allocator<MyMesh>::CompactVertexVector(m);
|
|
tri::Allocator<MyMesh>::CompactFaceVector(m);
|
|
tri::UpdateFlags<MyMesh>::FaceClearV(m);
|
|
tri::UpdateFlags<MyMesh>::VertexClearV(m);
|
|
tri::UpdateTopology<MyMesh>::FaceFace(m);
|
|
int nv=0;
|
|
|
|
for(size_t i=0;i<m.face.size();i++)
|
|
{
|
|
for (int j=0;j<3;j++)
|
|
if (!m.face[i].IsV() && face::IsBorder(m.face[i],j))
|
|
{
|
|
MyFace* startB=&(m.face[i]);
|
|
vcg::face::Pos<MyFace> p(startB,j);
|
|
assert(p.IsBorder());
|
|
do
|
|
{
|
|
assert(p.IsManifold());
|
|
p.F()->SetV();
|
|
outline.push_back(p.V()->P());
|
|
p.NextB();
|
|
nv++;
|
|
}
|
|
while(!p.F()->IsV());
|
|
if (reverseFlag)
|
|
std::reverse(outline.begin(),outline.end());
|
|
|
|
outlines.push_back(outline);
|
|
outline.clear();
|
|
}
|
|
}
|
|
if (nv<2) return;
|
|
MyMesh::VertexIterator vi=vcg::tri::Allocator<MyMesh>::AddVertices(capMesh,nv);
|
|
for (size_t i=0;i<outlines.size();i++)
|
|
{
|
|
for(size_t j=0;j<outlines[i].size();++j,++vi)
|
|
(&*vi)->P()=outlines[i][j];
|
|
}
|
|
|
|
std::vector<int> indices;
|
|
glu_tesselator::tesselate(outlines, indices);
|
|
|
|
std::vector<Point3f> points;
|
|
glu_tesselator::unroll(outlines, points);
|
|
MyMesh::FaceIterator fi=tri::Allocator<MyMesh>::AddFaces(capMesh,nv-2);
|
|
for (size_t i=0; i<indices.size(); i+=3,++fi)
|
|
{
|
|
(*&fi)->V(0)=&capMesh.vert[ indices[i+0] ];
|
|
(*&fi)->V(1)=&capMesh.vert[ indices[i+1] ];
|
|
(*&fi)->V(2)=&capMesh.vert[ indices[i+2] ];
|
|
}
|
|
tri::Clean<MyMesh>::RemoveDuplicateVertex(capMesh);
|
|
tri::UpdateBounding<MyMesh>::Box(capMesh);
|
|
}
|
|
|
|
|
|
|
|
|
|
bool SplitMesh(MyMesh &m, /// The mesh that has to be splitted. It is NOT changed
|
|
MyMesh &A, MyMesh &B, /// The two resulting pieces, correct only if true is returned
|
|
Plane3f plane)
|
|
{
|
|
tri::Append<MyMesh,MyMesh>::Mesh(A,m);
|
|
tri::UpdateQuality<MyMesh>::VertexFromPlane(A, plane);
|
|
tri::QualityMidPointFunctor<MyMesh> slicingfunc(0.0f);
|
|
tri::QualityEdgePredicate<MyMesh> slicingpred(0.0f);
|
|
tri::UpdateTopology<MyMesh>::FaceFace(A);
|
|
// The Actual Slicing
|
|
tri::RefineE<MyMesh, tri::QualityMidPointFunctor<MyMesh>, tri::QualityEdgePredicate<MyMesh> > (A, slicingfunc, slicingpred, false);
|
|
|
|
tri::Append<MyMesh,MyMesh>::Mesh(B,A);
|
|
|
|
tri::UpdateSelection<MyMesh>::VertexFromQualityRange(A,-std::numeric_limits<float>::max(),0);
|
|
tri::UpdateSelection<MyMesh>::FaceFromVertexStrict(A);
|
|
for(MyMesh::FaceIterator fi=A.face.begin();fi!=A.face.end();++fi)
|
|
if(!(*fi).IsD() && (*fi).IsS() ) tri::Allocator<MyMesh>::DeleteFace(A,*fi);
|
|
tri::Clean<MyMesh>::RemoveUnreferencedVertex(A);
|
|
|
|
tri::UpdateSelection<MyMesh>::VertexFromQualityRange(B,0,std::numeric_limits<float>::max());
|
|
tri::UpdateSelection<MyMesh>::FaceFromVertexStrict(B);
|
|
for(MyMesh::FaceIterator fi=B.face.begin();fi!=B.face.end();++fi)
|
|
if(!(*fi).IsD() && (*fi).IsS() ) tri::Allocator<MyMesh>::DeleteFace(B,*fi);
|
|
tri::Clean<MyMesh>::RemoveUnreferencedVertex(B);
|
|
|
|
tri::UpdateTopology<MyMesh>::FaceFace(m);
|
|
|
|
MyMesh Cap;
|
|
CapHole(A,Cap,0);
|
|
tri::Append<MyMesh,MyMesh>::Mesh(A,Cap);
|
|
|
|
CapHole(B,Cap,0);
|
|
tri::Append<MyMesh,MyMesh>::Mesh(B,Cap);
|
|
|
|
tri::Clean<MyMesh>::RemoveDuplicateVertex(A);
|
|
tri::Clean<MyMesh>::RemoveDuplicateVertex(B);
|
|
return true;
|
|
}
|
|
|
|
void GetRandPlane(Box3f &bb, Plane3f &plane)
|
|
{
|
|
Point3f planeCenter = bb.Center();
|
|
Point3f planeDir = Point3f(-0.5f+float(rand())/RAND_MAX,-0.5f+float(rand())/RAND_MAX,-0.5f+float(rand())/RAND_MAX);
|
|
planeDir.Normalize();
|
|
|
|
plane.Init(planeCenter+planeDir*0.3f*bb.Diag()*float(rand())/RAND_MAX,planeDir);
|
|
}
|
|
|
|
int main( int argc, char **argv )
|
|
{
|
|
if(argc<2)
|
|
{
|
|
printf("Usage trimesh_base <meshfilename.ply>\n");
|
|
return -1;
|
|
}
|
|
|
|
MyMesh m, // The loaded mesh
|
|
em, // the 2D polyline representing the section
|
|
slice, // the planar mesh resulting from the triangulation of the above
|
|
sliced; // the 3D mesh resulting by the actual slicing of m into two capped sub pieces
|
|
|
|
if(tri::io::ImporterPLY<MyMesh>::Open(m,argv[1])!=0)
|
|
{
|
|
printf("Error reading file %s\n",argv[1]);
|
|
exit(0);
|
|
}
|
|
tri::UpdateBounding<MyMesh>::Box(m);
|
|
printf("Input mesh vn:%i fn:%i\n",m.VN(),m.FN());
|
|
srand(time(0));
|
|
|
|
Plane3f slicingPlane;
|
|
GetRandPlane(m.bbox,slicingPlane);
|
|
printf("slicing dir %5.2f %5.2f %5.2f\n",slicingPlane.Direction()[0],slicingPlane.Direction()[1],slicingPlane.Direction()[2]);
|
|
vcg::IntersectionPlaneMesh<MyMesh, MyMesh, float>(m, slicingPlane, em );
|
|
tri::Clean<MyMesh>::RemoveDuplicateVertex(em);
|
|
vcg::tri::CapEdgeMesh(em,slice);
|
|
printf("Slice mesh has %i vert and %i faces\n", slice.VN(), slice.FN() );
|
|
|
|
MyMesh A,B;
|
|
SplitMesh(m,A,B,slicingPlane);
|
|
tri::UpdatePosition<MyMesh>::Translate(A, slicingPlane.Direction()*m.bbox.Diag()/80.0);
|
|
tri::UpdatePosition<MyMesh>::Translate(B,-slicingPlane.Direction()*m.bbox.Diag()/80.0);
|
|
tri::Append<MyMesh,MyMesh>::Mesh(sliced,A);
|
|
tri::Append<MyMesh,MyMesh>::Mesh(sliced,B);
|
|
printf("Sliced mesh has %i vert and %i faces\n", sliced.VN(), sliced.FN() );
|
|
|
|
tri::io::ExporterPLY<MyMesh>::Save(slice,"slice.ply",false);
|
|
tri::io::ExporterPLY<MyMesh>::Save(sliced,"sliced.ply",false);
|
|
|
|
return 0;
|
|
}
|