vcglib/vcg/complex/algorithms/stat.h

468 lines
16 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_TRIMESH_STAT
#define __VCGLIB_TRIMESH_STAT
// Standard headers
// VCG headers
#include <vcg/math/histogram.h>
#include <vcg/complex/algorithms/closest.h>
#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/complex/algorithms/inertia.h>
#include <vcg/space/polygon3.h>
namespace vcg {
namespace tri{
template <class StatMeshType>
class Stat
{
public:
typedef StatMeshType MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::ConstVertexIterator ConstVertexIterator;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::ConstFaceIterator ConstFaceIterator;
typedef typename MeshType::FaceContainer FaceContainer;
typedef typename MeshType::TetraType TetraType;
typedef typename MeshType::TetraPointer TetraPointer;
typedef typename MeshType::TetraIterator TetraIterator;
typedef typename MeshType::TetraContainer TetraContainer;
typedef typename vcg::Box3<ScalarType> Box3Type;
static void ComputePerVertexQualityMinMax(const MeshType & m, ScalarType &minV, ScalarType &maxV)
{
std::pair<ScalarType, ScalarType> pp = ComputePerVertexQualityMinMax(m);
minV=pp.first;
maxV=pp.second;
}
static std::pair<ScalarType, ScalarType> ComputePerVertexQualityMinMax(const MeshType & m)
{
// assert(0);
tri::RequirePerVertexQuality(m);
/** Please if you need to create an attribute called minmaxQ, implement an
explicit function that does it. This function should take a const Mesh. **/
//typename MeshType::template PerMeshAttributeHandle < std::pair<ScalarType, ScalarType> > mmqH;
//mmqH = tri::Allocator<MeshType>::template GetPerMeshAttribute <std::pair<ScalarType, ScalarType> >(m,"minmaxQ");
std::pair<ScalarType, ScalarType> minmax = std::make_pair(std::numeric_limits<ScalarType>::max(), -std::numeric_limits<ScalarType>::max());
for(ConstVertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if(!(*vi).IsD())
{
if( (*vi).Q() < minmax.first) minmax.first = (*vi).Q();
if( (*vi).Q() > minmax.second) minmax.second = (*vi).Q();
}
//mmqH() = minmax;
return minmax;
}
static void ComputePerFaceQualityMinMax(const MeshType & m, ScalarType &minV, ScalarType &maxV)
{
std::pair<ScalarType, ScalarType> pp = ComputePerFaceQualityMinMax(m);
minV=pp.first;
maxV=pp.second;
}
static std::pair<ScalarType,ScalarType> ComputePerFaceQualityMinMax( const MeshType & m)
{
tri::RequirePerFaceQuality(m);
std::pair<ScalarType,ScalarType> minmax = std::make_pair(std::numeric_limits<ScalarType>::max(),-std::numeric_limits<ScalarType>::max());
ConstFaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{
if( (*fi).Q() < minmax.first) minmax.first = (*fi).Q();
if( (*fi).Q() > minmax.second) minmax.second = (*fi).Q();
}
return minmax;
}
static void ComputePerTetraQualityMinMax(MeshType & m, ScalarType & minQ, ScalarType & maxQ)
{
std::pair<ScalarType, ScalarType> minmax = ComputerPerTetraQualityMinMax(m);
minQ = minmax.first;
maxQ = minmax.second;
}
static std::pair<ScalarType, ScalarType> ComputePerTetraQualityMinMax(MeshType & m)
{
tri::RequirePerTetraQuality(m);
std::pair<ScalarType, ScalarType> minmax = std::make_pair(std::numeric_limits<ScalarType>::max(), std::numeric_limits<ScalarType>::min());
ForEachTetra(m, [&minmax] (TetraType & t) {
if (t.Q() < minmax.first) minmax.first = t.Q();
if (t.Q() > minmax.second) minmax.second = t.Q();
});
return minmax;
}
static ScalarType ComputePerTetraQualityAvg(MeshType & m)
{
tri::RequirePerTetraQuality(m);
ScalarType avgQ = 0;
ForEachTetra(m, [&avgQ] (TetraType & t) {
avgQ += t.Q();
});
return avgQ /= (ScalarType) m.TN();
}
static ScalarType ComputePerFaceQualityAvg(const MeshType & m)
{
tri::RequirePerFaceQuality(m);
ScalarType AvgQ = 0;
ConstFaceIterator fi;
size_t num=0;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
{
if((*fi).IsD())continue;
AvgQ+= (*fi).Q();
num++;
}
return (AvgQ/(ScalarType)num);
}
static ScalarType ComputePerVertQualityAvg(const MeshType & m)
{
tri::RequirePerVertexQuality(m);
ScalarType AvgQ = 0;
ConstVertexIterator vi;
size_t num=0;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
{
if((*vi).IsD())continue;
AvgQ+= (*vi).cQ();
num++;
}
return (AvgQ/(ScalarType)num);
}
static std::pair<ScalarType,ScalarType> ComputePerEdgeQualityMinMax( MeshType & m)
{
tri::RequirePerEdgeQuality(m);
std::pair<ScalarType,ScalarType> minmax = std::make_pair(std::numeric_limits<ScalarType>::max(),-std::numeric_limits<ScalarType>::max());
EdgeIterator ei;
for(ei = m.edge.begin(); ei != m.edge.end(); ++ei)
if(!(*ei).IsD())
{
if( (*ei).Q() < minmax.first) minmax.first =(*ei).Q();
if( (*ei).Q() > minmax.second) minmax.second=(*ei).Q();
}
return minmax;
}
/**
\short compute the pointcloud barycenter.
E.g. it assume each vertex has a mass. If useQualityAsWeight is true, vertex quality is the mass of the vertices
*/
static Point3<ScalarType> ComputeCloudBarycenter(const MeshType & m, bool useQualityAsWeight=false)
{
if (useQualityAsWeight)
tri::RequirePerVertexQuality(m);
Point3<ScalarType> barycenter(0, 0, 0);
Point3d accumulator(0.0, 0.0, 0.0);
double weightSum = 0;
for (auto vi = m.vert.begin(); vi != m.vert.end(); ++vi) {
if (!(*vi).IsD()) {
ScalarType weight = useQualityAsWeight ? (*vi).Q() : 1.0f;
accumulator[0] += (double)((*vi).P()[0] * weight);
accumulator[1] += (double)((*vi).P()[1] * weight);
accumulator[2] += (double)((*vi).P()[2] * weight);
weightSum += weight;
}
}
barycenter[0] = (ScalarType)(accumulator[0] / weightSum);
barycenter[1] = (ScalarType)(accumulator[1] / weightSum);
barycenter[2] = (ScalarType)(accumulator[2] / weightSum);
return barycenter;
}
/**
\short compute the barycenter of the surface thin-shell.
E.g. it assume a 'empty' model where all the mass is located on the surface and compute the barycenter of that thinshell.
Works for any triangulated model (no problem with open, nonmanifold selfintersecting models).
Useful for computing the barycenter of 2D planar figures.
*/
static Point3<ScalarType> ComputeShellBarycenter(const MeshType & m)
{
Point3<ScalarType> barycenter(0,0,0);
ScalarType areaSum=0;
ConstFaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{
ScalarType area=DoubleArea(*fi);
barycenter += Barycenter(*fi)*area;
areaSum+=area;
}
return barycenter/areaSum;
}
static ScalarType ComputeTetraMeshVolume(MeshType & m)
{
ScalarType V = 0;
ForEachTetra(m, [&V] (TetraType & t) {
V += Tetra::ComputeVolume(t);
});
return V;
}
static ScalarType ComputeMeshVolume(MeshType & m)
{
Inertia<MeshType> I(m);
return I.Mass();
}
static ScalarType ComputeMeshArea(const MeshType & m)
{
ScalarType area=0;
for(auto fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
area += DoubleArea(*fi);
return area/ScalarType(2.0);
}
static ScalarType ComputePolyMeshArea(const MeshType & m)
{
ScalarType area=0;
for(ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
area += PolyArea(*fi);
return area;
}
static ScalarType ComputeBorderLength(MeshType & m, bool computeFFTopology = true)
{
RequireFFAdjacency(m);
ScalarType sum = 0;
if (computeFFTopology)
{
tri::UpdateTopology<MeshType>::FaceFace(m);
}
ForEachFace(m, [&](FaceType &f) {
for (int k=0; k<f.VN(); k++)
if (face::IsBorder(f, k))
{
sum += Distance(f.cP0(k), f.cP1(k));
}
});
return sum;
}
static void ComputePerVertexQualityDistribution(const MeshType & m, Distribution<ScalarType> & h, bool selectionOnly = false) // V1.0
{
tri::RequirePerVertexQuality(m);
h.Clear();
for(ConstVertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) )
{
if(!math::IsNAN((*vi).Q()))
h.Add((*vi).Q());
else
assert( "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
}
}
static void ComputePerFaceQualityDistribution( const MeshType & m, Distribution<typename MeshType::ScalarType> &h,
bool selectionOnly = false) // V1.0
{
tri::RequirePerFaceQuality(m);
h.Clear();
for(ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD() && ((!selectionOnly) || (*fi).IsS()) )
{
if(!math::IsNAN((*fi).Q()))
h.Add((*fi).Q());
else
assert( "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
}
}
static void ComputePerTetraQualityDistribution(MeshType & m, Distribution<ScalarType> & h, bool selectionOnly = false)
{
tri::RequirePerTetraQuality(m);
ForEachTetra(m, [&] (TetraType & t) {
if (!selectionOnly || t.IsS())
{
assert(!math::IsNAN(t.Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
h.Add(t.Q());
}
});
}
static void ComputePerTetraQualityHistogram(MeshType & m, Histogram<ScalarType> & h, bool selectionOnly = false, int HistSize = 10000)
{
tri::RequirePerTetraQuality(m);
std::pair<ScalarType, ScalarType> minmax = tri::Stat<MeshType>::ComputePerTetraQualityMinMax(m);
h.Clear();
h.SetRange(minmax.first, minmax.second, HistSize);
ForEachTetra(m, [&] (TetraType & t) {
if (!selectionOnly || t.IsS())
{
assert(!math::IsNAN(t.Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
h.Add(t.Q());
}
});
}
static void ComputePerFaceQualityHistogram( const MeshType & m, Histogram<ScalarType> &h, bool selectionOnly=false,int HistSize=10000 )
{
tri::RequirePerFaceQuality(m);
std::pair<ScalarType, ScalarType> minmax = tri::Stat<MeshType>::ComputePerFaceQualityMinMax(m);
h.Clear();
h.SetRange( minmax.first,minmax.second, HistSize );
for(ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD() && ((!selectionOnly) || (*fi).IsS()) ){
assert(!math::IsNAN((*fi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
h.Add((*fi).Q());
}
}
static void ComputePerVertexQualityHistogram( const MeshType & m, Histogram<ScalarType> &h, bool selectionOnly = false, int HistSize=10000 ) // V1.0
{
tri::RequirePerVertexQuality(m);
std::pair<ScalarType, ScalarType> minmax = ComputePerVertexQualityMinMax(m);
h.Clear();
h.SetRange( minmax.first,minmax.second, HistSize);
for(ConstVertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) )
{
assert(!math::IsNAN((*vi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
h.Add((*vi).Q());
}
// Sanity check; If some very wrong value has happened in the Q value,
// the histogram is messed. If a significant percentage (20% )of the values are all in a single bin
// we should try to solve the problem. No easy solution here.
// We choose to compute the get the 1percentile and 99 percentile values as new mixmax ranges
// and just to be sure enlarge the Histogram.
if(h.MaxCount() > HistSize/5)
{
std::vector<ScalarType> QV;
QV.reserve(m.vn);
for(ConstVertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if(!(*vi).IsD()) QV.push_back((*vi).Q());
std::nth_element(QV.begin(),QV.begin()+m.vn/100,QV.end());
ScalarType newmin=*(QV.begin()+m.vn/100);
std::nth_element(QV.begin(),QV.begin()+m.vn-m.vn/100,QV.end());
ScalarType newmax=*(QV.begin()+m.vn-m.vn/100);
h.Clear();
h.SetRange(newmin, newmax, HistSize*50);
for(ConstVertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) )
h.Add((*vi).Q());
}
}
static void ComputeEdgeLengthHistogram(MeshType & m, Histogram<ScalarType> & h)
{
assert(m.edge.size()>0);
h.Clear();
h.SetRange( 0, m.bbox.Diag(), 10000);
for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei)
{
if(!(*ei).IsD())
{
h.Add(Distance<ScalarType>((*ei).V(0)->P(),(*ei).V(1)->P()));
}
}
}
static ScalarType ComputeEdgeLengthAverage(MeshType & m)
{
Histogram<ScalarType> h;
ComputeEdgeLengthHistogram(m,h);
return h.Avg();
}
static ScalarType ComputeEdgeLengthSum(MeshType & m)
{
ScalarType sum=0;
ForEachEdge(m, [&](EdgeType &e){
sum+=Distance(e.cP(0),e.cP(1));
});
return sum;
}
static void ComputeFaceEdgeLengthDistribution( MeshType & m, Distribution<ScalarType> & h, bool includeFauxEdge=false)
{
std::vector< typename tri::UpdateTopology<MeshType>::PEdge > edgeVec;
tri::UpdateTopology<MeshType>::FillUniqueEdgeVector(m,edgeVec,includeFauxEdge);
h.Clear();
tri::UpdateFlags<MeshType>::FaceBorderFromNone(m);
for(size_t i=0;i<edgeVec.size();++i)
h.Add(Distance(edgeVec[i].v[0]->P(),edgeVec[i].v[1]->P()));
}
static ScalarType ComputeFaceEdgeLengthAverage(MeshType & m, bool selected=false)
{
double sum=0;
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
if(!selected || fi->IsS())
{
for(int i=0;i<3;++i)
sum+=double(Distance(fi->P0(i),fi->P1(i)));
}
return sum/(m.fn*3.0);
}
}; // end class
} //End Namespace tri
} // End Namespace vcg
#endif