vcglib/vcg/complex/algorithms/crease_cut.h

139 lines
5.6 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2017 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_CREASE_CUT
#define __VCG_CREASE_CUT
#include<vcg/simplex/face/jumping_pos.h>
#include<vcg/complex/algorithms/update/normal.h>
#include<vcg/complex/algorithms/update/flag.h>
namespace vcg {
namespace tri {
/** \brief Open a mesh cutting all the edges where the two faces make an angle *larger* than the indicated threshold
*/
template<class MESH_TYPE>
void CreaseCut(MESH_TYPE &m, float angleRad)
{
tri::UpdateFlags<MESH_TYPE>::FaceFauxSignedCrease(m, -angleRad, angleRad);
CutMeshAlongNonFauxEdges(m);
}
/**
* \brief Open a mesh along non-faux edges
*
* Duplicate exisiting vertices so that non-faux edges become boundary edges.
* It assume FF topology and manifoldness.
* The idea is that we scan faces around each vertex duplicating it each time we encounter a marked edge.
*
*/
template<class MESH_TYPE>
void CutMeshAlongNonFauxEdges(MESH_TYPE &m)
{
typedef typename MESH_TYPE::FaceIterator FaceIterator;
typedef typename MESH_TYPE::FaceType FaceType;
typedef typename face::Pos<FaceType> PosType;
tri::Allocator<MESH_TYPE>::CompactVertexVector(m);
tri::Allocator<MESH_TYPE>::CompactFaceVector(m);
tri::RequireFFAdjacency(m);
tri::UpdateFlags<MESH_TYPE>::VertexClearV(m);
std::vector<int> indVec(m.fn*3,-1);
int newVertexCounter=m.vn;
int startVn=m.vn;
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
for(int j=0;j<3;++j)
if(!(*fi).V(j)->IsV() ) // foreach unvisited vertex we loop around it searching for creases.
{
(*fi).V(j)->SetV();
PosType startPos(&*fi,j,(*fi).V(j));
PosType curPos=startPos;
bool borderVertexFlag=false; // on border vertex swe startfrom border edges (so we are sure that we cross the crease once)
do
{
curPos.FlipF();curPos.FlipE();
if(curPos.IsBorder()) {
borderVertexFlag=true;
break;
}
} while(curPos!=startPos);
assert(borderVertexFlag == curPos.IsBorder());
startPos=curPos;
if(!borderVertexFlag) // on internal vertex we start on creases.
{
do {
curPos.FlipF();curPos.FlipE();
if(!curPos.IsFaux())
break;
} while(curPos!=startPos);
startPos=curPos;
}
int locCreaseCounter=0;
int curVertexCounter= Index(m, curPos.V());
// The real Loop; we assume that if there is border we are starting from a border pos;
// the idea is that just before jumping on the next face, if we cross a crease, we increase the vertex counter.
do {
size_t faceInd = Index(m,curPos.F());
indVec[faceInd*3+ curPos.VInd()] = curVertexCounter;
curPos.FlipE();
if(!curPos.IsFaux())
{ //qDebug(" Crease FOUND");
++locCreaseCounter;
curVertexCounter=newVertexCounter;
newVertexCounter++;
}
curPos.FlipF();
} while (startPos!=curPos && !curPos.IsBorder());
}
} // end foreach face/vert
// Now the indVec vector contains for each face wedge the new index of each vertex (duplicated as necessary)
// We do a second loop to copy split vertices into new positions
tri::Allocator<MESH_TYPE>::AddVertices(m,newVertexCounter-m.vn);
tri::UpdateFlags<MESH_TYPE>::VertexClearV(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
for(int j=0;j<3;++j)
{
size_t faceInd = Index(m, *fi);
int curVertexInd = indVec[faceInd*3+ j];
assert(curVertexInd != -1);
assert(curVertexInd < m.vn);
if(curVertexInd < startVn) { assert(size_t(curVertexInd) == Index(m, (*fi).V(j))); }
if(curVertexInd >= startVn)
{
m.vert[curVertexInd].ImportData(*((*fi).V(j)));
(*fi).V(j) = & m.vert[curVertexInd];
}
}
}
} // end namespace tri
} // end namespace vcg
#endif