vcglib/vcg/simplex/tetrahedron/base.h

267 lines
10 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.1 2007/05/09 10:31:53 ganovelli
added
****************************************************************************/
#ifndef __VCG_TETRA_PLUS
#define __VCG_TETRA_PLUS
#include <vector>
#include <string>
#include <vcg/complex/all_types.h>
#include <vcg/container/derivation_chain.h>
#include "component.h"
namespace vcg {
/*------------------------------------------------------------------*/
// /* The base class form which we start to add our components.
// it has the empty definition for all the standard members (coords, color flags)
// Note:
// in order to avoid both virtual classes and ambiguous definitions all
// the subsequent overrides must be done in a sequence of derivation.
// In other words we cannot derive and add in a single derivation step
// (with multiple ancestor), both the real (non-empty) normal and color but
// we have to build the type a step a time (deriving from a single ancestor at a time).
template <class UserTypes>
class TetraTypeHolder: public UserTypes {
public:
template <class RightT>
void ImportData(const RightT & ){}
static void Name(std::vector<std::string> & /* name */){}
// prot
inline int VN() const { return 4;}
};
/* The base class form which we start to add our components.
it has the empty definition for all the standard members (coords, color flags)
Note:
in order to avoid both virtual classes and ambiguous definitions all
the subsequent overrides must be done in a sequence of derivation.
In other words we cannot derive and add in a single derivation step
(with multiple ancestor), both the real (non-empty) normal and color but
we have to build the type a step a time (deriving from a single ancestor at a time).
*/
template <class UserTypes>
class TetraSimpBase: public
tetrahedron::EmptyCore< TetraTypeHolder <UserTypes> > {
};
template <class UserTypes,
template <typename> class A, template <typename> class B,
template <typename> class C, template <typename> class D,
template <typename> class E, template <typename> class F,
template <typename> class G, template <typename> class H,
template <typename> class I, template <typename> class J,
template <typename> class K, template <typename> class L>
class TetraArityMax: public Arity12<TetraSimpBase<UserTypes>, A, B, C, D, E, F, G, H, I, J, K, L> {
// ----- Flags stuff -----
public:
enum {
DELETED = 0x00000001, // Tet is deleted from the mesh
NOTREAD = 0x00000002, // Tet of the mesh is not readable
NOTWRITE = 0x00000004, // Tet of the mesh is not writable
VISITED = 0x00000010, // Tet has been visited. Usualy this is a per-algorithm used bit.
SELECTED = 0x00000020, // Tet is selected. Algorithms should try to work only on selected face (if explicitly requested)
// Border _flags, it is assumed that BORDERi = BORDER0<<i
BORDER0 = 0x00000040,
BORDER1 = 0x00000080,
BORDER2 = 0x00000100,
BORDER3 = 0x00000200,
BORDER0123 = BORDER0 | BORDER1 | BORDER2 | BORDER3,
// Crease _flags, it is assumed that FEATUREi = FEATURE0<<i
// First user bit
USER0 = 0x00004000
};
/// checks if the Tet is deleted
bool IsD() const {return (this->cFlags() & DELETED) != 0;}
/// checks if the Tet is readable
bool IsR() const {return (this->cFlags() & NOTREAD) == 0;}
/// checks if the Tet is modifiable
bool IsW() const {return (this->cFlags() & NOTWRITE)== 0;}
/// This funcion checks whether the Tet is both readable and modifiable
bool IsRW() const {return (this->cFlags() & (NOTREAD | NOTWRITE)) == 0;}
/// checks if the Tet is Modified
bool IsS() const {return (this->cFlags() & SELECTED) != 0;}
/// checks if the Tet is Modified
bool IsV() const {return (this->cFlags() & VISITED) != 0;}
/** Set the flag value
@param flagp Valore da inserire nel flag
*/
void SetFlags(int flagp) {this->Flags()=flagp;}
/** Set the flag value
@param flagp Valore da inserire nel flag
*/
void ClearFlags() {this->Flags()=0;}
/// deletes the Tet from the mesh
void SetD() {this->Flags() |=DELETED;}
/// un-delete a Tet
void ClearD() {this->Flags() &=(~DELETED);}
/// marks the Tet as readable
void SetR() {this->Flags() &=(~NOTREAD);}
/// marks the Tet as not readable
void ClearR() {this->Flags() |=NOTREAD;}
/// marks the Tet as writable
void SetW() {this->Flags() &=(~NOTWRITE);}
/// marks the Tet as notwritable
void ClearW() {this->Flags() |=NOTWRITE;}
/// select the Tet
void SetS() {this->Flags() |=SELECTED;}
/// Un-select a Tet
void ClearS() {this->Flags() &= ~SELECTED;}
/// select the Tet
void SetV() {this->Flags() |=VISITED;}
/// Un-select a Tet
void ClearV() {this->Flags() &= ~VISITED;}
/// This function checks if the face is border
bool IsB(int i) const {return (this->cFlags() & (BORDER0<<i)) != 0;}
bool IsAnyB() const {return (this->cFlags() & (BORDER0123)) != 0;}
/// This function select the face
void SetB(int i) {this->Flags() |=(BORDER0<<i);}
/// This funcion execute the inverse operation of SetS()
void ClearB(int i) {this->Flags() &= (~(BORDER0<<i));}
/// Return the first bit that is not still used
static int &FirstUnusedBitFlag()
{
static int b =USER0;
return b;
}
/// Allocate a bit among the flags that can be used by user. It updates the FirstUnusedBitFlag.
static inline int NewBitFlag()
{
int bitForTheUser = FirstUnusedBitFlag();
FirstUnusedBitFlag()=FirstUnusedBitFlag()<<1;
return bitForTheUser;
}
/// De-allocate a pre allocated bit. It updates the FirstUnusedBitFlag.
// Note you must deallocate bit in the inverse order of the allocation (as in a stack)
static inline bool DeleteBitFlag(int bitval)
{
if(FirstUnusedBitFlag()>>1==bitval) {
FirstUnusedBitFlag() = FirstUnusedBitFlag()>>1;
return true;
}
assert(0);
return false;
}
/// This function checks if the given user bit is true
bool IsUserBit(int userBit){return (this->Flags() & userBit) != 0;}
/// This function set the given user bit
void SetUserBit(int userBit){this->Flags() |=userBit;}
/// This function clear the given user bit
void ClearUserBit(int userBit){this->Flags() &= (~userBit);}
template<class BoxType>
void GetBBox( BoxType & bb ) const
{
bb.Set(this->cP(0));
bb.Add(this->cP(1));
bb.Add(this->cP(2));
bb.Add(this->cP(3));
}
};
// template < typename T=int>
// class TetraDefaultDeriver : public T {};
/*
These are the three main classes that are used by the library user to define its own Facees.
The user MUST specify the names of all the type involved in a generic complex.
so for example when defining a Face of a trimesh you must know the name of the type of the edge and of the face.
Typical usage example:
A Face with coords, flags and normal for use in a standard trimesh:
class MyFaceNf : public FaceSimp2< VertProto, EdgeProto, MyFaceNf, face::Flag, face::Normal3f > {};
A Face with coords, and normal for use in a tetrahedral mesh AND in a standard trimesh:
class TetraFace : public FaceSimp3< VertProto, EdgeProto, TetraFace, TetraProto, face::Coord3d, face::Normal3f > {};
A summary of the components that can be added to a face (see components.h for details):
VertexRef
Mark //Incremental mark (int)
VTAdj //Topology vertex face adjacency
(pointers to next face in the ring of the vertex
TTAdj //topology: face face adj
pointers to adjacent faces
*/
template <class UserTypes,
template <typename> class A = DefaultDeriver, template <typename> class B = DefaultDeriver,
template <typename> class C = DefaultDeriver, template <typename> class D = DefaultDeriver,
template <typename> class E = DefaultDeriver, template <typename> class F = DefaultDeriver,
template <typename> class G = DefaultDeriver, template <typename> class H = DefaultDeriver,
template <typename> class I = DefaultDeriver, template <typename> class J = DefaultDeriver,
template <typename> class K = DefaultDeriver, template <typename> class L = DefaultDeriver>
class TetraSimp : public TetraArityMax<UserTypes, A, B, C, D, E, F, G, H, I, J, K, L> {
public: typedef AllTypes::ATetraType IAm; typedef UserTypes TypesPool;};
}// end namespace
#endif