294 lines
9.6 KiB
C++
294 lines
9.6 KiB
C++
/****************************************************************************
|
||
* VCGLib o o *
|
||
* Visual and Computer Graphics Library o o *
|
||
* _ O _ *
|
||
* Copyright(C) 2004 \/)\/ *
|
||
* Visual Computing Lab /\/| *
|
||
* ISTI - Italian National Research Council | *
|
||
* \ *
|
||
* All rights reserved. *
|
||
* *
|
||
* This program is free software; you can redistribute it and/or modify *
|
||
* it under the terms of the GNU General Public License as published by *
|
||
* the Free Software Foundation; either version 2 of the License, or *
|
||
* (at your option) any later version. *
|
||
* *
|
||
* This program is distributed in the hope that it will be useful, *
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||
* for more details. *
|
||
* *
|
||
****************************************************************************/
|
||
/****************************************************************************
|
||
History
|
||
|
||
$Log: gen_normal.h,v $
|
||
****************************************************************************/
|
||
|
||
#ifndef __VCG_GEN_NORMAL
|
||
#define __VCG_GEN_NORMAL
|
||
|
||
#include <algorithm>
|
||
|
||
namespace vcg {
|
||
|
||
template <class ScalarType>
|
||
class GenNormal
|
||
{
|
||
public:
|
||
typedef Point3<ScalarType> Point3x;
|
||
|
||
static void Random(int vn, std::vector<Point3<ScalarType > > &NN)
|
||
{
|
||
NN.clear();
|
||
while(NN.size()<vn)
|
||
{
|
||
Point3x pp(((float)rand())/RAND_MAX,
|
||
((float)rand())/RAND_MAX,
|
||
((float)rand())/RAND_MAX);
|
||
pp=pp*2.0-Point3x(1,1,1);
|
||
if(pp.SquaredNorm()<1)
|
||
{
|
||
Normalize(pp);
|
||
NN.push_back(pp);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static Point3x FibonacciPt(int i, int n)
|
||
{
|
||
const ScalarType Phi = ScalarType(sqrt(5)*0.5 + 0.5);
|
||
const ScalarType phi = 2.0*M_PI* (i/Phi - floor(i/Phi));
|
||
ScalarType cosTheta = 1.0 - (2*i + 1.0)/ScalarType(n);
|
||
ScalarType sinTheta = 1 - cosTheta*cosTheta;
|
||
sinTheta = sqrt(std::min(ScalarType(1),std::max(ScalarType(0),sinTheta)));
|
||
return Point3x(
|
||
cos(phi)*sinTheta,
|
||
sin(phi)*sinTheta,
|
||
cosTheta);
|
||
}
|
||
|
||
// Implementation of the Spherical Fibonacci Point Sets
|
||
// according to the description of
|
||
// Spherical Fibonacci Mapping
|
||
// Benjamin Keinert, Matthias Innmann, Michael Sanger, Marc Stamminger
|
||
// TOG 2015
|
||
static void Fibonacci(int n, std::vector<Point3x > &NN)
|
||
{
|
||
NN.resize(n);
|
||
for(int i=0;i<n;++i)
|
||
NN[i]=FibonacciPt(i,n);
|
||
}
|
||
|
||
static void UniformCone(int vn, std::vector<Point3<ScalarType > > &NN, ScalarType AngleRad, Point3x dir=Point3x(0,1,0))
|
||
{
|
||
std::vector<Point3<ScalarType > > NNT;
|
||
NN.clear();
|
||
// per prima cosa si calcola il volume della spherical cap di angolo AngleRad
|
||
ScalarType Height= 1.0 - cos(AngleRad); // height is measured from top...
|
||
// Surface is the one of the tangent cylinder
|
||
ScalarType CapArea = 2.0*M_PI*Height;
|
||
ScalarType Ratio = CapArea / (4.0*M_PI );
|
||
|
||
printf("----------AngleRad %f Angledeg %f ratio %f vn %i vn2 %i \n",AngleRad,math::ToDeg(AngleRad),Ratio,vn,int(vn/Ratio));
|
||
Fibonacci(vn/Ratio,NNT);
|
||
printf("asked %i got %i (expecting %i instead of %i)\n", int(vn/Ratio), NNT.size(), int(NNT.size()*Ratio), vn);
|
||
typename std::vector<Point3<ScalarType> >::iterator vi;
|
||
|
||
ScalarType cosAngle = cos(AngleRad);
|
||
for(vi=NNT.begin();vi!=NNT.end();++vi)
|
||
{
|
||
if(dir.dot(*vi) >= cosAngle) NN.push_back(*vi);
|
||
}
|
||
}
|
||
|
||
// This is an Implementation of the Dave Rusin’s Disco Ball algorithm
|
||
// You can spread the points as follows:
|
||
// Put N+1 points on the meridian from north to south poles, equally spaced.
|
||
// If you swing this meridian around the sphere, you'll sweep out the entire
|
||
// surface; in the process, each of the points will sweep out a circle. You
|
||
// can show that the ith point will sweep out a circle of radius sin(pi i/N).
|
||
// If you space points equally far apart on this circle, keeping the
|
||
// displacement roughly the same as on that original meridian, you'll be
|
||
// able to fit about 2N sin(pi i/N) points here. This process will put points
|
||
// pretty evenly spaced on the sphere; the number of such points is about
|
||
// 2+ 2N*Sum(i=1 to N-1) sin(pi i/N).
|
||
// The closed form of this summation
|
||
// 2.0 - ( (2.0*N * sin (M_PI/N))/(cos(M_PI/N) - 1.0));
|
||
static void DiscoBall(int vn, std::vector<Point3<ScalarType > > &NN)
|
||
{
|
||
// Guess the right N
|
||
ScalarType N=0;
|
||
|
||
for(N=1;N<vn;++N)
|
||
{
|
||
ScalarType expectedPoints = 2.0 - ( (2.0*N * sin (M_PI/N))/(cos(M_PI/N) - 1.0));
|
||
if(expectedPoints >= vn) break;
|
||
}
|
||
|
||
ScalarType VerticalAngle = M_PI / N;
|
||
NN.push_back(Point3<ScalarType>(0,0,1.0));
|
||
for (int i =1; i<N; ++i)
|
||
{
|
||
// Z is the north/south axis
|
||
ScalarType HorizRadius = sin(i*VerticalAngle);
|
||
ScalarType CircleLength = 2.0 * M_PI * HorizRadius;
|
||
ScalarType Z = cos(i*VerticalAngle);
|
||
ScalarType PointNumPerCircle = floor( CircleLength / VerticalAngle);
|
||
ScalarType HorizontalAngle = 2.0*M_PI/PointNumPerCircle;
|
||
for(ScalarType j=0;j<PointNumPerCircle;++j)
|
||
{
|
||
ScalarType X = cos(j*HorizontalAngle)*HorizRadius;
|
||
ScalarType Y = sin(j*HorizontalAngle)*HorizRadius;
|
||
NN.push_back(Point3<ScalarType>(X,Y,Z));
|
||
}
|
||
}
|
||
NN.push_back(Point3<ScalarType>(0,0,-1.0));
|
||
}
|
||
|
||
static void RecursiveOctahedron(int vn, std::vector<Point3<ScalarType > > &NN)
|
||
{
|
||
OctaLevel pp;
|
||
|
||
int ll=10;
|
||
while(pow(4.0f,ll)+2>vn) ll--;
|
||
|
||
pp.Init(ll);
|
||
sort(pp.v.begin(),pp.v.end());
|
||
int newsize = unique(pp.v.begin(),pp.v.end())-pp.v.begin();
|
||
pp.v.resize(newsize);
|
||
|
||
NN=pp.v;
|
||
//Perturb(NN);
|
||
}
|
||
|
||
static void Perturb(std::vector<Point3<ScalarType > > &NN)
|
||
{
|
||
float width=0.2f/sqrt(float(NN.size()));
|
||
|
||
typename std::vector<Point3<ScalarType> >::iterator vi;
|
||
for(vi=NN.begin(); vi!=NN.end();++vi)
|
||
{
|
||
Point3x pp(((float)rand())/RAND_MAX,
|
||
((float)rand())/RAND_MAX,
|
||
((float)rand())/RAND_MAX);
|
||
pp=pp*2.0-Point3x(1,1,1);
|
||
pp*=width;
|
||
(*vi)+=pp;
|
||
(*vi).Normalize();
|
||
}
|
||
|
||
}
|
||
|
||
/*
|
||
Trova la normale piu vicina a quella data.
|
||
Assume che tutte normale in ingresso sia normalizzata;
|
||
*/
|
||
static int BestMatchingNormal(const Point3x &n, std::vector<Point3x> &nv)
|
||
{
|
||
int ret=-1;
|
||
ScalarType bestang=-1;
|
||
ScalarType cosang;
|
||
typename std::vector<Point3x>::iterator ni;
|
||
for(ni=nv.begin();ni!=nv.end();++ni)
|
||
{
|
||
cosang=(*ni).dot(n);
|
||
if(cosang>bestang) {
|
||
bestang=cosang;
|
||
ret=ni-nv.begin();
|
||
}
|
||
}
|
||
assert(ret>=0 && ret <int(nv.size()));
|
||
return ret;
|
||
}
|
||
|
||
|
||
private :
|
||
class OctaLevel
|
||
{
|
||
public:
|
||
std::vector<Point3x> v;
|
||
int level;
|
||
int sz;
|
||
int sz2;
|
||
|
||
Point3x &Val(int i, int j) {
|
||
|
||
assert(i>=-sz2 && i<=sz2);
|
||
assert(j>=-sz2 && j<=sz2);
|
||
return v[i+sz2 +(j+sz2)*sz];
|
||
}
|
||
/*
|
||
* Only the first quadrant is generated and replicated onto the other ones.
|
||
*
|
||
* o lev == 1
|
||
* | \ sz2 = 2^lev = 2
|
||
* o - o sz = 5 (eg. all the points lie in a 5x5 squre)
|
||
* | \ | \
|
||
* o - o - o
|
||
*
|
||
* |
|
||
* V
|
||
*
|
||
* o
|
||
* | \ lev == 1
|
||
* o - o sz2 = 4
|
||
* | \ | \ sz = 9 (eg. all the points lie in a 9x9 squre)
|
||
* o - o - o
|
||
* | \ | \ | \
|
||
* o - o - o - o
|
||
* | \ | \ | \ | \
|
||
* o - o - o - o - o
|
||
*
|
||
*
|
||
*/
|
||
void Init(int lev)
|
||
{
|
||
sz2=pow(2.0f,lev);
|
||
sz=sz2*2+1;
|
||
v.resize(sz*sz,Point3x(0,0,0));
|
||
if(lev==0)
|
||
{
|
||
Val( 0,0)=Point3x( 0, 0, 1);
|
||
Val( 1,0)=Point3x( 1, 0, 0);
|
||
Val( 0,1)=Point3x( 0, 1, 0);
|
||
}
|
||
else
|
||
{
|
||
OctaLevel tmp;
|
||
tmp.Init(lev-1);
|
||
int i,j;
|
||
for(i=0;i<=sz2;++i)
|
||
for(j=0;j<=(sz2-i);++j)
|
||
{
|
||
if((i%2)==0 && (j%2)==0)
|
||
Val(i,j)=tmp.Val(i/2,j/2);
|
||
if((i%2)!=0 && (j%2)==0)
|
||
Val(i,j)=(tmp.Val((i-1)/2,j/2)+tmp.Val((i+1)/2,j/2))/2.0;
|
||
if((i%2)==0 && (j%2)!=0)
|
||
Val(i,j)=(tmp.Val(i/2,(j-1)/2)+tmp.Val(i/2,(j+1)/2))/2.0;
|
||
if((i%2)!=0 && (j%2)!=0)
|
||
Val(i,j)=(tmp.Val((i-1)/2,(j+1)/2)+tmp.Val((i+1)/2,(j-1)/2))/2.0;
|
||
|
||
Val( sz2-j, sz2-i)[0] = Val(i,j)[0]; Val( sz2-j, sz2-i)[1] = Val(i,j)[1]; Val( sz2-j, sz2-i)[2] = -Val(i,j)[2];
|
||
Val(-sz2+j, sz2-i)[0] =-Val(i,j)[0]; Val(-sz2+j, sz2-i)[1] = Val(i,j)[1]; Val(-sz2+j, sz2-i)[2] = -Val(i,j)[2];
|
||
Val( sz2-j,-sz2+i)[0] = Val(i,j)[0]; Val( sz2-j,-sz2+i)[1] =-Val(i,j)[1]; Val( sz2-j,-sz2+i)[2] = -Val(i,j)[2];
|
||
Val(-sz2+j,-sz2+i)[0] =-Val(i,j)[0]; Val(-sz2+j,-sz2+i)[1] =-Val(i,j)[1]; Val(-sz2+j,-sz2+i)[2] = -Val(i,j)[2];
|
||
|
||
Val(-i,-j)[0] = -Val(i,j)[0]; Val(-i,-j)[1] = -Val(i,j)[1]; Val(-i,-j)[2] = Val(i,j)[2];
|
||
Val( i,-j)[0] = Val(i,j)[0]; Val( i,-j)[1] = -Val(i,j)[1]; Val( i,-j)[2] = Val(i,j)[2];
|
||
Val(-i, j)[0] = -Val(i,j)[0]; Val(-i, j)[1] = Val(i,j)[1]; Val(-i, j)[2] = Val(i,j)[2];
|
||
}
|
||
|
||
typename std::vector<Point3<ScalarType> >::iterator vi;
|
||
for(vi=v.begin(); vi!=v.end();++vi)
|
||
(*vi).Normalize();
|
||
}
|
||
}
|
||
};
|
||
};
|
||
}
|
||
#endif
|