vcglib/vcg/complex/base.h

664 lines
38 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_MESH
#error "This file should not be included alone. It is automatically included by complex.h"
#endif
#ifndef __VCG_COMPLEX_BASE
#define __VCG_COMPLEX_BASE
namespace vcg {
class PointerToAttribute
{
public:
SimpleTempDataBase * _handle; // pointer to the SimpleTempData that stores the attribute
std::string _name; // name of the attribute
int _sizeof; // size of the attribute type (used only with VMI loading)
int _padding; // padding (used only with VMI loading)
int n_attr; // unique ID of the attribute
void Resize(const int & sz){((SimpleTempDataBase *)_handle)->Resize(sz);}
void Reorder(std::vector<size_t> & newVertIndex){((SimpleTempDataBase *)_handle)->Reorder(newVertIndex);}
bool operator<(const PointerToAttribute b) const { return(_name.empty()&&b._name.empty())?(_handle < b._handle):( _name < b._name);}
};
namespace tri {
/** \addtogroup trimesh */
/*@{*/
/* MeshTypeHolder is a class which is used to define the types in the mesh
*/
template <class TYPESPOOL>
struct BaseMeshTypeHolder{
typedef bool ScalarType;
typedef std::vector< typename TYPESPOOL::VertexType > CONTV;
typedef std::vector< typename TYPESPOOL::EdgeType > CONTE;
typedef std::vector< typename TYPESPOOL::FaceType > CONTF;
typedef std::vector< typename TYPESPOOL::HEdgeType > CONTH;
typedef CONTV VertContainer;
typedef _Vertex VertexType;
typedef typename TYPESPOOL::VertexPointer VertexPointer;
typedef const typename TYPESPOOL::VertexPointer ConstVertexPointer;
typedef bool CoordType;
typedef typename CONTV::iterator VertexIterator;
typedef typename CONTV::const_iterator ConstVertexIterator;
typedef CONTE EdgeContainer;
typedef typename CONTE::value_type EdgeType;
typedef typename TYPESPOOL::EdgePointer EdgePointer;
typedef typename CONTE::iterator EdgeIterator;
typedef typename CONTE::const_iterator ConstEdgeIterator;
typedef CONTF FaceContainer;
typedef typename CONTF::value_type FaceType;
typedef typename CONTF::const_iterator ConstFaceIterator;
typedef typename CONTF::iterator FaceIterator;
typedef typename TYPESPOOL::FacePointer FacePointer;
typedef const typename TYPESPOOL::FacePointer ConstFacePointer;
typedef CONTH HEdgeContainer;
typedef typename CONTH::value_type HEdgeType;
typedef typename TYPESPOOL::HEdgePointer HEdgePointer;
typedef typename CONTH::iterator HEdgeIterator;
typedef typename CONTH::const_iterator ConstHEdgeIterator;
};
template <class T, typename CONT, class TRAIT >
struct MeshTypeHolder: public T {};
template <class T, typename CONT>
struct MeshTypeHolder<T, CONT, AllTypes::AVertexType>: public T {
typedef CONT VertContainer;
typedef typename VertContainer::value_type VertexType;
typedef VertexType * VertexPointer;
typedef const VertexType * ConstVertexPointer;
typedef typename VertexType::ScalarType ScalarType;
typedef typename VertexType::CoordType CoordType;
typedef typename VertContainer::iterator VertexIterator;
typedef typename VertContainer::const_iterator ConstVertexIterator;
};
template <typename T, class CONT>
struct MeshTypeHolder< T, CONT, AllTypes::AEdgeType>: public T{
typedef CONT EdgeContainer;
typedef typename EdgeContainer::value_type EdgeType;
typedef typename EdgeContainer::value_type * EdgePointer;
typedef typename EdgeContainer::iterator EdgeIterator;
typedef typename EdgeContainer::const_iterator ConstEdgeIterator;
};
template <typename T, class CONT>
struct MeshTypeHolder< T, CONT, AllTypes::AFaceType>:public T {
typedef CONT FaceContainer;
typedef typename FaceContainer::value_type FaceType;
typedef typename FaceContainer::const_iterator ConstFaceIterator;
typedef typename FaceContainer::iterator FaceIterator;
typedef FaceType * FacePointer;
typedef const FaceType * ConstFacePointer;
};
template <typename T, class CONT>
struct MeshTypeHolder< T, CONT, AllTypes::AHEdgeType>: public T{
typedef CONT HEdgeContainer;
typedef typename HEdgeContainer::value_type HEdgeType;
typedef typename HEdgeContainer::value_type * HEdgePointer;
typedef typename HEdgeContainer::iterator HEdgeIterator;
typedef typename HEdgeContainer::const_iterator ConstHEdgeIterator;
};
template <typename T, typename CONT> struct Der: public MeshTypeHolder<T,CONT, typename CONT::value_type::IAm>{};
struct DummyContainer{struct value_type{ typedef int IAm;}; };
/** \brief The official \b mesh class
As explained in \ref basic_concepts, this class is templated over a list of container of simplexes (like vertex, face, edges)
*/
template < class Container0 = DummyContainer, class Container1 = DummyContainer, class Container2 = DummyContainer, class Container3 = DummyContainer >
class TriMesh
: public MArity4< BaseMeshTypeHolder<typename Container0::value_type::TypesPool>, Container0, Der ,Container1, Der, Container2, Der, Container3, Der>{
public:
typedef typename TriMesh::ScalarType ScalarType;
typedef typename TriMesh::VertContainer VertContainer;
typedef typename TriMesh::EdgeContainer EdgeContainer;
typedef typename TriMesh::FaceContainer FaceContainer;
// types for vertex
typedef typename TriMesh::VertexType VertexType;
typedef typename TriMesh::VertexPointer VertexPointer;
typedef typename TriMesh::ConstVertexPointer ConstVertexPointer;
typedef typename TriMesh::CoordType CoordType;
typedef typename TriMesh::VertexIterator VertexIterator;
typedef typename TriMesh::ConstVertexIterator ConstVertexIterator;
// types for edge
typedef typename TriMesh::EdgeType EdgeType;
typedef typename TriMesh::EdgePointer EdgePointer;
typedef typename TriMesh::EdgeIterator EdgeIterator;
typedef typename TriMesh::ConstEdgeIterator ConstEdgeIterator;
//types for face
typedef typename TriMesh::FaceType FaceType;
typedef typename TriMesh::ConstFaceIterator ConstFaceIterator;
typedef typename TriMesh::FaceIterator FaceIterator;
typedef typename TriMesh::FacePointer FacePointer;
typedef typename TriMesh::ConstFacePointer ConstFacePointer;
// types for hedge
typedef typename TriMesh::HEdgeType HEdgeType;
typedef typename TriMesh::HEdgePointer HEdgePointer;
typedef typename TriMesh::HEdgeIterator HEdgeIterator;
typedef typename TriMesh::HEdgeContainer HEdgeContainer;
typedef typename TriMesh::ConstHEdgeIterator ConstHEdgeIterator;
typedef vcg::PointerToAttribute PointerToAttribute;
typedef TriMesh<Container0, Container1,Container2,Container3> MeshType;
typedef Box3<ScalarType> BoxType;
/// Container of vertices, usually a vector.
VertContainer vert;
/// Current number of vertices; this member is for internal use only. You should always use the VN() member
int vn;
/// Current number of vertices
inline int VN() const { return vn; }
/// Container of edges, usually a vector.
EdgeContainer edge;
/// Current number of edges; this member is for internal use only. You should always use the EN() member
int en;
/// Current number of edges
inline int EN() const { return en; }
/// Container of faces, usually a vector.
FaceContainer face;
/// Current number of faces; this member is for internal use only. You should always use the FN() member
int fn;
/// Current number of faces
inline int FN() const { return fn; }
/// Container of half edges, usually a vector.
HEdgeContainer hedge;
/// Current number of halfedges; this member is for internal use only. You should always use the HN() member
int hn;
/// Current number of halfedges;
inline int HN() const { return hn; }
/// Bounding box of the mesh
Box3<typename TriMesh::VertexType::CoordType::ScalarType> bbox;
/// Nomi di textures
//
std::vector<std::string> textures;
//
std::vector<std::string> normalmaps;
int attrn; // total numer of attribute created
std::set< PointerToAttribute > vert_attr;
std::set< PointerToAttribute > edge_attr;
std::set< PointerToAttribute > face_attr;
std::set< PointerToAttribute > mesh_attr;
template <class ATTR_TYPE, class CONT>
class AttributeHandle{
public:
AttributeHandle(){_handle=(SimpleTempData<CONT,ATTR_TYPE> *)NULL;}
AttributeHandle( void *ah,const int & n):_handle ( (SimpleTempData<CONT,ATTR_TYPE> *)ah ),n_attr(n){}
AttributeHandle operator = ( const PointerToAttribute & pva){
_handle = (SimpleTempData<CONT,ATTR_TYPE> *)pva._handle;
n_attr = pva.n_attr;
return (*this);
}
//pointer to the SimpleTempData that stores the attribute
SimpleTempData<CONT,ATTR_TYPE> * _handle;
// its attribute number
int n_attr;
// access function
template <class RefType>
ATTR_TYPE & operator [](const RefType & i){return (*_handle)[i];}
};
template <class ATTR_TYPE>
class PerVertexAttributeHandle: public AttributeHandle<ATTR_TYPE,VertContainer>{
public:
PerVertexAttributeHandle():AttributeHandle<ATTR_TYPE,VertContainer>(){}
PerVertexAttributeHandle( void *ah,const int & n):AttributeHandle<ATTR_TYPE,VertContainer>(ah,n){}
};
template <class ATTR_TYPE>
class PerFaceAttributeHandle: public AttributeHandle<ATTR_TYPE,FaceContainer>{
public:
PerFaceAttributeHandle():AttributeHandle<ATTR_TYPE,FaceContainer>(){}
PerFaceAttributeHandle( void *ah,const int & n):AttributeHandle<ATTR_TYPE,FaceContainer>(ah,n){}
};
template <class ATTR_TYPE>
class PerEdgeAttributeHandle: public AttributeHandle<ATTR_TYPE,EdgeContainer>{
public:
PerEdgeAttributeHandle():AttributeHandle<ATTR_TYPE,EdgeContainer>(){}
PerEdgeAttributeHandle( void *ah,const int & n):AttributeHandle<ATTR_TYPE,EdgeContainer>(ah,n){}
};
template <class ATTR_TYPE>
class PerMeshAttributeHandle{
public:
PerMeshAttributeHandle(){_handle=NULL;}
PerMeshAttributeHandle(void *ah,const int & n):_handle ( (Attribute<ATTR_TYPE> *)ah ),n_attr(n){}
PerMeshAttributeHandle operator = ( const PerMeshAttributeHandle & pva){
_handle = (Attribute<ATTR_TYPE> *)pva._handle;
n_attr = pva.n_attr;
return (*this);
}
Attribute<ATTR_TYPE> * _handle;
int n_attr;
ATTR_TYPE & operator ()(){ return *((Attribute<ATTR_TYPE> *)_handle)->attribute;}
};
// the camera member (that should keep the intrinsics) is no more needed since 2006, when intrisncs moved into the Shot structure
//Camera<ScalarType> camera; // intrinsic
Shot<ScalarType> shot; // intrinsic && extrinsic
private:
/// The per-mesh color. Not very useful and meaningful...
Color4b c;
public:
inline const Color4b &C() const { return c; }
inline Color4b &C() { return c; }
inline Color4b cC() const { return c; }
/// Default constructor
TriMesh()
{
Clear();
}
/// destructor
~TriMesh()
{
typename std::set< PointerToAttribute>::iterator i;
for( i = vert_attr.begin(); i != vert_attr.end(); ++i)
delete ((SimpleTempDataBase*)(*i)._handle);
for( i = edge_attr.begin(); i != edge_attr.end(); ++i)
delete ((SimpleTempDataBase*)(*i)._handle);
for( i = face_attr.begin(); i != face_attr.end(); ++i)
delete ((SimpleTempDataBase*)(*i)._handle);
for( i = mesh_attr.begin(); i != mesh_attr.end(); ++i)
delete ((SimpleTempDataBase*)(*i)._handle);
FaceIterator fi;
for(fi = face.begin(); fi != face.end(); ++fi) (*fi).Dealloc();
}
int Mem(const int & nv, const int & nf) const {
typename std::set< PointerToAttribute>::const_iterator i;
int size = 0;
size += sizeof(TriMesh)+sizeof(VertexType)*nv+sizeof(FaceType)*nf;
for( i = vert_attr.begin(); i != vert_attr.end(); ++i)
size += ((SimpleTempDataBase*)(*i)._handle)->SizeOf()*nv;
for( i = edge_attr.begin(); i != edge_attr.end(); ++i)
size += ((SimpleTempDataBase*)(*i)._handle)->SizeOf()*en;
for( i = face_attr.begin(); i != face_attr.end(); ++i)
size += ((SimpleTempDataBase*)(*i)._handle)->SizeOf()*nf;
for( i = mesh_attr.begin(); i != mesh_attr.end(); ++i)
size += ((SimpleTempDataBase*)(*i)._handle)->SizeOf();
return size;
}
int MemUsed() const {return Mem(vert.size(),face.size());}
inline int MemNeeded() const {return Mem(vn,fn);}
/// Function to destroy the mesh
void Clear()
{
vert.clear();
face.clear();
edge.clear();
// textures.clear();
// normalmaps.clear();
vn = 0;
en = 0;
fn = 0;
hn = 0;
imark = 0;
attrn = 0;
C()=Color4b::Gray;
}
bool IsEmpty()
{
return vert.empty() && edge.empty() && face.empty();
}
int & SimplexNumber(){ return fn;}
int & VertexNumber(){ return vn;}
/// The incremental mark
int imark;
private:
// TriMesh cannot be copied. Use Append (see vcg/complex/append.h)
TriMesh operator =(const TriMesh & /*m*/){assert(0);return TriMesh();}
TriMesh(const TriMesh & ){}
}; // end class Mesh
/// Initialize the imark-system of the faces
template <class MeshType> inline void InitFaceIMark(MeshType & m)
{
typename MeshType::FaceIterator f;
for(f=m.face.begin();f!=m.face.end();++f)
if( !(*f).IsD() && (*f).IsR() && (*f).IsW() )
(*f).InitIMark();
}
/// Initialize the imark-system of the vertices
template <class MeshType> inline void InitVertexIMark(MeshType & m)
{
typename MeshType::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if( !(*vi).IsD() && (*vi).IsRW() )
(*vi).InitIMark();
}
/** \brief Access function to the incremental mark.
You should not use this member directly. In most of the case just use IsMarked() and Mark()
*/
template <class MeshType> inline int & IMark(MeshType & m){return m.imark;}
/** \brief Check if the vertex incremental mark matches the one of the mesh.
@param m the mesh containing the element
@param v Vertex pointer */
template <class MeshType> inline bool IsMarked(MeshType & m, typename MeshType::ConstVertexPointer v ) { return v->cIMark() == m.imark; }
/** \brief Check if the face incremental mark matches the one of the mesh.
@param m the mesh containing the element
@param f Face pointer */
template <class MeshType> inline bool IsMarked( MeshType & m,typename MeshType::ConstFacePointer f ) { return f->cIMark() == m.imark; }
/** \brief Set the vertex incremental mark of the vertex to the one of the mesh.
@param m the mesh containing the element
@param v Vertex pointer */
template <class MeshType> inline void Mark(MeshType & m, typename MeshType::VertexPointer v ) { v->IMark() = m.imark; }
/** \brief Set the face incremental mark of the vertex to the one of the mesh.
@param m the mesh containing the element
@param f Vertex pointer */
template <class MeshType> inline void Mark(MeshType & m, typename MeshType::FacePointer f ) { f->IMark() = m.imark; }
/** \brief Unmark, in constant time, all the elements (face and vertices) of a mesh.
@param m the mesh containing the element
In practice this function just increment the internal counter that stores the value for which an element is considered marked;
therefore all the mesh elements become immediately un-mmarked.
*/
template <class MeshType> inline void UnMarkAll(MeshType & m)
{
++m.imark;
}
template < class CType0, class CType1 , class CType2, class CType3>
bool HasPerVertexVEAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh < CType0 , CType1, CType2, CType3>::VertContainer::value_type::HasVEAdjacency();}
template < class CType0, class CType1, class CType2 , class CType3>
bool HasPerEdgeVEAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh < CType0 , CType1, CType2, CType3>::EdgeContainer::value_type::HasVEAdjacency();}
template < class VertexType> bool VertexVectorHasVFAdjacency (const std::vector<VertexType> &) { return VertexType::HasVFAdjacency(); }
template < class FaceType > bool FaceVectorHasVFAdjacency (const std::vector<FaceType > &) { return FaceType::HasVFAdjacency(); }
template < class TriMeshType> bool HasPerFaceVFAdjacency (const TriMeshType &m) { return tri::FaceVectorHasVFAdjacency (m.vert); }
template < class TriMeshType> bool HasPerVertexVFAdjacency (const TriMeshType &m) { return tri::VertexVectorHasVFAdjacency(m.vert); }
template < class VertexType> bool VertexVectorHasPerVertexQuality (const std::vector<VertexType> &) { return VertexType::HasQuality (); }
template < class VertexType> bool VertexVectorHasPerVertexNormal (const std::vector<VertexType> &) { return VertexType::HasNormal (); }
template < class VertexType> bool VertexVectorHasPerVertexColor (const std::vector<VertexType> &) { return VertexType::HasColor (); }
template < class VertexType> bool VertexVectorHasPerVertexMark (const std::vector<VertexType> &) { return VertexType::HasMark (); }
template < class VertexType> bool VertexVectorHasPerVertexFlags (const std::vector<VertexType> &) { return VertexType::HasFlags (); }
template < class VertexType> bool VertexVectorHasPerVertexRadius (const std::vector<VertexType> &) { return VertexType::HasRadius (); }
template < class VertexType> bool VertexVectorHasPerVertexCurvature (const std::vector<VertexType> &) { return VertexType::HasCurvature (); }
template < class VertexType> bool VertexVectorHasPerVertexCurvatureDir(const std::vector<VertexType> &) { return VertexType::HasCurvatureDir(); }
template < class VertexType> bool VertexVectorHasPerVertexTexCoord (const std::vector<VertexType> &) { return VertexType::HasTexCoord (); }
template < class TriMeshType> bool HasPerVertexQuality (const TriMeshType &m) { return tri::VertexVectorHasPerVertexQuality (m.vert); }
template < class TriMeshType> bool HasPerVertexNormal (const TriMeshType &m) { return tri::VertexVectorHasPerVertexNormal (m.vert); }
template < class TriMeshType> bool HasPerVertexColor (const TriMeshType &m) { return tri::VertexVectorHasPerVertexColor (m.vert); }
template < class TriMeshType> bool HasPerVertexMark (const TriMeshType &m) { return tri::VertexVectorHasPerVertexMark (m.vert); }
template < class TriMeshType> bool HasPerVertexFlags (const TriMeshType &m) { return tri::VertexVectorHasPerVertexFlags (m.vert); }
template < class TriMeshType> bool HasPerVertexRadius (const TriMeshType &m) { return tri::VertexVectorHasPerVertexRadius (m.vert); }
template < class TriMeshType> bool HasPerVertexCurvature (const TriMeshType &m) { return tri::VertexVectorHasPerVertexCurvature (m.vert); }
template < class TriMeshType> bool HasPerVertexCurvatureDir(const TriMeshType &m) { return tri::VertexVectorHasPerVertexCurvatureDir(m.vert); }
template < class TriMeshType> bool HasPerVertexTexCoord (const TriMeshType &m) { return tri::VertexVectorHasPerVertexTexCoord (m.vert); }
template < class EdgeType> bool EdgeVectorHasPerEdgeQuality (const std::vector<EdgeType> &) { return EdgeType::HasQuality (); }
template < class EdgeType> bool EdgeVectorHasPerEdgeNormal (const std::vector<EdgeType> &) { return EdgeType::HasNormal (); }
template < class EdgeType> bool EdgeVectorHasPerEdgeColor (const std::vector<EdgeType> &) { return EdgeType::HasColor (); }
template < class EdgeType> bool EdgeVectorHasPerEdgeMark (const std::vector<EdgeType> &) { return EdgeType::HasMark (); }
template < class EdgeType> bool EdgeVectorHasPerEdgeFlags (const std::vector<EdgeType> &) { return EdgeType::HasFlags (); }
template < class TriMeshType> bool HasPerEdgeQuality (const TriMeshType &m) { return tri::EdgeVectorHasPerEdgeQuality (m.edge); }
template < class TriMeshType> bool HasPerEdgeNormal (const TriMeshType &m) { return tri::EdgeVectorHasPerEdgeNormal (m.edge); }
template < class TriMeshType> bool HasPerEdgeColor (const TriMeshType &m) { return tri::EdgeVectorHasPerEdgeColor (m.edge); }
template < class TriMeshType> bool HasPerEdgeMark (const TriMeshType &m) { return tri::EdgeVectorHasPerEdgeMark (m.edge); }
template < class TriMeshType> bool HasPerEdgeFlags (const TriMeshType &m) { return tri::EdgeVectorHasPerEdgeFlags (m.edge); }
template < class FaceType> bool FaceVectorHasPerWedgeColor (const std::vector<FaceType> &) { return FaceType::HasWedgeColor (); }
template < class FaceType> bool FaceVectorHasPerWedgeNormal (const std::vector<FaceType> &) { return FaceType::HasWedgeNormal (); }
template < class FaceType> bool FaceVectorHasPerWedgeTexCoord(const std::vector<FaceType> &) { return FaceType::HasWedgeTexCoord(); }
template < class TriMeshType> bool HasPerWedgeColor (const TriMeshType &m) { return tri::FaceVectorHasPerWedgeColor (m.face); }
template < class TriMeshType> bool HasPerWedgeNormal (const TriMeshType &m) { return tri::FaceVectorHasPerWedgeNormal (m.face); }
template < class TriMeshType> bool HasPerWedgeTexCoord(const TriMeshType &m) { return tri::FaceVectorHasPerWedgeTexCoord(m.face); }
template < class CType0, class CType1, class CType2 , class CType3>
bool HasPolyInfo (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh < CType0 , CType1, CType2, CType3>::FaceContainer::value_type::HasPolyInfo();}
template < class FaceType> bool FaceVectorHasPerFaceFlags (const std::vector<FaceType> &) { return FaceType::HasFlags (); }
template < class FaceType> bool FaceVectorHasPerFaceNormal (const std::vector<FaceType> &) { return FaceType::HasNormal (); }
template < class FaceType> bool FaceVectorHasPerFaceColor (const std::vector<FaceType> &) { return FaceType::HasColor (); }
template < class FaceType> bool FaceVectorHasPerFaceMark (const std::vector<FaceType> &) { return FaceType::HasMark (); }
template < class FaceType> bool FaceVectorHasPerFaceQuality(const std::vector<FaceType> &) { return FaceType::HasQuality(); }
template < class FaceType> bool FaceVectorHasFFAdjacency (const std::vector<FaceType> &) { return FaceType::HasFFAdjacency(); }
template < class FaceType> bool FaceVectorHasFEAdjacency (const std::vector<FaceType> &) { return FaceType::HasFEAdjacency(); }
template < class FaceType> bool FaceVectorHasFVAdjacency (const std::vector<FaceType> &) { return FaceType::HasFVAdjacency(); }
template < class FaceType> bool FaceVectorHasPerFaceCurvatureDir (const std::vector<FaceType> &) { return FaceType::HasCurvatureDir(); }
template < class TriMeshType> bool HasPerFaceFlags (const TriMeshType &m) { return tri::FaceVectorHasPerFaceFlags (m.face); }
template < class TriMeshType> bool HasPerFaceNormal (const TriMeshType &m) { return tri::FaceVectorHasPerFaceNormal (m.face); }
template < class TriMeshType> bool HasPerFaceColor (const TriMeshType &m) { return tri::FaceVectorHasPerFaceColor (m.face); }
template < class TriMeshType> bool HasPerFaceMark (const TriMeshType &m) { return tri::FaceVectorHasPerFaceMark (m.face); }
template < class TriMeshType> bool HasPerFaceQuality (const TriMeshType &m) { return tri::FaceVectorHasPerFaceQuality (m.face); }
template < class TriMeshType> bool HasPerFaceCurvatureDir(const TriMeshType &m) { return tri::FaceVectorHasPerFaceCurvatureDir(m.face); }
template < class TriMeshType> bool HasFFAdjacency (const TriMeshType &m) { return tri::FaceVectorHasFFAdjacency (m.face); }
template < class TriMeshType> bool HasFEAdjacency (const TriMeshType &m) { return tri::FaceVectorHasFEAdjacency (m.face); }
template < class TriMeshType> bool HasFVAdjacency (const TriMeshType &m) { return tri::FaceVectorHasFVAdjacency (m.face); }
template < class TriMeshType> bool HasVFAdjacency (const TriMeshType &m) { return tri::FaceVectorHasVFAdjacency (m.face) && tri::VertexVectorHasVFAdjacency(m.vert); }
template < class CType0, class CType1, class CType2 , class CType3>
bool HasVEAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh < CType0 , CType1, CType2, CType3>::VertContainer::value_type::HasVEAdjacency();}
template < class CType0, class CType1, class CType2 , class CType3>
bool HasVHAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh < CType0 , CType1, CType2, CType3>::VertContainer::value_type::HasVHAdjacency();}
template < class CType0, class CType1, class CType2 , class CType3>
bool HasEVAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh < CType0 , CType1, CType2, CType3>::EdgeType::HasEVAdjacency();}
template < class CType0, class CType1, class CType2 , class CType3>
bool HasEEAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh < CType0 , CType1, CType2, CType3>::EdgeType::HasEEAdjacency();}
template < class CType0, class CType1, class CType2 , class CType3>
bool HasEFAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh < CType0 , CType1, CType2, CType3>::EdgeType::HasEFAdjacency();}
template < class CType0, class CType1, class CType2 , class CType3>
bool HasEHAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh < CType0 , CType1, CType2, CType3>::EdgeType::HasEHAdjacency();}
template < class CType0, class CType1, class CType2 , class CType3>
bool HasFHAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh < CType0 , CType1, CType2, CType3>::FaceType::HasFHAdjacency();}
template < class CType0, class CType1, class CType2 , class CType3>
bool HasHVAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh < CType0 , CType1, CType2, CType3>::HEdgeType::HasHVAdjacency();}
template < class CType0, class CType1, class CType2 , class CType3>
bool HasHEAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh < CType0 , CType1, CType2, CType3>::HEdgeType::HasHEAdjacency();}
template < class CType0, class CType1, class CType2 , class CType3>
bool HasHFAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh < CType0 , CType1, CType2, CType3>::HEdgeType::HasHFAdjacency();}
template < class CType0, class CType1, class CType2 , class CType3>
bool HasHNextAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh< CType0, CType1, CType2 , CType3>::HEdgeType::HasHNextAdjacency();}
template < class CType0, class CType1, class CType2 , class CType3>
bool HasHPrevAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh< CType0, CType1, CType2 , CType3>::HEdgeType::HasHPrevAdjacency();}
template < class CType0, class CType1, class CType2 , class CType3>
bool HasHOppAdjacency (const TriMesh < CType0, CType1, CType2, CType3> & /*m*/) {return TriMesh< CType0, CType1, CType2 , CType3>::HEdgeType::HasHOppAdjacency();}
//template < class CType0, class CType1 , class CType2, class CType3>
//bool HasVFAdjacency (const TriMesh < CType0 , CType1, CType2, CType3> & m ) {
// // gcc 4.4: if the expressions assigned to a1 and a2 are replaced in the assert we get a compilation error
// // for the macro assert
// bool a1 = TriMesh < CType0 , CType1, CType2, CType3>::FaceContainer::value_type::HasVFAdjacency();
// bool a2 = TriMesh < CType0 , CType1, CType2, CType3>::VertContainer::value_type::HasVFAdjacency();
// // a1 and a2 are still evaluated but not referenced, this causes a warning
// (void)a1;
// (void)a2;
// assert(a1==a2);
//
// return vcg::tri::HasPerVertexVFAdjacency< CType0, CType1 , CType2, CType3>(m) &&
// vcg::tri::HasPerFaceVFAdjacency< CType0, CType1 , CType2, CType3>(m) ;
//}
template <class MeshType>
bool HasPerVertexAttribute(const MeshType &m, std::string name){
typename std::set< typename MeshType::PointerToAttribute>::const_iterator ai;
typename MeshType::PointerToAttribute h;
h._name = name;
ai = m.vert_attr.find(h);
return (ai!= m.vert_attr.end() ) ;
}
template <class MeshType>
bool HasPerFaceAttribute(const MeshType &m, std::string name){
typename std::set< typename MeshType::PointerToAttribute>::const_iterator ai;
typename MeshType::PointerToAttribute h;
h._name = name;
ai = m.face_attr.find(h);
return (ai!= m.face_attr.end() ) ;
}
template <class MeshType>
bool HasPerMeshAttribute(const MeshType &m, std::string name){
typename std::set< typename MeshType::PointerToAttribute>::const_iterator ai;
typename MeshType::PointerToAttribute h;
h._name = name;
ai = m.mesh_attr.find(h);
return (ai!= m.mesh_attr.end() ) ;
}
template <class MeshType> void RequireCompactness (MeshType &m) {
if(m.vert.size()!=size_t(m.vn)) throw vcg::MissingCompactnessException("Vertex Vector Contains deleted elements");
if(m.edge.size()!=size_t(m.en)) throw vcg::MissingCompactnessException("Edge Vector Contains deleted elements");
if(m.face.size()!=size_t(m.fn)) throw vcg::MissingCompactnessException("Face Vector Contains deleted elements");
}
template <class MeshType> void RequireTriangularMesh (MeshType &m ) { if( tri::HasPolyInfo( m ) ) throw vcg::MissingTriangularRequirementException("");}
template <class MeshType> void RequirePolygonalMesh (MeshType &m ) { if(!tri::HasPolyInfo( m ) ) throw vcg::MissingPolygonalRequirementException("");}
template <class MeshType> void RequireVFAdjacency (MeshType &m) { if(!tri::HasVFAdjacency (m)) throw vcg::MissingComponentException("VFAdjacency"); }
template <class MeshType> void RequireVEAdjacency (MeshType &m) { if(!tri::HasVEAdjacency (m)) throw vcg::MissingComponentException("VEAdjacency"); }
template <class MeshType> void RequireFFAdjacency (MeshType &m) { if(!tri::HasFFAdjacency (m)) throw vcg::MissingComponentException("FFAdjacency"); }
template <class MeshType> void RequireEEAdjacency (MeshType &m) { if(!tri::HasEEAdjacency (m)) throw vcg::MissingComponentException("EEAdjacency"); }
template <class MeshType> void RequireFEAdjacency (MeshType &m) { if(!tri::HasFEAdjacency (m)) throw vcg::MissingComponentException("FEAdjacency"); }
template <class MeshType> void RequireFHAdjacency (MeshType &m) { if(!tri::HasFHAdjacency (m)) throw vcg::MissingComponentException("FHAdjacency"); }
template <class MeshType> void RequirePerVertexQuality (MeshType &m) { if(!tri::HasPerVertexQuality (m)) throw vcg::MissingComponentException("PerVertexQuality "); }
template <class MeshType> void RequirePerVertexNormal (MeshType &m) { if(!tri::HasPerVertexNormal (m)) throw vcg::MissingComponentException("PerVertexNormal "); }
template <class MeshType> void RequirePerVertexColor (MeshType &m) { if(!tri::HasPerVertexColor (m)) throw vcg::MissingComponentException("PerVertexColor "); }
template <class MeshType> void RequirePerVertexMark (MeshType &m) { if(!tri::HasPerVertexMark (m)) throw vcg::MissingComponentException("PerVertexMark "); }
template <class MeshType> void RequirePerVertexFlags (MeshType &m) { if(!tri::HasPerVertexFlags (m)) throw vcg::MissingComponentException("PerVertexFlags "); }
template <class MeshType> void RequirePerVertexRadius (MeshType &m) { if(!tri::HasPerVertexRadius (m)) throw vcg::MissingComponentException("PerVertexRadius "); }
template <class MeshType> void RequirePerVertexCurvature (MeshType &m) { if(!tri::HasPerVertexCurvature (m)) throw vcg::MissingComponentException("PerVertexCurvature "); }
template <class MeshType> void RequirePerVertexCurvatureDir(MeshType &m) { if(!tri::HasPerVertexCurvatureDir(m)) throw vcg::MissingComponentException("PerVertexCurvatureDir"); }
template <class MeshType> void RequirePerVertexTexCoord (MeshType &m) { if(!tri::HasPerVertexTexCoord (m)) throw vcg::MissingComponentException("PerVertexTexCoord "); }
template <class MeshType> void RequirePerEdgeQuality (MeshType &m) { if(!tri::HasPerEdgeQuality (m)) throw vcg::MissingComponentException("PerEdgeQuality "); }
template <class MeshType> void RequirePerEdgeNormal (MeshType &m) { if(!tri::HasPerEdgeNormal (m)) throw vcg::MissingComponentException("PerEdgeNormal "); }
template <class MeshType> void RequirePerEdgeColor (MeshType &m) { if(!tri::HasPerEdgeColor (m)) throw vcg::MissingComponentException("PerEdgeColor "); }
template <class MeshType> void RequirePerEdgeMark (MeshType &m) { if(!tri::HasPerEdgeMark (m)) throw vcg::MissingComponentException("PerEdgeMark "); }
template <class MeshType> void RequirePerEdgeFlags (MeshType &m) { if(!tri::HasPerEdgeFlags (m)) throw vcg::MissingComponentException("PerEdgeFlags "); }
template <class MeshType> void RequirePerFaceFlags (MeshType &m) { if(!tri::HasPerFaceFlags (m)) throw vcg::MissingComponentException("PerFaceFlags "); }
template <class MeshType> void RequirePerFaceNormal (MeshType &m) { if(!tri::HasPerFaceNormal (m)) throw vcg::MissingComponentException("PerFaceNormal "); }
template <class MeshType> void RequirePerFaceColor (MeshType &m) { if(!tri::HasPerFaceColor (m)) throw vcg::MissingComponentException("PerFaceColor "); }
template <class MeshType> void RequirePerFaceMark (MeshType &m) { if(!tri::HasPerFaceMark (m)) throw vcg::MissingComponentException("PerFaceMark "); }
template <class MeshType> void RequirePerFaceQuality (MeshType &m) { if(!tri::HasPerFaceQuality (m)) throw vcg::MissingComponentException("PerFaceQuality "); }
template <class MeshType> void RequirePerFaceCurvatureDir(MeshType &m) { if(!tri::HasPerFaceCurvatureDir(m)) throw vcg::MissingComponentException("PerFaceCurvatureDir"); }
template <class MeshType> void RequirePerFaceWedgeColor (MeshType &m) { if(!tri::HasPerWedgeColor (m)) throw vcg::MissingComponentException("PerFaceWedgeColor "); }
template <class MeshType> void RequirePerFaceWedgeNormal (MeshType &m) { if(!tri::HasPerWedgeNormal (m)) throw vcg::MissingComponentException("PerFaceWedgeNormal "); }
template <class MeshType> void RequirePerFaceWedgeTexCoord(MeshType &m) { if(!tri::HasPerWedgeTexCoord(m)) throw vcg::MissingComponentException("PerFaceWedgeTexCoord"); }
template <class MeshType> void RequirePerVertexAttribute(MeshType &m, const char *name) { if(!HasPerVertexAttribute(m,name)) throw vcg::MissingComponentException("PerVertex attribute"); }
template <class MeshType> void RequirePerEdgeAttribute(MeshType &m, const char *name) { if(!HasPerEdgeAttribute(m,name)) throw vcg::MissingComponentException("PerEdge attribute"); }
template <class MeshType> void RequirePerFaceAttribute(MeshType &m, const char *name) { if(!HasPerFaceAttribute(m,name)) throw vcg::MissingComponentException("PerFace attribute"); }
template <class MeshType> void RequirePerMeshAttribute(MeshType &m, const char *name) { if(!HasPerMeshAttribute(m,name)) throw vcg::MissingComponentException("PerMesh attribute"); }
/*@}*/
/*@}*/
} // end namespace
} // end namespace
#endif // BASE_H