524 lines
15 KiB
C++
524 lines
15 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
|
|
$Log: not supported by cvs2svn $
|
|
Revision 1.3 2004/05/12 18:50:58 ganovelli
|
|
changed calls to Dist
|
|
|
|
Revision 1.2 2004/05/11 14:33:46 ganovelli
|
|
changed to grid_static_obj to grid_static_ptr
|
|
|
|
Revision 1.1 2004/05/10 14:44:13 ganovelli
|
|
created
|
|
|
|
Revision 1.1 2004/03/08 09:21:31 cignoni
|
|
Initial commit
|
|
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCGLIB_UGRID
|
|
#define __VCGLIB_UGRID
|
|
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <vcg/space/box3.h>
|
|
#include <vcg/space/line3.h>
|
|
|
|
namespace vcg {
|
|
|
|
/** Static Uniform Grid
|
|
A spatial search structure for a accessing a container of objects.
|
|
It is based on a uniform grid overlayed over a protion of space.
|
|
The grid partion the space into cells. Cells contains just pointers
|
|
to the object that are stored elsewhere.
|
|
The set of objects is meant to be static and pointer stable.
|
|
|
|
Useful for situation were many space related query are issued over
|
|
the same dataset (ray tracing, measuring distances between meshes,
|
|
re-detailing ecc.).
|
|
Works well for distribution that ar reasonably uniform.
|
|
How to use it:
|
|
ContainerType must have a 'value_type' typedef inside.
|
|
(stl containers already have it)
|
|
|
|
Objects pointed by cells (of kind 'value_type') must have
|
|
a 'ScalarType' typedef (float or double usually)
|
|
and 2 member functions:
|
|
|
|
bool Dist(const Point3f &point, ScalarType &mindist, Point3f &result);
|
|
which return true if the distance from point to the object is < mindist
|
|
and set mindist to said distance, and result must be set as the closest
|
|
point of the object to point)
|
|
|
|
void GetBBox(Box3<ScalarType> &b)
|
|
which return the bounding box of the object
|
|
|
|
*/
|
|
|
|
template < typename ContainerType >
|
|
class GridStaticPtr
|
|
{
|
|
public:
|
|
|
|
/** Internal class for keeping the first pointer of object.
|
|
Definizione Link dentro la griglia. Classe di supporto per GridStaticObj.
|
|
*/
|
|
class Link
|
|
{
|
|
public:
|
|
/// Costruttore di default
|
|
inline Link(){};
|
|
/// Costruttore con inizializzatori
|
|
inline Link( typename ContainerType::iterator const nt, const int ni ){
|
|
assert(ni>=0);
|
|
t = nt;
|
|
i = ni;
|
|
};
|
|
|
|
|
|
inline bool operator < ( const Link & l ) const{ return i < l.i; }
|
|
inline bool operator <= ( const Link & l ) const{ return i <= l.i; }
|
|
inline bool operator > ( const Link & l ) const{ return i > l.i; }
|
|
inline bool operator >= ( const Link & l ) const{ return i >= l.i; }
|
|
inline bool operator == ( const Link & l ) const{ return i == l.i; }
|
|
inline bool operator != ( const Link & l ) const{ return i != l.i; }
|
|
|
|
inline typename ContainerType::iterator & Elem() {
|
|
return t;
|
|
}
|
|
inline int & Index() {
|
|
return i;
|
|
}
|
|
|
|
private:
|
|
/// Puntatore all'elemento T
|
|
typename ContainerType::iterator t;
|
|
/// Indirizzo del voxel dentro la griglia
|
|
int i;
|
|
|
|
|
|
};//end class Link
|
|
|
|
typedef typename ContainerType::value_type ObjType;
|
|
typedef ObjType* ObjPtr;
|
|
typedef typename ObjType::ScalarType ScalarType;
|
|
typedef Point3<ScalarType> Point3x;
|
|
typedef Box3<ScalarType> Box3x;
|
|
typedef Line3<ScalarType> Line3x;
|
|
typedef Link* Cell;
|
|
|
|
Box3x bbox;
|
|
Point3x dim; /// Dimensione spaziale (lunghezza lati) del bbox
|
|
Point3i siz; /// Dimensioni griglia in celle
|
|
Point3x voxel; /// Dimensioni di una cella
|
|
|
|
|
|
std::vector<Link> links; /// Insieme di tutti i links
|
|
std::vector<Cell> grid; /// Griglia vera e propria
|
|
|
|
/// Dato un punto, ritorna la cella che lo contiene
|
|
inline Cell* Grid( const Point3d & p )
|
|
{
|
|
int x = int( (p[0]-bbox.min[0])/voxel[0] );
|
|
int y = int( (p[1]-bbox.min[1])/voxel[1] );
|
|
int z = int( (p[2]-bbox.min[2])/voxel[2] );
|
|
|
|
#ifndef NDEBUG
|
|
if ( x<0 || x>=siz[0] || y<0 || y>=siz[1] || z<0 || z>=siz[2] )
|
|
return NULL;
|
|
else
|
|
#endif
|
|
|
|
return grid.begin() + ( x+siz[0]*(y+siz[1]*z) );
|
|
}
|
|
/// Date le coordinate ritorna la cella
|
|
inline Cell* Grid( const int x, const int y, const int z )
|
|
{
|
|
#ifndef NDEBUG
|
|
if ( x<0 || x>=siz[0] || y<0 || y>=siz[1] || z<0 || z>=siz[2] )
|
|
assert(0);
|
|
//return NULL;
|
|
else
|
|
#endif
|
|
assert(((unsigned int)x+siz[0]*y+siz[1]*z)<grid.size());
|
|
return &*grid.begin() + ( x+siz[0]*(y+siz[1]*z) );
|
|
}
|
|
|
|
|
|
/// Date le coordinate di un grid point ritorna le celle che condividono
|
|
/// l'edge cell che parte dal grid point in direzione axis
|
|
inline void Grid( Point3i p, const int axis,
|
|
std::vector<Cell*> & cl,
|
|
std::vector<Point3i> &o)
|
|
{
|
|
#ifndef NDEBUG
|
|
if ( p[0]<0 || p[0]>siz[0] ||
|
|
p[1]<0 || p[1]>siz[1] ||
|
|
p[2]<0 || p[2]>siz[2] )
|
|
assert(0);
|
|
//return NULL;
|
|
else
|
|
#endif
|
|
assert(((unsigned int) p[0]+siz[0]*p[1]+siz[1]*p[2])<grid.size());
|
|
|
|
int axis0 = (axis+1)%3;
|
|
int axis1 = (axis+2)%3;
|
|
int i,j,x,y;
|
|
x = p[axis0];
|
|
y = p[axis1];
|
|
for(i = max(x-1,0); i <= min( x,siz[axis0]-1);++i)
|
|
for(j = max(y-1,0); j <= min( y,siz[axis1]-1);++j){
|
|
p[axis0]=i;
|
|
p[axis1]=j;
|
|
cl.push_back(Grid(p[0]+siz[0]*(p[1]+siz[1]*p[2]))); ;
|
|
o.push_back(p);
|
|
}
|
|
}
|
|
|
|
Cell* Grid(const int i) {
|
|
return &grid[i];
|
|
}
|
|
void Grid( const Point3d & p, Cell & first, Cell & last )
|
|
{
|
|
Cell* g = Grid(s);
|
|
|
|
first = *g;
|
|
last = *(g+1);
|
|
}
|
|
void Grid( const Cell* g, Cell & first, Cell & last )
|
|
{
|
|
first = *g;
|
|
last = *(g+1);
|
|
}
|
|
void Grid( const int x, const int y, const int z, Cell & first, Cell & last )
|
|
{
|
|
Cell* g = Grid(x,y,z);
|
|
|
|
first = *g;
|
|
last = *(g+1);
|
|
}
|
|
|
|
/// Setta il bounding box della griglia
|
|
void SetBBox( const Box3x & b )
|
|
{
|
|
bbox = b;
|
|
dim = b.max - b.min;
|
|
}
|
|
|
|
void SetSafeBBox( const Box3x & b )
|
|
{
|
|
Box3x btmp=b;
|
|
btmp.InflateFix(0.01);
|
|
bbox = btmp;
|
|
dim = bbox.max - bbox.min;
|
|
}
|
|
|
|
/// Dato un punto 3d ritorna l'indice del box corrispondente
|
|
inline void PToIP(const Point3x & p, Point3i &pi ) const
|
|
{
|
|
Point3x t = p - bbox.min;
|
|
pi[0] = int( t[0]/voxel[0] );
|
|
pi[1] = int( t[1]/voxel[1] );
|
|
pi[2] = int( t[2]/voxel[2] );
|
|
}
|
|
/// Dato un box reale ritorna gli indici dei voxel compresi dentro un ibox
|
|
void BoxToIBox( const Box3x & b, Box3i & ib ) const
|
|
{
|
|
PToIP(b.min,ib.min);
|
|
PToIP(b.max,ib.max);
|
|
}
|
|
|
|
|
|
void ShowStats(FILE *fp)
|
|
{
|
|
// Conto le entry
|
|
//int nentry = 0;
|
|
//Hist H;
|
|
//H.SetRange(0,1000,1000);
|
|
//int pg;
|
|
//for(pg=0;pg<grid.size()-1;++pg)
|
|
// if( grid[pg]!=grid[pg+1] )
|
|
// {
|
|
// ++nentry;
|
|
// H.Add(grid[pg+1]-grid[pg]);
|
|
// }
|
|
|
|
// fprintf(fp,"Uniform Grid: %d x %d x %d (%d voxels), %.1f%% full, %d links \nNon empty Cell Occupancy Distribution Avg: %f (%4.0f %4.0f %4.0f) \n",
|
|
// siz[0],siz[1],siz[2],grid.size()-1,
|
|
// double(nentry)*100.0/(grid.size()-1),links.size(),H.Avg(),H.Percentile(.25),H.Percentile(.5),H.Percentile(.75)
|
|
//
|
|
//);
|
|
}
|
|
|
|
|
|
/** Returns the closest posistion of a point p and its distance
|
|
@param p a 3d point
|
|
@return The closest element
|
|
*/
|
|
ObjPtr GetClosest( const Point3x & p, ScalarType & min_dist, Point3x & res)
|
|
{
|
|
ScalarType dx = ( (p[0]-bbox.min[0])/voxel[0] );
|
|
ScalarType dy = ( (p[1]-bbox.min[1])/voxel[1] );
|
|
ScalarType dz = ( (p[2]-bbox.min[2])/voxel[2] );
|
|
|
|
int ix = int( dx );
|
|
int iy = int( dy );
|
|
int iz = int( dz );
|
|
|
|
double voxel_min=voxel[0];
|
|
if (voxel_min<voxel[1]) voxel_min=voxel[1];
|
|
if (voxel_min<voxel[2]) voxel_min=voxel[2];
|
|
|
|
ScalarType radius=(dx-ScalarType(ix));
|
|
if (radius>0.5) radius=(1.0-radius); radius*=voxel[0];
|
|
|
|
ScalarType tmp=dy-ScalarType(iy);
|
|
if (tmp>0.5) tmp=1.0-tmp;
|
|
tmp*=voxel[1];
|
|
if (radius>tmp) radius=tmp;
|
|
tmp=dz-ScalarType(iz);
|
|
if (tmp>0.5) tmp=1.0-tmp;
|
|
tmp*=voxel[2];
|
|
if (radius>tmp) radius=tmp;
|
|
|
|
Point3x t_res;
|
|
//ScalarType min_dist=1e10;
|
|
ObjPtr winner=NULL;
|
|
|
|
Link *first, *last;
|
|
Link *l;
|
|
if ((ix>=0) && (iy>=0) && (iz>=0) &&
|
|
(ix<siz[0]) && (iy<siz[1]) && (iz<siz[2])) {
|
|
|
|
Grid( ix, iy, iz, first, last );
|
|
for(l=first;l!=last;++l)
|
|
{
|
|
if (!l->Elem()->IsD() && l->Elem()->Dist(p,min_dist,t_res)) {
|
|
winner=&*(l->Elem());
|
|
res=t_res;
|
|
|
|
}
|
|
};
|
|
};
|
|
|
|
//return winner;
|
|
|
|
Point3i done_min=Point3i(ix,iy,iz), done_max=Point3i(ix,iy,iz);
|
|
|
|
//printf(".");
|
|
|
|
while (min_dist>radius) {
|
|
//if (dy-ScalarType(iy))
|
|
done_min[0]--; if (done_min[0]<0) done_min[0]=0;
|
|
done_min[1]--; if (done_min[1]<0) done_min[1]=0;
|
|
done_min[2]--; if (done_min[2]<0) done_min[2]=0;
|
|
done_max[0]++; if (done_max[0]>=siz[0]-1) done_max[0]=siz[0]-1;
|
|
done_max[1]++; if (done_max[1]>=siz[1]-1) done_max[1]=siz[1]-1;
|
|
done_max[2]++; if (done_max[2]>=siz[2]-1) done_max[2]=siz[2]-1;
|
|
radius+=voxel_min;
|
|
//printf("+");
|
|
for (ix=done_min[0]; ix<=done_max[0]; ix++)
|
|
for (iy=done_min[1]; iy<=done_max[1]; iy++)
|
|
for (iz=done_min[2]; iz<=done_max[2]; iz++)
|
|
{
|
|
Grid( ix, iy, iz, first, last );
|
|
for(l=first;l!=last;++l)
|
|
{
|
|
if (!l->Elem()->IsD() && l->Elem()->Dist(p,min_dist,t_res)) {
|
|
winner=&*(l->Elem());
|
|
res=t_res;
|
|
};
|
|
};
|
|
}
|
|
};
|
|
return winner;
|
|
};
|
|
|
|
/// Inserisce una mesh nella griglia. Nota: prima bisogna
|
|
/// chiamare SetBBox che setta dim in maniera corretta
|
|
void Set( ContainerType & s )
|
|
{
|
|
Set(s,s.size());
|
|
}
|
|
|
|
|
|
/// Inserisce una mesh nella griglia. Nota: prima bisogna
|
|
/// chiamare SetBBox che setta dim in maniera corretta
|
|
void Set( ContainerType & s,int _size )
|
|
{
|
|
Point3i _siz;
|
|
|
|
BestDim( _size, dim, _siz );
|
|
Set(s,_siz);
|
|
}
|
|
void Set(ContainerType & s, Point3i _siz)
|
|
{
|
|
siz=_siz;
|
|
// Calcola la dimensione della griglia
|
|
voxel[0] = dim[0]/siz[0];
|
|
voxel[1] = dim[1]/siz[1];
|
|
voxel[2] = dim[2]/siz[2];
|
|
|
|
// "Alloca" la griglia: +1 per la sentinella
|
|
grid.resize( siz[0]*siz[1]*siz[2]+1 );
|
|
|
|
// Ciclo inserimento dei tetraedri: creazione link
|
|
links.clear();
|
|
typename ContainerType::iterator pt;
|
|
for(pt=s.begin(); pt!=s.end(); ++pt)
|
|
{
|
|
Box3x bb; // Boundig box del tetraedro corrente
|
|
(*pt).GetBBox(bb);
|
|
bb.Intersect(bbox);
|
|
if(! bb.IsNull() )
|
|
{
|
|
Box3i ib; // Boundig box in voxels
|
|
BoxToIBox( bb,ib );
|
|
|
|
int x,y,z;
|
|
for(z=ib.min[2];z<=ib.max[2];++z)
|
|
{
|
|
int bz = z*siz[1];
|
|
for(y=ib.min[1];y<=ib.max[1];++y)
|
|
{
|
|
int by = (y+bz)*siz[0];
|
|
for(x=ib.min[0];x<=ib.max[0];++x)
|
|
// Inserire calcolo cella corrente
|
|
// if( pt->Intersect( ... )
|
|
links.push_back( Link(pt,by+x) );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Push della sentinella
|
|
links.push_back( Link((typename ContainerType::iterator)NULL,
|
|
(grid.size()-1)));
|
|
|
|
// Ordinamento dei links
|
|
sort( links.begin(), links.end() );
|
|
|
|
// Creazione puntatori ai links
|
|
typename std::vector<Link>::iterator pl;
|
|
unsigned int pg;
|
|
pl = links.begin();
|
|
for(pg=0;pg<grid.size();++pg)
|
|
{
|
|
assert(pl!=links.end());
|
|
|
|
grid[pg] = &*pl;
|
|
while( pg == pl->Index() ) // Trovato inizio
|
|
{
|
|
++pl; // Ricerca prossimo blocco
|
|
if(pl==links.end())
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/** Calcolo dimensioni griglia.
|
|
Calcola la dimensione della griglia in funzione
|
|
della ratio del bounding box e del numero di elementi
|
|
*/
|
|
static void BestDim( const int elems, const Point3x & size, Point3i & dim )
|
|
{
|
|
const int mincells = 1; // Numero minimo di celle
|
|
const double GFactor = 1.0; // GridEntry = NumElem*GFactor
|
|
double diag = size.Norm(); // Diagonale del box
|
|
double eps = diag*1e-4; // Fattore di tolleranza
|
|
|
|
assert(elems>0);
|
|
assert(size[0]>=0.0);
|
|
assert(size[1]>=0.0);
|
|
assert(size[2]>=0.0);
|
|
|
|
int ncell = int(elems*GFactor); // Calcolo numero di voxel
|
|
if(ncell<mincells)
|
|
ncell = mincells;
|
|
|
|
dim[0] = 1;
|
|
dim[1] = 1;
|
|
dim[2] = 1;
|
|
|
|
if(size[0]>eps)
|
|
{
|
|
if(size[1]>eps)
|
|
{
|
|
if(size[2]>eps)
|
|
{
|
|
double k = pow((double)(ncell/(size[0]*size[1]*size[2])),double(1.0/3.f));
|
|
dim[0] = int(size[0] * k);
|
|
dim[1] = int(size[1] * k);
|
|
dim[2] = int(size[2] * k);
|
|
}
|
|
else
|
|
{
|
|
dim[0] = int(::sqrt(ncell*size[0]/size[1]));
|
|
dim[1] = int(::sqrt(ncell*size[1]/size[0]));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(size[2]>eps)
|
|
{
|
|
dim[0] = int(::sqrt(ncell*size[0]/size[2]));
|
|
dim[2] = int(::sqrt(ncell*size[2]/size[0]));
|
|
}
|
|
else
|
|
dim[0] = int(ncell);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(size[1]>eps)
|
|
{
|
|
if(size[2]>eps)
|
|
{
|
|
dim[1] = int(::sqrt(ncell*size[1]/size[2]));
|
|
dim[2] = int(::sqrt(ncell*size[2]/size[1]));
|
|
}
|
|
else
|
|
dim[1] = int(ncell);
|
|
}
|
|
else if(size[2]>eps)
|
|
dim[2] = int(ncell);
|
|
}
|
|
dim[0] = math::Max(dim[0],1);
|
|
dim[1] = math::Max(dim[1],1);
|
|
dim[2] = math::Max(dim[2],1);
|
|
}
|
|
|
|
|
|
int MemUsed()
|
|
{
|
|
return sizeof(GridStaticObj)+ sizeof(Link)*links.size() +
|
|
sizeof(Cell) * grid.size();
|
|
}
|
|
}; //end class GridStaticObj
|
|
|
|
}; // end namespace
|
|
|
|
#endif
|