394 lines
13 KiB
C++
394 lines
13 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
#ifndef CUT_TREE_H
|
|
#define CUT_TREE_H
|
|
|
|
#include<vcg/complex/complex.h>
|
|
#include <vcg/space/index/kdtree/kdtree.h>
|
|
#include<vcg/complex/algorithms/update/quality.h>
|
|
#include<vcg/complex/algorithms/update/color.h>
|
|
|
|
namespace vcg {
|
|
namespace tri {
|
|
|
|
template <class MeshType>
|
|
class CutTree
|
|
{
|
|
public:
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::EdgeIterator EdgeIterator;
|
|
typedef typename MeshType::EdgeType EdgeType;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef Box3<ScalarType> Box3Type;
|
|
typedef typename face::Pos<FaceType> PosType;
|
|
typedef typename tri::UpdateTopology<MeshType>::PEdge PEdge;
|
|
|
|
MeshType &base;
|
|
|
|
CutTree(MeshType &_m) :base(_m){}
|
|
|
|
|
|
// Perform a simple optimization of the three applying simple shortcuts:
|
|
// if the endpoints of two consecutive edges are connected by an edge existing on base mesh just use that edges
|
|
|
|
void OptimizeTree(KdTree<ScalarType> &kdtree, MeshType &t)
|
|
{
|
|
tri::Allocator<MeshType>::CompactEveryVector(t);
|
|
int lastEn=t.en;
|
|
do
|
|
{
|
|
lastEn=t.en;
|
|
tri::UpdateTopology<MeshType>::VertexEdge(t);
|
|
|
|
// First simple loop that search for 2->1 moves.
|
|
for(VertexIterator vi=t.vert.begin();vi!=t.vert.end();++vi)
|
|
{
|
|
std::vector<VertexType *> starVec;
|
|
edge::VVStarVE(&*vi,starVec);
|
|
if(starVec.size()==2) // middle vertex has to be 1-manifold
|
|
{
|
|
PosType pos;
|
|
if(ExistEdge(kdtree,starVec[0]->P(),starVec[1]->P(),pos))
|
|
edge::VEEdgeCollapse(t,&*vi);
|
|
}
|
|
}
|
|
tri::Allocator<MeshType>::CompactEveryVector(t);
|
|
}
|
|
while(t.en<lastEn);
|
|
}
|
|
|
|
// Given two points return true if on the base mesh there exist an edge with that two coords
|
|
// if return true the pos indicate the found edge.
|
|
bool ExistEdge(KdTree<ScalarType> &kdtree, CoordType &p0, CoordType &p1, PosType &fpos)
|
|
{
|
|
ScalarType locEps = SquaredDistance(p0,p1)/100000.0;
|
|
|
|
VertexType *v0=0,*v1=0;
|
|
unsigned int veInd;
|
|
ScalarType sqdist;
|
|
kdtree.doQueryClosest(p0,veInd,sqdist);
|
|
if(sqdist<locEps)
|
|
v0 = &base.vert[veInd];
|
|
kdtree.doQueryClosest(p1,veInd,sqdist);
|
|
if(sqdist<locEps)
|
|
v1 = &base.vert[veInd];
|
|
if(v0 && v1)
|
|
{
|
|
fpos =PosType(v0->VFp(),v0);
|
|
assert(fpos.V()==v0);
|
|
PosType startPos=fpos;
|
|
do
|
|
{
|
|
fpos.FlipE(); fpos.FlipF();
|
|
if(fpos.VFlip()== v1) return true;
|
|
} while(startPos!=fpos);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
int findNonVisitedEdgesDuringRetract(VertexType * vp, EdgeType * &ep)
|
|
{
|
|
std::vector<EdgeType *> starVec;
|
|
edge::VEStarVE(&*vp,starVec);
|
|
int cnt =0;
|
|
for(size_t i=0;i<starVec.size();++i) {
|
|
if(!starVec[i]->IsV()) {
|
|
cnt++;
|
|
ep = starVec[i];
|
|
}
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
bool IsBoundaryVertexOnBase(KdTree<ScalarType> &kdtree, const CoordType &p)
|
|
{
|
|
VertexType *v0=0;
|
|
unsigned int veInd;
|
|
ScalarType sqdist;
|
|
kdtree.doQueryClosest(p,veInd,sqdist);
|
|
if(sqdist>0) { assert(0); }
|
|
v0 = &base.vert[veInd];
|
|
return v0->IsB();
|
|
}
|
|
|
|
/**
|
|
* @brief Retract
|
|
* @param t the edgemesh containing the visit tree.
|
|
*
|
|
*/
|
|
void Retract(KdTree<ScalarType> &kdtree, MeshType &t)
|
|
{
|
|
printf("Retracting a tree of %i edges and %i vertices\n",t.en,t.vn);
|
|
tri::UpdateTopology<MeshType>::VertexEdge(t);
|
|
tri::Allocator<MeshType>::CompactEveryVector(t);
|
|
std::stack<VertexType *> vertStack;
|
|
|
|
// Put on the stack all the vertex with just a single incident edge.
|
|
ForEachVertex(t, [&](VertexType &v){
|
|
if(edge::VEDegree<EdgeType>(&v) ==1)
|
|
vertStack.push(&v);
|
|
});
|
|
|
|
tri::UpdateFlags<MeshType>::EdgeClearV(t);
|
|
tri::UpdateFlags<MeshType>::VertexClearV(t);
|
|
|
|
int unvisitedEdgeNum = t.en;
|
|
while((!vertStack.empty()) && (unvisitedEdgeNum > 2) )
|
|
{
|
|
VertexType *vp = vertStack.top();
|
|
vertStack.pop();
|
|
vp->C()=Color4b::Blue;
|
|
EdgeType *ep=0;
|
|
int eCnt = findNonVisitedEdgesDuringRetract(vp,ep);
|
|
if(eCnt==1) // We have only one non visited edge over vp
|
|
{
|
|
assert(!ep->IsV());
|
|
ep->SetV();
|
|
--unvisitedEdgeNum;
|
|
VertexType *otherVertP;
|
|
if(ep->V(0)==vp) otherVertP = ep->V(1);
|
|
else otherVertP = ep->V(0);
|
|
vertStack.push(otherVertP);
|
|
}
|
|
}
|
|
assert(unvisitedEdgeNum >0);
|
|
for(size_t i =0; i<t.edge.size();++i){
|
|
PosType fpos;
|
|
if( ExistEdge(kdtree, t.edge[i].P(0), t.edge[i].P(1), fpos)){
|
|
if(fpos.IsBorder()) {
|
|
t.edge[i].SetV();
|
|
}
|
|
}
|
|
else assert(0);
|
|
}
|
|
|
|
// All the boundary edges are in the initial tree so the clean boundary loops chains remains as irreducible loops
|
|
// We delete them (leaving dangling edges with a vertex on the boundary)
|
|
for(size_t i =0; i<t.edge.size();++i){
|
|
if (t.edge[i].IsV())
|
|
tri::Allocator<MeshType>::DeleteEdge(t,t.edge[i]) ;
|
|
}
|
|
assert(t.en >0);
|
|
tri::Clean<MeshType>::RemoveUnreferencedVertex(t);
|
|
tri::Allocator<MeshType>::CompactEveryVector(t);
|
|
}
|
|
|
|
/** \brief Main function
|
|
*
|
|
* It builds a cut tree that open the mesh into a topological disk
|
|
*
|
|
*
|
|
*/
|
|
void Build(MeshType &dualMesh, int startingFaceInd=0)
|
|
{
|
|
tri::UpdateTopology<MeshType>::FaceFace(base);
|
|
tri::UpdateTopology<MeshType>::VertexFace(base);
|
|
|
|
BuildVisitTree(dualMesh,startingFaceInd);
|
|
// BuildDijkstraVisitTree(dualMesh,startingFaceInd);
|
|
|
|
VertexConstDataWrapper<MeshType > vdw(base);
|
|
KdTree<ScalarType> kdtree(vdw);
|
|
Retract(kdtree,dualMesh);
|
|
OptimizeTree(kdtree, dualMesh);
|
|
tri::UpdateBounding<MeshType>::Box(dualMesh);
|
|
}
|
|
|
|
/* Auxiliary class for keeping the heap of vertices to visit and their estimated distance */
|
|
struct FaceDist{
|
|
FaceDist(FacePointer _f):f(_f),dist(_f->Q()){}
|
|
FacePointer f;
|
|
ScalarType dist;
|
|
bool operator < (const FaceDist &o) const
|
|
{
|
|
if( dist != o.dist)
|
|
return dist > o.dist;
|
|
return f<o.f;
|
|
}
|
|
};
|
|
|
|
|
|
void BuildDijkstraVisitTree(MeshType &dualMesh, int startingFaceInd=0, ScalarType maxDistanceThr=std::numeric_limits<ScalarType>::max())
|
|
{
|
|
tri::RequireFFAdjacency(base);
|
|
tri::RequirePerFaceMark(base);
|
|
tri::RequirePerFaceQuality(base);
|
|
typename MeshType::template PerFaceAttributeHandle<FacePointer> parentHandle
|
|
= tri::Allocator<MeshType>::template GetPerFaceAttribute<FacePointer>(base, "parent");
|
|
|
|
std::vector<FacePointer> seedVec;
|
|
seedVec.push_back(&base.face[startingFaceInd]);
|
|
|
|
std::vector<FaceDist> Heap;
|
|
tri::UnMarkAll(base);
|
|
tri::UpdateQuality<MeshType>::FaceConstant(base,0);
|
|
ForEachVertex(base, [&](VertexType &v){
|
|
tri::Allocator<MeshType>::AddVertex(dualMesh,v.cP());
|
|
});
|
|
|
|
// Initialize the face heap;
|
|
// All faces in the heap are already marked; Q() store the distance from the source faces;
|
|
for(size_t i=0;i<seedVec.size();++i)
|
|
{
|
|
seedVec[i]->Q()=0;
|
|
Heap.push_back(FaceDist(seedVec[i]));
|
|
}
|
|
// Main Loop
|
|
int boundary=0;
|
|
std::make_heap(Heap.begin(),Heap.end());
|
|
|
|
int vCnt=0;
|
|
int eCnt=0;
|
|
int fCnt=0;
|
|
|
|
// The main idea is that in the heap we maintain all the faces to be visited.
|
|
int nonDiskCnt=0;
|
|
while(!Heap.empty() && nonDiskCnt<10)
|
|
{
|
|
int eulerChi= vCnt-eCnt+fCnt;
|
|
if(eulerChi==1) nonDiskCnt=0;
|
|
else ++nonDiskCnt;
|
|
// printf("HeapSize %i: %i - %i + %i = %i\n",Heap.size(), vCnt,eCnt,fCnt,eulerChi);
|
|
pop_heap(Heap.begin(),Heap.end());
|
|
FacePointer currFp = (Heap.back()).f;
|
|
if(tri::IsMarked(base,currFp))
|
|
{
|
|
// printf("Found an already visited face %f %f \n",Heap.back().dist, Heap.back().f->Q());
|
|
//assert(Heap.back().dist != currFp->Q());
|
|
|
|
Heap.pop_back();
|
|
continue;
|
|
}
|
|
Heap.pop_back();
|
|
++fCnt;
|
|
eCnt+=3;
|
|
tri::Mark(base,currFp);
|
|
|
|
// printf("pop face %i \n", tri::Index(base,currFp));
|
|
for(int i=0;i<3;++i)
|
|
{
|
|
if(!currFp->V(i)->IsV()) {++vCnt; currFp->V(i)->SetV();}
|
|
|
|
FacePointer nextFp = currFp->FFp(i);
|
|
if( tri::IsMarked(base,nextFp) )
|
|
{
|
|
eCnt-=1;
|
|
printf("is marked\n");
|
|
if(nextFp != parentHandle[currFp] )
|
|
{
|
|
if(currFp>nextFp){
|
|
tri::Allocator<MeshType>::AddEdge(dualMesh,tri::Index(base,currFp->V0(i)), tri::Index(base,currFp->V1(i)));
|
|
}
|
|
}
|
|
}
|
|
else // add it to the heap;
|
|
{
|
|
// printf("is NOT marked\n");
|
|
parentHandle[nextFp] = currFp;
|
|
ScalarType nextDist = currFp->Q() + Distance(Barycenter(*currFp),Barycenter(*nextFp));
|
|
int adjMarkedNum=0;
|
|
for(int k=0;k<3;++k) if(tri::IsMarked(base,nextFp->FFp(k))) ++adjMarkedNum;
|
|
if(nextDist < maxDistanceThr || adjMarkedNum>1)
|
|
{
|
|
nextFp->Q() = nextDist;
|
|
Heap.push_back(FaceDist(nextFp));
|
|
push_heap(Heap.begin(),Heap.end());
|
|
}
|
|
else {
|
|
// printf("boundary %i\n",++boundary);
|
|
tri::Allocator<MeshType>::AddEdge(dualMesh,tri::Index(base,currFp->V0(i)), tri::Index(base,currFp->V1(i)));
|
|
}
|
|
}
|
|
}
|
|
} // End while
|
|
printf("fulltree %i vn %i en \n",dualMesh.vn, dualMesh.en);
|
|
int dupVert=tri::Clean<MeshType>::RemoveDuplicateVertex(dualMesh,false); printf("Removed %i dup vert\n",dupVert);
|
|
int dupEdge=tri::Clean<MeshType>::RemoveDuplicateEdge(dualMesh); printf("Removed %i dup edges %i\n",dupEdge,dualMesh.EN());
|
|
tri::Clean<MeshType>::RemoveUnreferencedVertex(dualMesh);
|
|
|
|
tri::io::ExporterPLY<MeshType>::Save(dualMesh,"fulltree.ply",tri::io::Mask::IOM_EDGEINDEX);
|
|
tri::UpdateColor<MeshType>::PerFaceQualityRamp(base);
|
|
tri::io::ExporterPLY<MeshType>::Save(base,"colored_Bydistance.ply",tri::io::Mask::IOM_FACECOLOR);
|
|
}
|
|
|
|
// \brief This function build a cut tree.
|
|
//
|
|
// First we make a bread first FF face visit.
|
|
// Each time that we encounter a visited face we add to the tree the edge
|
|
// that brings to the already visited face.
|
|
// this structure build a dense graph and we retract this graph retracting each
|
|
// leaf until we remains with just the loops that cuts the object.
|
|
|
|
void BuildVisitTree(MeshType &dualMesh, int startingFaceInd=0)
|
|
{
|
|
tri::UpdateFlags<MeshType>::FaceClearV(base);
|
|
tri::UpdateFlags<MeshType>::VertexBorderFromFaceAdj(base);
|
|
std::vector<face::Pos<FaceType> > visitStack; // the stack contain the pos on the 'starting' face.
|
|
|
|
base.face[startingFaceInd].SetV();
|
|
for(int i=0;i<3;++i)
|
|
visitStack.push_back(PosType(&(base.face[startingFaceInd]),i,base.face[startingFaceInd].V(i)));
|
|
|
|
int cnt=1;
|
|
|
|
while(!visitStack.empty())
|
|
{
|
|
std::swap(visitStack.back(),visitStack[rand()%visitStack.size()]);
|
|
PosType c = visitStack.back();
|
|
visitStack.pop_back();
|
|
assert(c.F()->IsV());
|
|
c.F()->C() = Color4b::ColorRamp(0,base.fn,cnt);
|
|
c.FlipF();
|
|
if(!c.F()->IsV())
|
|
{
|
|
++cnt;
|
|
c.F()->SetV();
|
|
c.FlipE();c.FlipV();
|
|
visitStack.push_back(c);
|
|
c.FlipE();c.FlipV();
|
|
visitStack.push_back(c);
|
|
}
|
|
else
|
|
{
|
|
tri::Allocator<MeshType>::AddEdge(dualMesh,c.V()->P(),c.VFlip()->P());
|
|
}
|
|
}
|
|
assert(cnt==base.fn);
|
|
|
|
tri::Clean<MeshType>::RemoveDuplicateVertex(dualMesh);
|
|
tri::io::ExporterPLY<MeshType>::Save(dualMesh,"fulltree.ply",tri::io::Mask::IOM_EDGEINDEX);
|
|
}
|
|
|
|
};
|
|
} // end namespace tri
|
|
} // end namespace vcg
|
|
|
|
#endif // CUT_TREE_H
|