vcglib/vcg/complex/algorithms/cut_tree.h

394 lines
13 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef CUT_TREE_H
#define CUT_TREE_H
#include<vcg/complex/complex.h>
#include <vcg/space/index/kdtree/kdtree.h>
#include<vcg/complex/algorithms/update/quality.h>
#include<vcg/complex/algorithms/update/color.h>
namespace vcg {
namespace tri {
template <class MeshType>
class CutTree
{
public:
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef Box3<ScalarType> Box3Type;
typedef typename face::Pos<FaceType> PosType;
typedef typename tri::UpdateTopology<MeshType>::PEdge PEdge;
MeshType &base;
CutTree(MeshType &_m) :base(_m){}
// Perform a simple optimization of the three applying simple shortcuts:
// if the endpoints of two consecutive edges are connected by an edge existing on base mesh just use that edges
void OptimizeTree(KdTree<ScalarType> &kdtree, MeshType &t)
{
tri::Allocator<MeshType>::CompactEveryVector(t);
int lastEn=t.en;
do
{
lastEn=t.en;
tri::UpdateTopology<MeshType>::VertexEdge(t);
// First simple loop that search for 2->1 moves.
for(VertexIterator vi=t.vert.begin();vi!=t.vert.end();++vi)
{
std::vector<VertexType *> starVec;
edge::VVStarVE(&*vi,starVec);
if(starVec.size()==2) // middle vertex has to be 1-manifold
{
PosType pos;
if(ExistEdge(kdtree,starVec[0]->P(),starVec[1]->P(),pos))
edge::VEEdgeCollapse(t,&*vi);
}
}
tri::Allocator<MeshType>::CompactEveryVector(t);
}
while(t.en<lastEn);
}
// Given two points return true if on the base mesh there exist an edge with that two coords
// if return true the pos indicate the found edge.
bool ExistEdge(KdTree<ScalarType> &kdtree, CoordType &p0, CoordType &p1, PosType &fpos)
{
ScalarType locEps = SquaredDistance(p0,p1)/100000.0;
VertexType *v0=0,*v1=0;
unsigned int veInd;
ScalarType sqdist;
kdtree.doQueryClosest(p0,veInd,sqdist);
if(sqdist<locEps)
v0 = &base.vert[veInd];
kdtree.doQueryClosest(p1,veInd,sqdist);
if(sqdist<locEps)
v1 = &base.vert[veInd];
if(v0 && v1)
{
fpos =PosType(v0->VFp(),v0);
assert(fpos.V()==v0);
PosType startPos=fpos;
do
{
fpos.FlipE(); fpos.FlipF();
if(fpos.VFlip()== v1) return true;
} while(startPos!=fpos);
}
return false;
}
int findNonVisitedEdgesDuringRetract(VertexType * vp, EdgeType * &ep)
{
std::vector<EdgeType *> starVec;
edge::VEStarVE(&*vp,starVec);
int cnt =0;
for(size_t i=0;i<starVec.size();++i) {
if(!starVec[i]->IsV()) {
cnt++;
ep = starVec[i];
}
}
return cnt;
}
bool IsBoundaryVertexOnBase(KdTree<ScalarType> &kdtree, const CoordType &p)
{
VertexType *v0=0;
unsigned int veInd;
ScalarType sqdist;
kdtree.doQueryClosest(p,veInd,sqdist);
if(sqdist>0) { assert(0); }
v0 = &base.vert[veInd];
return v0->IsB();
}
/**
* @brief Retract
* @param t the edgemesh containing the visit tree.
*
*/
void Retract(KdTree<ScalarType> &kdtree, MeshType &t)
{
printf("Retracting a tree of %i edges and %i vertices\n",t.en,t.vn);
tri::UpdateTopology<MeshType>::VertexEdge(t);
tri::Allocator<MeshType>::CompactEveryVector(t);
std::stack<VertexType *> vertStack;
// Put on the stack all the vertex with just a single incident edge.
ForEachVertex(t, [&](VertexType &v){
if(edge::VEDegree<EdgeType>(&v) ==1)
vertStack.push(&v);
});
tri::UpdateFlags<MeshType>::EdgeClearV(t);
tri::UpdateFlags<MeshType>::VertexClearV(t);
int unvisitedEdgeNum = t.en;
while((!vertStack.empty()) && (unvisitedEdgeNum > 2) )
{
VertexType *vp = vertStack.top();
vertStack.pop();
vp->C()=Color4b::Blue;
EdgeType *ep=0;
int eCnt = findNonVisitedEdgesDuringRetract(vp,ep);
if(eCnt==1) // We have only one non visited edge over vp
{
assert(!ep->IsV());
ep->SetV();
--unvisitedEdgeNum;
VertexType *otherVertP;
if(ep->V(0)==vp) otherVertP = ep->V(1);
else otherVertP = ep->V(0);
vertStack.push(otherVertP);
}
}
assert(unvisitedEdgeNum >0);
for(size_t i =0; i<t.edge.size();++i){
PosType fpos;
if( ExistEdge(kdtree, t.edge[i].P(0), t.edge[i].P(1), fpos)){
if(fpos.IsBorder()) {
t.edge[i].SetV();
}
}
else assert(0);
}
// All the boundary edges are in the initial tree so the clean boundary loops chains remains as irreducible loops
// We delete them (leaving dangling edges with a vertex on the boundary)
for(size_t i =0; i<t.edge.size();++i){
if (t.edge[i].IsV())
tri::Allocator<MeshType>::DeleteEdge(t,t.edge[i]) ;
}
assert(t.en >0);
tri::Clean<MeshType>::RemoveUnreferencedVertex(t);
tri::Allocator<MeshType>::CompactEveryVector(t);
}
/** \brief Main function
*
* It builds a cut tree that open the mesh into a topological disk
*
*
*/
void Build(MeshType &dualMesh, int startingFaceInd=0)
{
tri::UpdateTopology<MeshType>::FaceFace(base);
tri::UpdateTopology<MeshType>::VertexFace(base);
BuildVisitTree(dualMesh,startingFaceInd);
// BuildDijkstraVisitTree(dualMesh,startingFaceInd);
VertexConstDataWrapper<MeshType > vdw(base);
KdTree<ScalarType> kdtree(vdw);
Retract(kdtree,dualMesh);
OptimizeTree(kdtree, dualMesh);
tri::UpdateBounding<MeshType>::Box(dualMesh);
}
/* Auxiliary class for keeping the heap of vertices to visit and their estimated distance */
struct FaceDist{
FaceDist(FacePointer _f):f(_f),dist(_f->Q()){}
FacePointer f;
ScalarType dist;
bool operator < (const FaceDist &o) const
{
if( dist != o.dist)
return dist > o.dist;
return f<o.f;
}
};
void BuildDijkstraVisitTree(MeshType &dualMesh, int startingFaceInd=0, ScalarType maxDistanceThr=std::numeric_limits<ScalarType>::max())
{
tri::RequireFFAdjacency(base);
tri::RequirePerFaceMark(base);
tri::RequirePerFaceQuality(base);
typename MeshType::template PerFaceAttributeHandle<FacePointer> parentHandle
= tri::Allocator<MeshType>::template GetPerFaceAttribute<FacePointer>(base, "parent");
std::vector<FacePointer> seedVec;
seedVec.push_back(&base.face[startingFaceInd]);
std::vector<FaceDist> Heap;
tri::UnMarkAll(base);
tri::UpdateQuality<MeshType>::FaceConstant(base,0);
ForEachVertex(base, [&](VertexType &v){
tri::Allocator<MeshType>::AddVertex(dualMesh,v.cP());
});
// Initialize the face heap;
// All faces in the heap are already marked; Q() store the distance from the source faces;
for(size_t i=0;i<seedVec.size();++i)
{
seedVec[i]->Q()=0;
Heap.push_back(FaceDist(seedVec[i]));
}
// Main Loop
int boundary=0;
std::make_heap(Heap.begin(),Heap.end());
int vCnt=0;
int eCnt=0;
int fCnt=0;
// The main idea is that in the heap we maintain all the faces to be visited.
int nonDiskCnt=0;
while(!Heap.empty() && nonDiskCnt<10)
{
int eulerChi= vCnt-eCnt+fCnt;
if(eulerChi==1) nonDiskCnt=0;
else ++nonDiskCnt;
// printf("HeapSize %i: %i - %i + %i = %i\n",Heap.size(), vCnt,eCnt,fCnt,eulerChi);
pop_heap(Heap.begin(),Heap.end());
FacePointer currFp = (Heap.back()).f;
if(tri::IsMarked(base,currFp))
{
// printf("Found an already visited face %f %f \n",Heap.back().dist, Heap.back().f->Q());
//assert(Heap.back().dist != currFp->Q());
Heap.pop_back();
continue;
}
Heap.pop_back();
++fCnt;
eCnt+=3;
tri::Mark(base,currFp);
// printf("pop face %i \n", tri::Index(base,currFp));
for(int i=0;i<3;++i)
{
if(!currFp->V(i)->IsV()) {++vCnt; currFp->V(i)->SetV();}
FacePointer nextFp = currFp->FFp(i);
if( tri::IsMarked(base,nextFp) )
{
eCnt-=1;
printf("is marked\n");
if(nextFp != parentHandle[currFp] )
{
if(currFp>nextFp){
tri::Allocator<MeshType>::AddEdge(dualMesh,tri::Index(base,currFp->V0(i)), tri::Index(base,currFp->V1(i)));
}
}
}
else // add it to the heap;
{
// printf("is NOT marked\n");
parentHandle[nextFp] = currFp;
ScalarType nextDist = currFp->Q() + Distance(Barycenter(*currFp),Barycenter(*nextFp));
int adjMarkedNum=0;
for(int k=0;k<3;++k) if(tri::IsMarked(base,nextFp->FFp(k))) ++adjMarkedNum;
if(nextDist < maxDistanceThr || adjMarkedNum>1)
{
nextFp->Q() = nextDist;
Heap.push_back(FaceDist(nextFp));
push_heap(Heap.begin(),Heap.end());
}
else {
// printf("boundary %i\n",++boundary);
tri::Allocator<MeshType>::AddEdge(dualMesh,tri::Index(base,currFp->V0(i)), tri::Index(base,currFp->V1(i)));
}
}
}
} // End while
printf("fulltree %i vn %i en \n",dualMesh.vn, dualMesh.en);
int dupVert=tri::Clean<MeshType>::RemoveDuplicateVertex(dualMesh,false); printf("Removed %i dup vert\n",dupVert);
int dupEdge=tri::Clean<MeshType>::RemoveDuplicateEdge(dualMesh); printf("Removed %i dup edges %i\n",dupEdge,dualMesh.EN());
tri::Clean<MeshType>::RemoveUnreferencedVertex(dualMesh);
tri::io::ExporterPLY<MeshType>::Save(dualMesh,"fulltree.ply",tri::io::Mask::IOM_EDGEINDEX);
tri::UpdateColor<MeshType>::PerFaceQualityRamp(base);
tri::io::ExporterPLY<MeshType>::Save(base,"colored_Bydistance.ply",tri::io::Mask::IOM_FACECOLOR);
}
// \brief This function build a cut tree.
//
// First we make a bread first FF face visit.
// Each time that we encounter a visited face we add to the tree the edge
// that brings to the already visited face.
// this structure build a dense graph and we retract this graph retracting each
// leaf until we remains with just the loops that cuts the object.
void BuildVisitTree(MeshType &dualMesh, int startingFaceInd=0)
{
tri::UpdateFlags<MeshType>::FaceClearV(base);
tri::UpdateFlags<MeshType>::VertexBorderFromFaceAdj(base);
std::vector<face::Pos<FaceType> > visitStack; // the stack contain the pos on the 'starting' face.
base.face[startingFaceInd].SetV();
for(int i=0;i<3;++i)
visitStack.push_back(PosType(&(base.face[startingFaceInd]),i,base.face[startingFaceInd].V(i)));
int cnt=1;
while(!visitStack.empty())
{
std::swap(visitStack.back(),visitStack[rand()%visitStack.size()]);
PosType c = visitStack.back();
visitStack.pop_back();
assert(c.F()->IsV());
c.F()->C() = Color4b::ColorRamp(0,base.fn,cnt);
c.FlipF();
if(!c.F()->IsV())
{
++cnt;
c.F()->SetV();
c.FlipE();c.FlipV();
visitStack.push_back(c);
c.FlipE();c.FlipV();
visitStack.push_back(c);
}
else
{
tri::Allocator<MeshType>::AddEdge(dualMesh,c.V()->P(),c.VFlip()->P());
}
}
assert(cnt==base.fn);
tri::Clean<MeshType>::RemoveDuplicateVertex(dualMesh);
tri::io::ExporterPLY<MeshType>::Save(dualMesh,"fulltree.ply",tri::io::Mask::IOM_EDGEINDEX);
}
};
} // end namespace tri
} // end namespace vcg
#endif // CUT_TREE_H