1278 lines
49 KiB
C++
1278 lines
49 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
|
|
// research report written by Ming Gu and Stanley C.Eisenstat
|
|
// The code variable names correspond to the names they used in their
|
|
// report
|
|
//
|
|
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
|
|
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
|
|
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
|
|
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
|
|
// Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
// Copyright (C) 2014-2017 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at the mozilla.org home page
|
|
|
|
#ifndef EIGEN_BDCSVD_H
|
|
#define EIGEN_BDCSVD_H
|
|
// #define EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
// #define EIGEN_BDCSVD_SANITY_CHECKS
|
|
|
|
namespace Eigen {
|
|
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]");
|
|
#endif
|
|
|
|
template<typename _MatrixType> class BDCSVD;
|
|
|
|
namespace internal {
|
|
|
|
template<typename _MatrixType>
|
|
struct traits<BDCSVD<_MatrixType> >
|
|
{
|
|
typedef _MatrixType MatrixType;
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
|
|
/** \ingroup SVD_Module
|
|
*
|
|
*
|
|
* \class BDCSVD
|
|
*
|
|
* \brief class Bidiagonal Divide and Conquer SVD
|
|
*
|
|
* \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
|
|
*
|
|
* This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization,
|
|
* and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD.
|
|
* You can control the switching size with the setSwitchSize() method, default is 16.
|
|
* For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly
|
|
* recommended and can several order of magnitude faster.
|
|
*
|
|
* \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations.
|
|
* For instance, this concerns Intel's compiler (ICC), which perfroms such optimization by default unless
|
|
* you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will
|
|
* significantly degrade the accuracy.
|
|
*
|
|
* \sa class JacobiSVD
|
|
*/
|
|
template<typename _MatrixType>
|
|
class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
|
|
{
|
|
typedef SVDBase<BDCSVD> Base;
|
|
|
|
public:
|
|
using Base::rows;
|
|
using Base::cols;
|
|
using Base::computeU;
|
|
using Base::computeV;
|
|
|
|
typedef _MatrixType MatrixType;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
|
typedef typename NumTraits<RealScalar>::Literal Literal;
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
|
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
|
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime),
|
|
MatrixOptions = MatrixType::Options
|
|
};
|
|
|
|
typedef typename Base::MatrixUType MatrixUType;
|
|
typedef typename Base::MatrixVType MatrixVType;
|
|
typedef typename Base::SingularValuesType SingularValuesType;
|
|
|
|
typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> MatrixX;
|
|
typedef Matrix<RealScalar, Dynamic, Dynamic, ColMajor> MatrixXr;
|
|
typedef Matrix<RealScalar, Dynamic, 1> VectorType;
|
|
typedef Array<RealScalar, Dynamic, 1> ArrayXr;
|
|
typedef Array<Index,1,Dynamic> ArrayXi;
|
|
typedef Ref<ArrayXr> ArrayRef;
|
|
typedef Ref<ArrayXi> IndicesRef;
|
|
|
|
/** \brief Default Constructor.
|
|
*
|
|
* The default constructor is useful in cases in which the user intends to
|
|
* perform decompositions via BDCSVD::compute(const MatrixType&).
|
|
*/
|
|
BDCSVD() : m_algoswap(16), m_numIters(0)
|
|
{}
|
|
|
|
|
|
/** \brief Default Constructor with memory preallocation
|
|
*
|
|
* Like the default constructor but with preallocation of the internal data
|
|
* according to the specified problem size.
|
|
* \sa BDCSVD()
|
|
*/
|
|
BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
|
: m_algoswap(16), m_numIters(0)
|
|
{
|
|
allocate(rows, cols, computationOptions);
|
|
}
|
|
|
|
/** \brief Constructor performing the decomposition of given matrix.
|
|
*
|
|
* \param matrix the matrix to decompose
|
|
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
|
* By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
|
|
* #ComputeFullV, #ComputeThinV.
|
|
*
|
|
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
|
* available with the (non - default) FullPivHouseholderQR preconditioner.
|
|
*/
|
|
BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
|
: m_algoswap(16), m_numIters(0)
|
|
{
|
|
compute(matrix, computationOptions);
|
|
}
|
|
|
|
~BDCSVD()
|
|
{
|
|
}
|
|
|
|
/** \brief Method performing the decomposition of given matrix using custom options.
|
|
*
|
|
* \param matrix the matrix to decompose
|
|
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
|
* By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
|
|
* #ComputeFullV, #ComputeThinV.
|
|
*
|
|
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
|
* available with the (non - default) FullPivHouseholderQR preconditioner.
|
|
*/
|
|
BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
|
|
|
|
/** \brief Method performing the decomposition of given matrix using current options.
|
|
*
|
|
* \param matrix the matrix to decompose
|
|
*
|
|
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
|
|
*/
|
|
BDCSVD& compute(const MatrixType& matrix)
|
|
{
|
|
return compute(matrix, this->m_computationOptions);
|
|
}
|
|
|
|
void setSwitchSize(int s)
|
|
{
|
|
eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3");
|
|
m_algoswap = s;
|
|
}
|
|
|
|
private:
|
|
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
|
void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
|
|
void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
|
|
void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus);
|
|
void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat);
|
|
void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V);
|
|
void deflation43(Index firstCol, Index shift, Index i, Index size);
|
|
void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
|
|
void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
|
|
template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
|
|
void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
|
|
void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1);
|
|
static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift);
|
|
|
|
protected:
|
|
MatrixXr m_naiveU, m_naiveV;
|
|
MatrixXr m_computed;
|
|
Index m_nRec;
|
|
ArrayXr m_workspace;
|
|
ArrayXi m_workspaceI;
|
|
int m_algoswap;
|
|
bool m_isTranspose, m_compU, m_compV;
|
|
|
|
using Base::m_singularValues;
|
|
using Base::m_diagSize;
|
|
using Base::m_computeFullU;
|
|
using Base::m_computeFullV;
|
|
using Base::m_computeThinU;
|
|
using Base::m_computeThinV;
|
|
using Base::m_matrixU;
|
|
using Base::m_matrixV;
|
|
using Base::m_isInitialized;
|
|
using Base::m_nonzeroSingularValues;
|
|
|
|
public:
|
|
int m_numIters;
|
|
}; //end class BDCSVD
|
|
|
|
|
|
// Method to allocate and initialize matrix and attributes
|
|
template<typename MatrixType>
|
|
void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
|
|
{
|
|
m_isTranspose = (cols > rows);
|
|
|
|
if (Base::allocate(rows, cols, computationOptions))
|
|
return;
|
|
|
|
m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
|
|
m_compU = computeV();
|
|
m_compV = computeU();
|
|
if (m_isTranspose)
|
|
std::swap(m_compU, m_compV);
|
|
|
|
if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 );
|
|
else m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 );
|
|
|
|
if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize);
|
|
|
|
m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3);
|
|
m_workspaceI.resize(3*m_diagSize);
|
|
}// end allocate
|
|
|
|
template<typename MatrixType>
|
|
BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
|
|
{
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << "\n\n\n======================================================================================================================\n\n\n";
|
|
#endif
|
|
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
|
using std::abs;
|
|
|
|
const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
|
|
|
|
//**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return
|
|
if(matrix.cols() < m_algoswap)
|
|
{
|
|
// FIXME this line involves temporaries
|
|
JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
|
|
if(computeU()) m_matrixU = jsvd.matrixU();
|
|
if(computeV()) m_matrixV = jsvd.matrixV();
|
|
m_singularValues = jsvd.singularValues();
|
|
m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
|
|
m_isInitialized = true;
|
|
return *this;
|
|
}
|
|
|
|
//**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows
|
|
RealScalar scale = matrix.cwiseAbs().maxCoeff();
|
|
if(scale==Literal(0)) scale = Literal(1);
|
|
MatrixX copy;
|
|
if (m_isTranspose) copy = matrix.adjoint()/scale;
|
|
else copy = matrix/scale;
|
|
|
|
//**** step 1 - Bidiagonalization
|
|
// FIXME this line involves temporaries
|
|
internal::UpperBidiagonalization<MatrixX> bid(copy);
|
|
|
|
//**** step 2 - Divide & Conquer
|
|
m_naiveU.setZero();
|
|
m_naiveV.setZero();
|
|
// FIXME this line involves a temporary matrix
|
|
m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
|
|
m_computed.template bottomRows<1>().setZero();
|
|
divide(0, m_diagSize - 1, 0, 0, 0);
|
|
|
|
//**** step 3 - Copy singular values and vectors
|
|
for (int i=0; i<m_diagSize; i++)
|
|
{
|
|
RealScalar a = abs(m_computed.coeff(i, i));
|
|
m_singularValues.coeffRef(i) = a * scale;
|
|
if (a<considerZero)
|
|
{
|
|
m_nonzeroSingularValues = i;
|
|
m_singularValues.tail(m_diagSize - i - 1).setZero();
|
|
break;
|
|
}
|
|
else if (i == m_diagSize - 1)
|
|
{
|
|
m_nonzeroSingularValues = i + 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
// std::cout << "m_naiveU\n" << m_naiveU << "\n\n";
|
|
// std::cout << "m_naiveV\n" << m_naiveV << "\n\n";
|
|
#endif
|
|
if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU);
|
|
else copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV);
|
|
|
|
m_isInitialized = true;
|
|
return *this;
|
|
}// end compute
|
|
|
|
|
|
template<typename MatrixType>
|
|
template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
|
|
void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
|
|
{
|
|
// Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
|
|
if (computeU())
|
|
{
|
|
Index Ucols = m_computeThinU ? m_diagSize : householderU.cols();
|
|
m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
|
|
m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
|
|
householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer
|
|
}
|
|
if (computeV())
|
|
{
|
|
Index Vcols = m_computeThinV ? m_diagSize : householderV.cols();
|
|
m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
|
|
m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
|
|
householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer
|
|
}
|
|
}
|
|
|
|
/** \internal
|
|
* Performs A = A * B exploiting the special structure of the matrix A. Splitting A as:
|
|
* A = [A1]
|
|
* [A2]
|
|
* such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros.
|
|
* We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large
|
|
* enough.
|
|
*/
|
|
template<typename MatrixType>
|
|
void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1)
|
|
{
|
|
Index n = A.rows();
|
|
if(n>100)
|
|
{
|
|
// If the matrices are large enough, let's exploit the sparse structure of A by
|
|
// splitting it in half (wrt n1), and packing the non-zero columns.
|
|
Index n2 = n - n1;
|
|
Map<MatrixXr> A1(m_workspace.data() , n1, n);
|
|
Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n);
|
|
Map<MatrixXr> B1(m_workspace.data()+ n*n, n, n);
|
|
Map<MatrixXr> B2(m_workspace.data()+2*n*n, n, n);
|
|
Index k1=0, k2=0;
|
|
for(Index j=0; j<n; ++j)
|
|
{
|
|
if( (A.col(j).head(n1).array()!=Literal(0)).any() )
|
|
{
|
|
A1.col(k1) = A.col(j).head(n1);
|
|
B1.row(k1) = B.row(j);
|
|
++k1;
|
|
}
|
|
if( (A.col(j).tail(n2).array()!=Literal(0)).any() )
|
|
{
|
|
A2.col(k2) = A.col(j).tail(n2);
|
|
B2.row(k2) = B.row(j);
|
|
++k2;
|
|
}
|
|
}
|
|
|
|
A.topRows(n1).noalias() = A1.leftCols(k1) * B1.topRows(k1);
|
|
A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2);
|
|
}
|
|
else
|
|
{
|
|
Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n);
|
|
tmp.noalias() = A*B;
|
|
A = tmp;
|
|
}
|
|
}
|
|
|
|
// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
|
|
// place of the submatrix we are currently working on.
|
|
|
|
//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
|
|
//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU;
|
|
// lastCol + 1 - firstCol is the size of the submatrix.
|
|
//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
|
|
//@param firstRowW : Same as firstRowW with the column.
|
|
//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
|
|
// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
|
|
template<typename MatrixType>
|
|
void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift)
|
|
{
|
|
// requires rows = cols + 1;
|
|
using std::pow;
|
|
using std::sqrt;
|
|
using std::abs;
|
|
const Index n = lastCol - firstCol + 1;
|
|
const Index k = n/2;
|
|
const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
|
|
RealScalar alphaK;
|
|
RealScalar betaK;
|
|
RealScalar r0;
|
|
RealScalar lambda, phi, c0, s0;
|
|
VectorType l, f;
|
|
// We use the other algorithm which is more efficient for small
|
|
// matrices.
|
|
if (n < m_algoswap)
|
|
{
|
|
// FIXME this line involves temporaries
|
|
JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
|
|
if (m_compU)
|
|
m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
|
|
else
|
|
{
|
|
m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
|
|
m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
|
|
}
|
|
if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
|
|
m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
|
|
m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
|
|
return;
|
|
}
|
|
// We use the divide and conquer algorithm
|
|
alphaK = m_computed(firstCol + k, firstCol + k);
|
|
betaK = m_computed(firstCol + k + 1, firstCol + k);
|
|
// The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
|
|
// and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
|
|
// right submatrix before the left one.
|
|
divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
|
|
divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
|
|
|
|
if (m_compU)
|
|
{
|
|
lambda = m_naiveU(firstCol + k, firstCol + k);
|
|
phi = m_naiveU(firstCol + k + 1, lastCol + 1);
|
|
}
|
|
else
|
|
{
|
|
lambda = m_naiveU(1, firstCol + k);
|
|
phi = m_naiveU(0, lastCol + 1);
|
|
}
|
|
r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi));
|
|
if (m_compU)
|
|
{
|
|
l = m_naiveU.row(firstCol + k).segment(firstCol, k);
|
|
f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
|
|
}
|
|
else
|
|
{
|
|
l = m_naiveU.row(1).segment(firstCol, k);
|
|
f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
|
|
}
|
|
if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1);
|
|
if (r0<considerZero)
|
|
{
|
|
c0 = Literal(1);
|
|
s0 = Literal(0);
|
|
}
|
|
else
|
|
{
|
|
c0 = alphaK * lambda / r0;
|
|
s0 = betaK * phi / r0;
|
|
}
|
|
|
|
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
|
|
assert(m_naiveU.allFinite());
|
|
assert(m_naiveV.allFinite());
|
|
assert(m_computed.allFinite());
|
|
#endif
|
|
|
|
if (m_compU)
|
|
{
|
|
MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
|
|
// we shiftW Q1 to the right
|
|
for (Index i = firstCol + k - 1; i >= firstCol; i--)
|
|
m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1);
|
|
// we shift q1 at the left with a factor c0
|
|
m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0);
|
|
// last column = q1 * - s0
|
|
m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0));
|
|
// first column = q2 * s0
|
|
m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0;
|
|
// q2 *= c0
|
|
m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
|
|
}
|
|
else
|
|
{
|
|
RealScalar q1 = m_naiveU(0, firstCol + k);
|
|
// we shift Q1 to the right
|
|
for (Index i = firstCol + k - 1; i >= firstCol; i--)
|
|
m_naiveU(0, i + 1) = m_naiveU(0, i);
|
|
// we shift q1 at the left with a factor c0
|
|
m_naiveU(0, firstCol) = (q1 * c0);
|
|
// last column = q1 * - s0
|
|
m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
|
|
// first column = q2 * s0
|
|
m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
|
|
// q2 *= c0
|
|
m_naiveU(1, lastCol + 1) *= c0;
|
|
m_naiveU.row(1).segment(firstCol + 1, k).setZero();
|
|
m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
|
|
}
|
|
|
|
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
|
|
assert(m_naiveU.allFinite());
|
|
assert(m_naiveV.allFinite());
|
|
assert(m_computed.allFinite());
|
|
#endif
|
|
|
|
m_computed(firstCol + shift, firstCol + shift) = r0;
|
|
m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real();
|
|
m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real();
|
|
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
|
|
#endif
|
|
// Second part: try to deflate singular values in combined matrix
|
|
deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
|
|
std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n";
|
|
std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n";
|
|
std::cout << "err: " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n";
|
|
static int count = 0;
|
|
std::cout << "# " << ++count << "\n\n";
|
|
assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm());
|
|
// assert(count<681);
|
|
// assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all());
|
|
#endif
|
|
|
|
// Third part: compute SVD of combined matrix
|
|
MatrixXr UofSVD, VofSVD;
|
|
VectorType singVals;
|
|
computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD);
|
|
|
|
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
|
|
assert(UofSVD.allFinite());
|
|
assert(VofSVD.allFinite());
|
|
#endif
|
|
|
|
if (m_compU)
|
|
structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2);
|
|
else
|
|
{
|
|
Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1);
|
|
tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD;
|
|
m_naiveU.middleCols(firstCol, n + 1) = tmp;
|
|
}
|
|
|
|
if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2);
|
|
|
|
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
|
|
assert(m_naiveU.allFinite());
|
|
assert(m_naiveV.allFinite());
|
|
assert(m_computed.allFinite());
|
|
#endif
|
|
|
|
m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero();
|
|
m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals;
|
|
}// end divide
|
|
|
|
// Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in
|
|
// the first column and on the diagonal and has undergone deflation, so diagonal is in increasing
|
|
// order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except
|
|
// that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order.
|
|
//
|
|
// TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
|
|
// handling of round-off errors, be consistent in ordering
|
|
// For instance, to solve the secular equation using FMM, see xxxp://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
|
|
template <typename MatrixType>
|
|
void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
|
|
{
|
|
const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
|
|
using std::abs;
|
|
ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n);
|
|
m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal();
|
|
ArrayRef diag = m_workspace.head(n);
|
|
diag(0) = Literal(0);
|
|
|
|
// Allocate space for singular values and vectors
|
|
singVals.resize(n);
|
|
U.resize(n+1, n+1);
|
|
if (m_compV) V.resize(n, n);
|
|
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
if (col0.hasNaN() || diag.hasNaN())
|
|
std::cout << "\n\nHAS NAN\n\n";
|
|
#endif
|
|
|
|
// Many singular values might have been deflated, the zero ones have been moved to the end,
|
|
// but others are interleaved and we must ignore them at this stage.
|
|
// To this end, let's compute a permutation skipping them:
|
|
Index actual_n = n;
|
|
while(actual_n>1 && diag(actual_n-1)==Literal(0)) --actual_n;
|
|
Index m = 0; // size of the deflated problem
|
|
for(Index k=0;k<actual_n;++k)
|
|
if(abs(col0(k))>considerZero)
|
|
m_workspaceI(m++) = k;
|
|
Map<ArrayXi> perm(m_workspaceI.data(),m);
|
|
|
|
Map<ArrayXr> shifts(m_workspace.data()+1*n, n);
|
|
Map<ArrayXr> mus(m_workspace.data()+2*n, n);
|
|
Map<ArrayXr> zhat(m_workspace.data()+3*n, n);
|
|
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << "computeSVDofM using:\n";
|
|
std::cout << " z: " << col0.transpose() << "\n";
|
|
std::cout << " d: " << diag.transpose() << "\n";
|
|
#endif
|
|
|
|
// Compute singVals, shifts, and mus
|
|
computeSingVals(col0, diag, perm, singVals, shifts, mus);
|
|
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << " j: " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n";
|
|
std::cout << " sing-val: " << singVals.transpose() << "\n";
|
|
std::cout << " mu: " << mus.transpose() << "\n";
|
|
std::cout << " shift: " << shifts.transpose() << "\n";
|
|
|
|
{
|
|
Index actual_n = n;
|
|
while(actual_n>1 && abs(col0(actual_n-1))<considerZero) --actual_n;
|
|
std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n";
|
|
std::cout << " check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n";
|
|
std::cout << " check2 (>0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n";
|
|
std::cout << " check3 (>0) : " << ((diag.segment(1,actual_n-1)-singVals.head(actual_n-1).array()) / singVals.head(actual_n-1).array()).transpose() << "\n\n\n";
|
|
std::cout << " check4 (>0) : " << ((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).transpose() << "\n\n\n";
|
|
}
|
|
#endif
|
|
|
|
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
|
|
assert(singVals.allFinite());
|
|
assert(mus.allFinite());
|
|
assert(shifts.allFinite());
|
|
#endif
|
|
|
|
// Compute zhat
|
|
perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat);
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << " zhat: " << zhat.transpose() << "\n";
|
|
#endif
|
|
|
|
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
|
|
assert(zhat.allFinite());
|
|
#endif
|
|
|
|
computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V);
|
|
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n";
|
|
std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n";
|
|
#endif
|
|
|
|
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
|
|
assert(U.allFinite());
|
|
assert(V.allFinite());
|
|
assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 1e-14 * n);
|
|
assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 1e-14 * n);
|
|
assert(m_naiveU.allFinite());
|
|
assert(m_naiveV.allFinite());
|
|
assert(m_computed.allFinite());
|
|
#endif
|
|
|
|
// Because of deflation, the singular values might not be completely sorted.
|
|
// Fortunately, reordering them is a O(n) problem
|
|
for(Index i=0; i<actual_n-1; ++i)
|
|
{
|
|
if(singVals(i)>singVals(i+1))
|
|
{
|
|
using std::swap;
|
|
swap(singVals(i),singVals(i+1));
|
|
U.col(i).swap(U.col(i+1));
|
|
if(m_compV) V.col(i).swap(V.col(i+1));
|
|
}
|
|
}
|
|
|
|
// Reverse order so that singular values in increased order
|
|
// Because of deflation, the zeros singular-values are already at the end
|
|
singVals.head(actual_n).reverseInPlace();
|
|
U.leftCols(actual_n).rowwise().reverseInPlace();
|
|
if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace();
|
|
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) );
|
|
std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n";
|
|
std::cout << " * sing-val: " << singVals.transpose() << "\n";
|
|
// std::cout << " * err: " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n";
|
|
#endif
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
|
|
{
|
|
Index m = perm.size();
|
|
RealScalar res = Literal(1);
|
|
for(Index i=0; i<m; ++i)
|
|
{
|
|
Index j = perm(i);
|
|
// The following expression could be rewritten to involve only a single division,
|
|
// but this would make the expression more sensitive to overflow.
|
|
res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu));
|
|
}
|
|
return res;
|
|
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm,
|
|
VectorType& singVals, ArrayRef shifts, ArrayRef mus)
|
|
{
|
|
using std::abs;
|
|
using std::swap;
|
|
using std::sqrt;
|
|
|
|
Index n = col0.size();
|
|
Index actual_n = n;
|
|
// Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above
|
|
// because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value.
|
|
while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n;
|
|
|
|
for (Index k = 0; k < n; ++k)
|
|
{
|
|
if (col0(k) == Literal(0) || actual_n==1)
|
|
{
|
|
// if col0(k) == 0, then entry is deflated, so singular value is on diagonal
|
|
// if actual_n==1, then the deflated problem is already diagonalized
|
|
singVals(k) = k==0 ? col0(0) : diag(k);
|
|
mus(k) = Literal(0);
|
|
shifts(k) = k==0 ? col0(0) : diag(k);
|
|
continue;
|
|
}
|
|
|
|
// otherwise, use secular equation to find singular value
|
|
RealScalar left = diag(k);
|
|
RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm());
|
|
if(k==actual_n-1)
|
|
right = (diag(actual_n-1) + col0.matrix().norm());
|
|
else
|
|
{
|
|
// Skip deflated singular values,
|
|
// recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside.
|
|
// This should be equivalent to using perm[]
|
|
Index l = k+1;
|
|
while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); }
|
|
right = diag(l);
|
|
}
|
|
|
|
// first decide whether it's closer to the left end or the right end
|
|
RealScalar mid = left + (right-left) / Literal(2);
|
|
RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0));
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << right-left << "\n";
|
|
std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, diag-left, left) << " " << secularEq(mid-right, col0, diag, perm, diag-right, right) << "\n";
|
|
std::cout << " = " << secularEq(0.1*(left+right), col0, diag, perm, diag, 0)
|
|
<< " " << secularEq(0.2*(left+right), col0, diag, perm, diag, 0)
|
|
<< " " << secularEq(0.3*(left+right), col0, diag, perm, diag, 0)
|
|
<< " " << secularEq(0.4*(left+right), col0, diag, perm, diag, 0)
|
|
<< " " << secularEq(0.49*(left+right), col0, diag, perm, diag, 0)
|
|
<< " " << secularEq(0.5*(left+right), col0, diag, perm, diag, 0)
|
|
<< " " << secularEq(0.51*(left+right), col0, diag, perm, diag, 0)
|
|
<< " " << secularEq(0.6*(left+right), col0, diag, perm, diag, 0)
|
|
<< " " << secularEq(0.7*(left+right), col0, diag, perm, diag, 0)
|
|
<< " " << secularEq(0.8*(left+right), col0, diag, perm, diag, 0)
|
|
<< " " << secularEq(0.9*(left+right), col0, diag, perm, diag, 0) << "\n";
|
|
#endif
|
|
RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right;
|
|
|
|
// measure everything relative to shift
|
|
Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n);
|
|
diagShifted = diag - shift;
|
|
|
|
if(k!=actual_n-1)
|
|
{
|
|
// check that after the shift, f(mid) is still negative:
|
|
RealScalar midShifted = (right - left) / RealScalar(2);
|
|
if(shift==right)
|
|
midShifted = -midShifted;
|
|
RealScalar fMidShifted = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
|
|
if(fMidShifted>0)
|
|
{
|
|
// fMid was erroneous, fix it:
|
|
shift = fMidShifted > Literal(0) ? left : right;
|
|
diagShifted = diag - shift;
|
|
}
|
|
}
|
|
|
|
// initial guess
|
|
RealScalar muPrev, muCur;
|
|
if (shift == left)
|
|
{
|
|
muPrev = (right - left) * RealScalar(0.1);
|
|
if (k == actual_n-1) muCur = right - left;
|
|
else muCur = (right - left) * RealScalar(0.5);
|
|
}
|
|
else
|
|
{
|
|
muPrev = -(right - left) * RealScalar(0.1);
|
|
muCur = -(right - left) * RealScalar(0.5);
|
|
}
|
|
|
|
RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift);
|
|
RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift);
|
|
if (abs(fPrev) < abs(fCur))
|
|
{
|
|
swap(fPrev, fCur);
|
|
swap(muPrev, muCur);
|
|
}
|
|
|
|
// rational interpolation: fit a function of the form a / mu + b through the two previous
|
|
// iterates and use its zero to compute the next iterate
|
|
bool useBisection = fPrev*fCur>Literal(0);
|
|
while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
|
|
{
|
|
++m_numIters;
|
|
|
|
// Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples.
|
|
RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev);
|
|
RealScalar b = fCur - a / muCur;
|
|
// And find mu such that f(mu)==0:
|
|
RealScalar muZero = -a/b;
|
|
RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift);
|
|
|
|
muPrev = muCur;
|
|
fPrev = fCur;
|
|
muCur = muZero;
|
|
fCur = fZero;
|
|
|
|
|
|
if (shift == left && (muCur < Literal(0) || muCur > right - left)) useBisection = true;
|
|
if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true;
|
|
if (abs(fCur)>abs(fPrev)) useBisection = true;
|
|
}
|
|
|
|
// fall back on bisection method if rational interpolation did not work
|
|
if (useBisection)
|
|
{
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n";
|
|
#endif
|
|
RealScalar leftShifted, rightShifted;
|
|
if (shift == left)
|
|
{
|
|
// to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)),
|
|
// the factor 2 is to be more conservative
|
|
leftShifted = numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
|
|
|
|
// check that we did it right:
|
|
eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) );
|
|
// I don't understand why the case k==0 would be special there:
|
|
// if (k == 0) rightShifted = right - left; else
|
|
rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe
|
|
}
|
|
else
|
|
{
|
|
leftShifted = -(right - left) * RealScalar(0.51);
|
|
if(k+1<n)
|
|
rightShifted = -numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
|
|
else
|
|
rightShifted = -(std::numeric_limits<RealScalar>::min)();
|
|
}
|
|
|
|
RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift);
|
|
eigen_internal_assert(fLeft<Literal(0));
|
|
|
|
#if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift);
|
|
#endif
|
|
|
|
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
if(!(fLeft * fRight<0))
|
|
{
|
|
std::cout << "fLeft: " << leftShifted << " - " << diagShifted.head(10).transpose() << "\n ; " << bool(left==shift) << " " << (left-shift) << "\n";
|
|
std::cout << k << " : " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; " << left << " - " << right << " -> " << leftShifted << " " << rightShifted << " shift=" << shift << "\n";
|
|
}
|
|
#endif
|
|
eigen_internal_assert(fLeft * fRight < Literal(0));
|
|
|
|
if(fLeft<Literal(0))
|
|
{
|
|
while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
|
|
{
|
|
RealScalar midShifted = (leftShifted + rightShifted) / Literal(2);
|
|
fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
|
|
eigen_internal_assert((numext::isfinite)(fMid));
|
|
|
|
if (fLeft * fMid < Literal(0))
|
|
{
|
|
rightShifted = midShifted;
|
|
}
|
|
else
|
|
{
|
|
leftShifted = midShifted;
|
|
fLeft = fMid;
|
|
}
|
|
}
|
|
muCur = (leftShifted + rightShifted) / Literal(2);
|
|
}
|
|
else
|
|
{
|
|
// We have a problem as shifting on the left or right give either a positive or negative value
|
|
// at the middle of [left,right]...
|
|
// Instead fo abbording or entering an infinite loop,
|
|
// let's just use the middle as the estimated zero-crossing:
|
|
muCur = (right - left) * RealScalar(0.5);
|
|
if(shift == right)
|
|
muCur = -muCur;
|
|
}
|
|
}
|
|
|
|
singVals[k] = shift + muCur;
|
|
shifts[k] = shift;
|
|
mus[k] = muCur;
|
|
|
|
// perturb singular value slightly if it equals diagonal entry to avoid division by zero later
|
|
// (deflation is supposed to avoid this from happening)
|
|
// - this does no seem to be necessary anymore -
|
|
// if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon();
|
|
// if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon();
|
|
}
|
|
}
|
|
|
|
|
|
// zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1)
|
|
template <typename MatrixType>
|
|
void BDCSVD<MatrixType>::perturbCol0
|
|
(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
|
|
const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat)
|
|
{
|
|
using std::sqrt;
|
|
Index n = col0.size();
|
|
Index m = perm.size();
|
|
if(m==0)
|
|
{
|
|
zhat.setZero();
|
|
return;
|
|
}
|
|
Index last = perm(m-1);
|
|
// The offset permits to skip deflated entries while computing zhat
|
|
for (Index k = 0; k < n; ++k)
|
|
{
|
|
if (col0(k) == Literal(0)) // deflated
|
|
zhat(k) = Literal(0);
|
|
else
|
|
{
|
|
// see equation (3.6)
|
|
RealScalar dk = diag(k);
|
|
RealScalar prod = (singVals(last) + dk) * (mus(last) + (shifts(last) - dk));
|
|
|
|
for(Index l = 0; l<m; ++l)
|
|
{
|
|
Index i = perm(l);
|
|
if(i!=k)
|
|
{
|
|
Index j = i<k ? i : perm(l-1);
|
|
prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk)));
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
if(i!=k && numext::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 )
|
|
std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk))
|
|
<< ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n";
|
|
#endif
|
|
}
|
|
}
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(last) + dk) << " * " << mus(last) + shifts(last) << " - " << dk << "\n";
|
|
#endif
|
|
RealScalar tmp = sqrt(prod);
|
|
zhat(k) = col0(k) > Literal(0) ? RealScalar(tmp) : RealScalar(-tmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
// compute singular vectors
|
|
template <typename MatrixType>
|
|
void BDCSVD<MatrixType>::computeSingVecs
|
|
(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
|
|
const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V)
|
|
{
|
|
Index n = zhat.size();
|
|
Index m = perm.size();
|
|
|
|
for (Index k = 0; k < n; ++k)
|
|
{
|
|
if (zhat(k) == Literal(0))
|
|
{
|
|
U.col(k) = VectorType::Unit(n+1, k);
|
|
if (m_compV) V.col(k) = VectorType::Unit(n, k);
|
|
}
|
|
else
|
|
{
|
|
U.col(k).setZero();
|
|
for(Index l=0;l<m;++l)
|
|
{
|
|
Index i = perm(l);
|
|
U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
|
|
}
|
|
U(n,k) = Literal(0);
|
|
U.col(k).normalize();
|
|
|
|
if (m_compV)
|
|
{
|
|
V.col(k).setZero();
|
|
for(Index l=1;l<m;++l)
|
|
{
|
|
Index i = perm(l);
|
|
V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
|
|
}
|
|
V(0,k) = Literal(-1);
|
|
V.col(k).normalize();
|
|
}
|
|
}
|
|
}
|
|
U.col(n) = VectorType::Unit(n+1, n);
|
|
}
|
|
|
|
|
|
// page 12_13
|
|
// i >= 1, di almost null and zi non null.
|
|
// We use a rotation to zero out zi applied to the left of M
|
|
template <typename MatrixType>
|
|
void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size)
|
|
{
|
|
using std::abs;
|
|
using std::sqrt;
|
|
using std::pow;
|
|
Index start = firstCol + shift;
|
|
RealScalar c = m_computed(start, start);
|
|
RealScalar s = m_computed(start+i, start);
|
|
RealScalar r = numext::hypot(c,s);
|
|
if (r == Literal(0))
|
|
{
|
|
m_computed(start+i, start+i) = Literal(0);
|
|
return;
|
|
}
|
|
m_computed(start,start) = r;
|
|
m_computed(start+i, start) = Literal(0);
|
|
m_computed(start+i, start+i) = Literal(0);
|
|
|
|
JacobiRotation<RealScalar> J(c/r,-s/r);
|
|
if (m_compU) m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J);
|
|
else m_naiveU.applyOnTheRight(firstCol, firstCol+i, J);
|
|
}// end deflation 43
|
|
|
|
|
|
// page 13
|
|
// i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M)
|
|
// We apply two rotations to have zj = 0;
|
|
// TODO deflation44 is still broken and not properly tested
|
|
template <typename MatrixType>
|
|
void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size)
|
|
{
|
|
using std::abs;
|
|
using std::sqrt;
|
|
using std::conj;
|
|
using std::pow;
|
|
RealScalar c = m_computed(firstColm+i, firstColm);
|
|
RealScalar s = m_computed(firstColm+j, firstColm);
|
|
RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; "
|
|
<< m_computed(firstColm + i-1, firstColm) << " "
|
|
<< m_computed(firstColm + i, firstColm) << " "
|
|
<< m_computed(firstColm + i+1, firstColm) << " "
|
|
<< m_computed(firstColm + i+2, firstColm) << "\n";
|
|
std::cout << m_computed(firstColm + i-1, firstColm + i-1) << " "
|
|
<< m_computed(firstColm + i, firstColm+i) << " "
|
|
<< m_computed(firstColm + i+1, firstColm+i+1) << " "
|
|
<< m_computed(firstColm + i+2, firstColm+i+2) << "\n";
|
|
#endif
|
|
if (r==Literal(0))
|
|
{
|
|
m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
|
|
return;
|
|
}
|
|
c/=r;
|
|
s/=r;
|
|
m_computed(firstColm + i, firstColm) = r;
|
|
m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
|
|
m_computed(firstColm + j, firstColm) = Literal(0);
|
|
|
|
JacobiRotation<RealScalar> J(c,-s);
|
|
if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J);
|
|
else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J);
|
|
if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J);
|
|
}// end deflation 44
|
|
|
|
|
|
// acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
|
|
template <typename MatrixType>
|
|
void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift)
|
|
{
|
|
using std::sqrt;
|
|
using std::abs;
|
|
const Index length = lastCol + 1 - firstCol;
|
|
|
|
Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1);
|
|
Diagonal<MatrixXr> fulldiag(m_computed);
|
|
VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length);
|
|
|
|
const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
|
|
RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff();
|
|
RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag);
|
|
RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag);
|
|
|
|
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
|
|
assert(m_naiveU.allFinite());
|
|
assert(m_naiveV.allFinite());
|
|
assert(m_computed.allFinite());
|
|
#endif
|
|
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n";
|
|
#endif
|
|
|
|
//condition 4.1
|
|
if (diag(0) < epsilon_coarse)
|
|
{
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n";
|
|
#endif
|
|
diag(0) = epsilon_coarse;
|
|
}
|
|
|
|
//condition 4.2
|
|
for (Index i=1;i<length;++i)
|
|
if (abs(col0(i)) < epsilon_strict)
|
|
{
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << " (diag(" << i << ")=" << diag(i) << ")\n";
|
|
#endif
|
|
col0(i) = Literal(0);
|
|
}
|
|
|
|
//condition 4.3
|
|
for (Index i=1;i<length; i++)
|
|
if (diag(i) < epsilon_coarse)
|
|
{
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n";
|
|
#endif
|
|
deflation43(firstCol, shift, i, length);
|
|
}
|
|
|
|
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
|
|
assert(m_naiveU.allFinite());
|
|
assert(m_naiveV.allFinite());
|
|
assert(m_computed.allFinite());
|
|
#endif
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << "to be sorted: " << diag.transpose() << "\n\n";
|
|
#endif
|
|
{
|
|
// Check for total deflation
|
|
// If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting
|
|
bool total_deflation = (col0.tail(length-1).array()<considerZero).all();
|
|
|
|
// Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge.
|
|
// First, compute the respective permutation.
|
|
Index *permutation = m_workspaceI.data();
|
|
{
|
|
permutation[0] = 0;
|
|
Index p = 1;
|
|
|
|
// Move deflated diagonal entries at the end.
|
|
for(Index i=1; i<length; ++i)
|
|
if(abs(diag(i))<considerZero)
|
|
permutation[p++] = i;
|
|
|
|
Index i=1, j=k+1;
|
|
for( ; p < length; ++p)
|
|
{
|
|
if (i > k) permutation[p] = j++;
|
|
else if (j >= length) permutation[p] = i++;
|
|
else if (diag(i) < diag(j)) permutation[p] = j++;
|
|
else permutation[p] = i++;
|
|
}
|
|
}
|
|
|
|
// If we have a total deflation, then we have to insert diag(0) at the right place
|
|
if(total_deflation)
|
|
{
|
|
for(Index i=1; i<length; ++i)
|
|
{
|
|
Index pi = permutation[i];
|
|
if(abs(diag(pi))<considerZero || diag(0)<diag(pi))
|
|
permutation[i-1] = permutation[i];
|
|
else
|
|
{
|
|
permutation[i-1] = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Current index of each col, and current column of each index
|
|
Index *realInd = m_workspaceI.data()+length;
|
|
Index *realCol = m_workspaceI.data()+2*length;
|
|
|
|
for(int pos = 0; pos< length; pos++)
|
|
{
|
|
realCol[pos] = pos;
|
|
realInd[pos] = pos;
|
|
}
|
|
|
|
for(Index i = total_deflation?0:1; i < length; i++)
|
|
{
|
|
const Index pi = permutation[length - (total_deflation ? i+1 : i)];
|
|
const Index J = realCol[pi];
|
|
|
|
using std::swap;
|
|
// swap diagonal and first column entries:
|
|
swap(diag(i), diag(J));
|
|
if(i!=0 && J!=0) swap(col0(i), col0(J));
|
|
|
|
// change columns
|
|
if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1));
|
|
else m_naiveU.col(firstCol+i).segment(0, 2) .swap(m_naiveU.col(firstCol+J).segment(0, 2));
|
|
if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length));
|
|
|
|
//update real pos
|
|
const Index realI = realInd[i];
|
|
realCol[realI] = J;
|
|
realCol[pi] = i;
|
|
realInd[J] = realI;
|
|
realInd[i] = pi;
|
|
}
|
|
}
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n";
|
|
std::cout << " : " << col0.transpose() << "\n\n";
|
|
#endif
|
|
|
|
//condition 4.4
|
|
{
|
|
Index i = length-1;
|
|
while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i;
|
|
for(; i>1;--i)
|
|
if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag )
|
|
{
|
|
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
|
|
std::cout << "deflation 4.4 with i = " << i << " because " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*diag(i) << "\n";
|
|
#endif
|
|
eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted");
|
|
deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length);
|
|
}
|
|
}
|
|
|
|
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
|
|
for(Index j=2;j<length;++j)
|
|
assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero);
|
|
#endif
|
|
|
|
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
|
|
assert(m_naiveU.allFinite());
|
|
assert(m_naiveV.allFinite());
|
|
assert(m_computed.allFinite());
|
|
#endif
|
|
}//end deflation
|
|
|
|
#ifndef __CUDACC__
|
|
/** \svd_module
|
|
*
|
|
* \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm
|
|
*
|
|
* \sa class BDCSVD
|
|
*/
|
|
template<typename Derived>
|
|
BDCSVD<typename MatrixBase<Derived>::PlainObject>
|
|
MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
|
|
{
|
|
return BDCSVD<PlainObject>(*this, computationOptions);
|
|
}
|
|
#endif
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif
|