vcglib/apps/sample/trimesh_topological_cut/trimesh_topological_cut.cpp

118 lines
6.0 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2012 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#include<vcg/complex/complex.h>
#include<wrap/io_trimesh/import.h>
#include<wrap/io_trimesh/export.h>
#include<vcg/complex/algorithms/cut_tree.h>
#include<vcg/complex/algorithms/curve_on_manifold.h>
#include<vcg/complex/algorithms/crease_cut.h>
using namespace vcg;
class MyEdge;
class MyFace;
class MyVertex;
struct MyUsedTypes : public UsedTypes<Use<MyVertex>::AsVertexType, Use<MyEdge>::AsEdgeType, Use<MyFace>::AsFaceType>{};
class MyVertex : public Vertex< MyUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::Qualityf, vertex::Color4b, vertex::VEAdj, vertex::VFAdj,vertex::BitFlags >{};
class MyEdge : public Edge< MyUsedTypes, edge::VertexRef, edge::VEAdj, edge::EEAdj, edge::BitFlags> {};
class MyFace : public Face < MyUsedTypes, face::VertexRef, face::Normal3f, face::Qualityf, face::Color4b, face::VFAdj, face::FFAdj, face::Mark, face::Color4b, face::BitFlags > {};
class MyMesh : public tri::TriMesh< std::vector<MyVertex>, std::vector<MyEdge>, std::vector<MyFace> >{};
/**
* In this sample we take a torus we compute a poly line on it that open it into a disk and we open it.
* Then using the COM (Curve On Manifold) framework we smooth this polyline keeping
* it on the surface of the torus and then first we refine the torus surface with this
* smooth polyline and then we open it along these new edges.
*
* Optionally you can use your own mesh and polyline by passing them as parameters.
*/
int main(int argc,char ** argv )
{
MyMesh base, basecopy, poly;
int ret0=0, ret1=0;
if(argc>1) ret0 = tri::io::Importer<MyMesh>::Open(base,argv[1]);
if(base.FN() == 0) Torus(base,10,4,48,24);
if(argc>2) ret1 = tri::io::Importer<MyMesh>::Open(poly,argv[2]);
tri::UpdateBounding<MyMesh>::Box(base);
printf( "Mesh %s has %i vert and %i faces\n", argv[1], base.VN(), base.FN() );
printf( "Poly %s has %i vert and %i edges\n", argv[2], poly.VN(), poly.EN() );
if(poly.EN() == 0) {
srand(time(nullptr));
tri::CutTree<MyMesh> ct(base);
ct.Build(poly,rand()%base.fn);
}
tri::io::ExporterPLY<MyMesh>::Save(poly,"0_cut_tree.ply",tri::io::Mask::IOM_EDGEINDEX);
tri::CoM<MyMesh> cc(base);
cc.Init();
bool ret = cc.TagFaceEdgeSelWithPolyLine(poly);
if(ret)
{
tri::Append<MyMesh,MyMesh>::MeshCopy(basecopy,base);
tri::UpdateTopology<MyMesh>::FaceFace(basecopy);
tri::CutMeshAlongSelectedFaceEdges<MyMesh>(basecopy);
tri::io::ExporterPLY<MyMesh>::Save(basecopy,"base_cut_with_tree.ply");
}
// Selected vertices are 'locked' during the smoothing.
cc.SelectBoundaryVertex(poly);
// cc.SelectUniformlyDistributed(poly,10); // lock some vertices uniformly just for fun
// Two smoothing runs,
// the first that allows fast movement over the surface (long edges that can skim surface details)
cc.par.surfDistThr = base.bbox.Diag()/100.0f;
cc.par.maxSimpEdgeLen = base.bbox.Diag()/50.0f;
cc.par.minRefEdgeLen = base.bbox.Diag()/100.0f;
cc.SmoothProject(poly,30,0.7f,.3f);
tri::io::ExporterPLY<MyMesh>::Save(poly,"1_poly_smooth.ply",tri::io::Mask::IOM_EDGEINDEX+tri::io::Mask::IOM_VERTCOLOR+tri::io::Mask::IOM_VERTQUALITY);
// The second smooting run more accurate to adapt to the surface
cc.par.surfDistThr = base.bbox.Diag()/1000.0f;
cc.par.maxSimpEdgeLen = base.bbox.Diag()/1000.0f;
cc.par.minRefEdgeLen = base.bbox.Diag()/2000.0f;
cc.SmoothProject(poly,10,0.01f,.99f);
tri::io::ExporterPLY<MyMesh>::Save(poly,"2_poly_smooth.ply",tri::io::Mask::IOM_EDGEINDEX+tri::io::Mask::IOM_VERTCOLOR+tri::io::Mask::IOM_VERTQUALITY);
Distribution<float> dist;
cc.EvaluateHausdorffDistance(poly, dist );
// Adapt the polyline to the mesh (in the end it will have vertices only on edges and vertices of the base mesh)
cc.RefineCurveByBaseMesh(poly);
tri::io::ExporterPLY<MyMesh>::Save(poly,"3_poly_refined.ply",tri::io::Mask::IOM_EDGEINDEX+tri::io::Mask::IOM_VERTCOLOR+tri::io::Mask::IOM_VERTQUALITY);
// Safely split the mesh with this refined polyline
cc.SplitMeshWithPolyline(poly);
tri::io::ExporterPLY<MyMesh>::Save(base,"3_mesh_refined.ply",tri::io::Mask::IOM_VERTCOLOR+tri::io::Mask::IOM_VERTQUALITY);
// Now the two meshes should have coincident edges
cc.TagFaceEdgeSelWithPolyLine(poly);
CutMeshAlongSelectedFaceEdges(base);
tri::io::ExporterPLY<MyMesh>::Save(base,"4_mesh_cut.ply",tri::io::Mask::IOM_VERTCOLOR+tri::io::Mask::IOM_VERTQUALITY);
return 0;
}