505 lines
14 KiB
C++
505 lines
14 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
|
|
$LOG$
|
|
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCGLIB_MATRIX44
|
|
#define __VCGLIB_MATRIX44
|
|
|
|
#include <string.h>
|
|
#include <vcg/space/point3.h>
|
|
#include <vcg/space/point4.h>
|
|
|
|
|
|
namespace vcg {
|
|
|
|
/*
|
|
Annotations:
|
|
Opengl stores matrix in column-major order. That is, the matrix is stored as:
|
|
|
|
a0 a4 a8 a12
|
|
a1 a5 a9 a13
|
|
a2 a6 a10 a14
|
|
a3 a7 a11 a15
|
|
|
|
e.g. glTranslate generate a matrix that is
|
|
|
|
1 0 0 tx
|
|
0 1 0 ty
|
|
0 0 1 tz
|
|
0 0 0 1
|
|
|
|
Matrix44 stores matrix in row-major order i.e.
|
|
|
|
a0 a1 a2 a3
|
|
a4 a5 a6 a7
|
|
a8 a9 a10 a11
|
|
a12 a13 a14 a15
|
|
|
|
and the Translate Function generate:
|
|
|
|
1 0 0 0
|
|
0 1 0 0
|
|
0 0 1 0
|
|
tx ty tz 1
|
|
|
|
*/
|
|
|
|
/** This class represent a 4x4 matrix. T is the kind of element in the matrix.
|
|
*/
|
|
template <class T> class Matrix44 {
|
|
protected:
|
|
T _a[16];
|
|
|
|
public:
|
|
typedef T scalar;
|
|
|
|
///@{
|
|
|
|
/** $name Contrutors
|
|
* No automatic casting and default constructor is empty
|
|
*/
|
|
Matrix44() {};
|
|
~Matrix44() {};
|
|
Matrix44(const Matrix44 &m);
|
|
Matrix44(const T v[]);
|
|
|
|
T &element(const int row, const int col);
|
|
T element(const int row, const int col) const;
|
|
T &operator[](const int i);
|
|
T operator[](const int i) const;
|
|
|
|
Matrix44 operator+(const Matrix44 &m) const;
|
|
Matrix44 operator-(const Matrix44 &m) const;
|
|
Matrix44 operator*(const Matrix44 &m) const;
|
|
Point4<T> operator*(const Point4<T> &v) const;
|
|
|
|
bool operator==(const Matrix44 &m) const;
|
|
bool operator!= (const Matrix44 &m) const;
|
|
|
|
Matrix44 operator-() const;
|
|
Matrix44 operator*(const T k) const;
|
|
void operator+=(const Matrix44 &m);
|
|
void operator-=(const Matrix44 &m);
|
|
void operator*=( const Matrix44 & m );
|
|
void operator*=( const T k );
|
|
|
|
void SetZero();
|
|
void SetIdentity();
|
|
void SetDiagonal(const T k);
|
|
void SetScale(const T sx, const T sy, const T sz);
|
|
void SetTranslate(const Point3<T> &t);
|
|
void SetTranslate(const T sx, const T sy, const T sz);
|
|
///use radiants for angle.
|
|
void SetRotate(T angle, const Point3<T> & axis);
|
|
|
|
T Determinant() const;
|
|
};
|
|
|
|
|
|
/** Class for solving A * x = b. */
|
|
template <class T> class LinearSolve: public Matrix44<T> {
|
|
public:
|
|
LinearSolve(const Matrix44<T> &m);
|
|
Point4<T> Solve(const Point4<T> &b); // solve A · x = b
|
|
///If you need to solve some equation you can use this function instead of Matrix44 one for speed.
|
|
T Determinant() const;
|
|
protected:
|
|
///Holds row permutation.
|
|
int index[4]; //hold permutation
|
|
///Hold sign of row permutation (used for determinant sign)
|
|
T d;
|
|
void Decompose();
|
|
};
|
|
|
|
/// Apply POST moltiplica la matrice al vettore (e.g. la traslazione deve stare nell'ultima riga)
|
|
/// Project PRE moltiplica la matrice al vettore (e.g. la traslazione deve stare nell'ultima colonna)
|
|
|
|
/*** Postmultiply (old Apply in the old interface).
|
|
* SetTranslate, SetScale, SetRotate prepare the matrix for this.
|
|
*/
|
|
template <class T> Point4<T> operator*(const Point4<T> &p, const Matrix44<T> &m);
|
|
|
|
///Premultiply (old Project in the old interface)
|
|
template <class T> Point4<T> operator*(const Matrix44<T> &m, const Point4<T> &p);
|
|
|
|
template <class T> Matrix44<T> &Transpose(Matrix44<T> &m);
|
|
template <class T> Matrix44<T> &Invert(Matrix44<T> &m);
|
|
|
|
typedef Matrix44<short> Matrix44s;
|
|
typedef Matrix44<int> Matrix44i;
|
|
typedef Matrix44<float> Matrix44f;
|
|
typedef Matrix44<double> Matrix44d;
|
|
|
|
|
|
|
|
template <class T> Matrix44<T>::Matrix44(const Matrix44<T> &m) {
|
|
memcpy((T *)_a, (T *)m._a, 16 * sizeof(T));
|
|
}
|
|
|
|
template <class T> T &Matrix44<T>::element(const int row, const int col) {
|
|
assert(row >= 0 && row < 4);
|
|
assert(col >= 0 && col < 4);
|
|
return _a[(row<<2) + col];
|
|
}
|
|
|
|
template <class T> T Matrix44<T>::element(const int row, const int col) const {
|
|
assert(row >= 0 && row < 4);
|
|
assert(col >= 0 && col < 4);
|
|
return _a[(row<<2) + col];
|
|
}
|
|
|
|
template <class T> T &Matrix44<T>::operator[](const int i) {
|
|
assert(i >= 0 && i < 16);
|
|
return ((T *)_a)[i];
|
|
}
|
|
|
|
template <class T> T Matrix44<T>::operator[](const int i) const {
|
|
assert(i >= 0 && i < 16);
|
|
return ((T *)_a)[i];
|
|
}
|
|
|
|
template <class T> Matrix44<T> Matrix44<T>::operator+(const Matrix44 &m) const {
|
|
Matrix44<T> ret;
|
|
for(int i = 0; i < 16; i++)
|
|
ret[i] = operator[](i) + m[i];
|
|
}
|
|
|
|
template <class T> Matrix44<T> Matrix44<T>::operator-(const Matrix44 &m) const {
|
|
Matrix44<T> ret;
|
|
for(int i = 0; i < 16; i++)
|
|
ret[i] = operator[](i) - m[i];
|
|
}
|
|
|
|
template <class T> Matrix44<T> Matrix44<T>::operator*(const Matrix44 &m) const {
|
|
Matrix44 ret;
|
|
for(int i = 0; i < 4; i++)
|
|
for(int j = 0; j < 4; j++) {
|
|
T t = 0.0;
|
|
for(int k = 0; k < 4; k++)
|
|
t += element[i][k] * m.element[k][j];
|
|
ret.element[i][j] = t;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
template <class T> Point4<T> Matrix44<T>::operator*(const Point4<T> &v) const {
|
|
Point4<T> ret;
|
|
for(int i = 0; i < 4; i++){
|
|
T t = 0.0;
|
|
for(int k = 0; k < 4; k++)
|
|
t += element[i][k] * v[k];
|
|
ret[i] = t;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
template <class T> bool Matrix44<T>::operator==(const Matrix44 &m) const {
|
|
for(int i = 0 ; i < 16; i++)
|
|
if(operator[](i) != m[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
template <class T> bool Matrix44<T>::operator!=(const Matrix44 &m) const {
|
|
for(int i = 0 ; i < 16; i++)
|
|
if(operator[](i) != m[i])
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
template <class T> Matrix44<T> Matrix44<T>::operator-() const {
|
|
Matrix44<T> res;
|
|
for(int i = 0; i < 16; i++)
|
|
res[i] = -operator[](i);
|
|
return res;
|
|
}
|
|
|
|
template <class T> Matrix44<T> Matrix44<T>::operator*(const T k) const {
|
|
Matrix44<T> res;
|
|
for(int i = 0; i < 16; i++)
|
|
res[i] = operator[](i) * k;
|
|
return res;
|
|
}
|
|
|
|
template <class T> void Matrix44<T>::operator+=(const Matrix44 &m) {
|
|
for(int i = 0; i < 16; i++)
|
|
operator[](i) += m[i];
|
|
}
|
|
template <class T> void Matrix44<T>::operator-=(const Matrix44 &m) {
|
|
for(int i = 0; i < 16; i++)
|
|
operator[](i) -= m[i];
|
|
}
|
|
template <class T> void Matrix44<T>::operator*=( const Matrix44 & m ) {
|
|
for(int i = 0; i < 4; i++) {
|
|
Point4<T> t(0, 0, 0, 0);
|
|
for(int k = 0; k < 4; k++) {
|
|
for(int j = 0; j < 4; j++) {
|
|
t[k] += element(i, k) * m.element(k, j);
|
|
}
|
|
}
|
|
for(int l = 0; l < 4; l++)
|
|
element(i, l) = t[l];
|
|
}
|
|
}
|
|
|
|
template <class T> void Matrix44<T>::operator*=( const T k ) {
|
|
for(int i = 0; i < 4; i++)
|
|
operator[](i) *= k;
|
|
}
|
|
|
|
|
|
template <class T> void Matrix44<T>::SetZero() {
|
|
memset((T *)_a, 0, 16 * sizeof(T));
|
|
}
|
|
|
|
template <class T> void Matrix44<T>::SetIdentity() {
|
|
SetDiagonal(1);
|
|
}
|
|
|
|
template <class T> void Matrix44<T>::SetDiagonal(const T k) {
|
|
SetZero();
|
|
element(0, 0) = k;
|
|
element(1, 1) = k;
|
|
element(2, 2) = k;
|
|
element(3, 3) = 1;
|
|
}
|
|
|
|
template <class T> void Matrix44<T>::SetScale(const T sx, const T sy, const T sz) {
|
|
SetZero();
|
|
element(0, 0) = sx;
|
|
element(1, 1) = sy;
|
|
element(2, 2) = sz;
|
|
element(3, 3) = 1;
|
|
}
|
|
|
|
template <class T> void Matrix44<T>::SetTranslate(const Point3<T> &t) {
|
|
SetTranslate(t[0], t[1], t[2]);
|
|
}
|
|
template <class T> void Matrix44<T>::SetTranslate(const T sx, const T sy, const T sz) {
|
|
SetIdentity();
|
|
element(3, 0) = sx;
|
|
element(3, 1) = sy;
|
|
element(3, 2) = sz;
|
|
}
|
|
template <class T> void Matrix44<T>::SetRotate(T angle, const Point3<T> & axis) {
|
|
//angle = angle*(T)3.14159265358979323846/180; e' in radianti!
|
|
T c = Math<T>::Cos(angle);
|
|
T s = Math<T>::Sin(angle);
|
|
T q = 1-c;
|
|
Point3<T> t = axis;
|
|
t.Normalize();
|
|
element(0,0) = t[0]*t[0]*q + c;
|
|
element(1,0) = t[0]*t[1]*q - t[2]*s;
|
|
element(2,0) = t[0]*t[2]*q + t[1]*s;
|
|
element(3,0) = 0;
|
|
element(0,1) = t[1]*t[0]*q + t[2]*s;
|
|
element(1,1) = t[1]*t[1]*q + c;
|
|
element(2,1) = t[1]*t[2]*q - t[0]*s;
|
|
element(3,1) = 0;
|
|
element(0,2) = t[2]*t[0]*q -t[1]*s;
|
|
element(1,2) = t[2]*t[1]*q +t[0]*s;
|
|
element(2,2) = t[2]*t[2]*q +c;
|
|
element(3,2) = 0;
|
|
element(0,3) = 0;
|
|
element(1,3) = 0;
|
|
element(2,3) = 0;
|
|
element(3,3) = 1;
|
|
}
|
|
|
|
|
|
template <class T> T Matrix44<T>::Determinant() const {
|
|
LinearSolve<T> solve(*this);
|
|
return solve.Determinant();
|
|
}
|
|
|
|
|
|
template <class T> Point4<T> operator*(const Matrix44<T> &m, const Point4<T> &p) {
|
|
T w;
|
|
Point4<T> s;
|
|
s.x() = a[0][0]*p.x() + a[0][1]*p.y() + a[0][2]*p.z() + a[0][3];
|
|
s.y() = a[1][0]*p.x() + a[1][1]*p.y() + a[1][2]*p.z() + a[1][3];
|
|
s.z() = a[2][0]*p.x() + a[2][1]*p.y() + a[2][2]*p.z() + a[2][3];
|
|
s.w() = a[3][0]*p.x() + a[3][1]*p.y() + a[3][2]*p.z() + a[3][3];
|
|
if(s.w()!= 0) s /= s.w();
|
|
return s;
|
|
}
|
|
|
|
template <class T> Point4<T> operator*(const Point4<T> &p, const Matrix44<T> &m) {
|
|
T w;
|
|
Point4<T> s;
|
|
s.x() = a[0][0]*p.x() + a[0][1]*p.y() + a[0][2]*p.z() + a[0][3];
|
|
s.y() = a[1][0]*p.x() + a[1][1]*p.y() + a[1][2]*p.z() + a[1][3];
|
|
s.z() = a[2][0]*p.x() + a[2][1]*p.y() + a[2][2]*p.z() + a[2][3];
|
|
s.w() = a[3][0]*p.x() + a[3][1]*p.y() + a[3][2]*p.z() + a[3][3];
|
|
if(s.w() != 0) s /= s.w();
|
|
return s;
|
|
}
|
|
|
|
template <class T> Matrix44<T> &Transpose(Matrix44<T> &m) {
|
|
for(int i = 1; i < 4; i++)
|
|
for(int j = 0; j < i; j++) {
|
|
T t = element(i, j);
|
|
element(i, j) = element(j, i);
|
|
element(j, i) = t;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class T> Matrix44<T> &Invert(Matrix44<T> &m) {
|
|
LinearSolve<T> solve(m);
|
|
|
|
for(int j = 0; j < 4; j++) { //Find inverse by columns.
|
|
Point4<T> col(0, 0, 0, 0);
|
|
col[j] = 1.0;
|
|
col = solve.Solve(col);
|
|
for(int i = 0; i < 4; i++)
|
|
m.element(i, j) = col[i];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* LINEAR SOLVE IMPLEMENTATION */
|
|
|
|
template <class T> LinearSolve<T>::LinearSolve(const Matrix44<T> &m): Matrix44<T>(m) {
|
|
Decompose();
|
|
}
|
|
|
|
|
|
template <class T> T LinearSolve<T>::Determinant() const {
|
|
T det = d;
|
|
for(int j = 0; j < 4; j++)
|
|
det *= element(j, j);
|
|
return det;
|
|
}
|
|
|
|
|
|
/*replaces a matrix by its LU decomposition of a rowwise permutation.
|
|
d is +or -1 depeneing of row permutation even or odd.*/
|
|
#define TINY 1e-100
|
|
|
|
template <class T> void LinearSolve<T>::Decompose() {
|
|
d = 1; //no permutation still
|
|
|
|
T scaling[4];
|
|
|
|
//Saving the scvaling information per row
|
|
for(int i = 0; i < 4; i++) {
|
|
T largest = 0.0;
|
|
for(int j = 0; j < 4; j++) {
|
|
T t = fabs(element(i, j));
|
|
if (t > largest) largest = t;
|
|
}
|
|
|
|
if (largest == 0.0) { //oooppps there is a zero row!
|
|
return;
|
|
}
|
|
scaling[i] = 1.0 / largest;
|
|
}
|
|
|
|
int imax;
|
|
for(int j = 0; j < 4; j++) {
|
|
for(int i = 0; i < j; i++) {
|
|
T sum = element(i,j);
|
|
for(int k = 0; k < i; k++)
|
|
sum -= element(i,k)*element(k,j);
|
|
element(i,j) = sum;
|
|
}
|
|
T largest = 0.0;
|
|
for(int i = j; i < 4; i++) {
|
|
T sum = element(i,j);
|
|
for(int k = 0; k < j; k++)
|
|
sum -= element(i,k)*element(k,j);
|
|
element(i,j) = sum;
|
|
T t = scaling[i] * fabs(sum);
|
|
if(t >= largest) {
|
|
largest = t;
|
|
imax = i;
|
|
}
|
|
}
|
|
if (j != imax) {
|
|
for (int k = 0; k < 4; k++) {
|
|
T dum = element(imax,k);
|
|
element(imax,k) = element(j,k);
|
|
element(j,k) = dum;
|
|
}
|
|
d = -(d);
|
|
scaling[imax] = scaling[j];
|
|
}
|
|
index[j]=imax;
|
|
if (element(j,j) == 0.0) element(j,j) = TINY;
|
|
if (j != 3) {
|
|
T dum = 1.0 / (element(j,j));
|
|
for (i = j+1; i < 4; i++)
|
|
element(i,j) *= dum;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <class T> Point4<T> LinearSolve<T>::Solve(const Point4<T> &b) {
|
|
Point4<T> x(b);
|
|
int first = 0, ip;
|
|
for(int i = 0; i < 4; i++) {
|
|
ip = index[i];
|
|
T sum = x[ip];
|
|
x[ip] = x[i];
|
|
if(first)
|
|
for(int j = first; j <= i-1; j++)
|
|
sum -= element(i,j) * x[j];
|
|
else
|
|
if (sum) first = i;
|
|
}
|
|
for (int i = 3; i >= 0; i--) {
|
|
T sum = x[i];
|
|
for (int j = i+1; j < 4; j++)
|
|
sum -= element(i, j) * x[j];
|
|
x[i] = sum / element(i, i);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
} //namespace
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*#ifdef __GL_H__
|
|
// Applicano la trasformazione intesa secondo la Apply
|
|
void glMultMatrix(Matrix44<double> const & M) { glMultMatrixd(&(M.a[0][0]));}
|
|
void glMultMatrix(Matrix44<float> const & M) { glMultMatrixf(&(M.a[0][0]));}
|
|
void glLoadMatrix(Matrix44<double> const & M) { glLoadMatrixd(&(M.a[0][0]));}
|
|
void glLoadMatrix(Matrix44<float> const & M) { glLoadMatrixf(&(M.a[0][0]));}
|
|
#endif*/
|
|
|
|
|