vcglib/wrap/igl/arap_parametrization.h

207 lines
6.4 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2017 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/* Optimizes given UV-mapping with
* [ARAP parametrization]
* (minimizes area and angle distortions).
*
* Needs:
* (-) per-vertex texture coords
* (-) per-vertex flags to fix boundaries
* Fixed vertices are the flagged ones.
* By default: BORDER or SELECTED verts are fixed.
* (use fixedMask parameter to customize)
*
* Example of usage:
* MeshType m;
* ...
* vcg::tri::UpdateFlags<MeshType>::Clear(m);
* vcg::tri::UpdateFlags<MeshType>::VertexBorderFromNone(m);
* vcg::tri::OptimizeUV_ARAP(m);
*
*/
#ifndef __VCG_IGL_ARAP_PARAMETRIZATION
#define __VCG_IGL_ARAP_PARAMETRIZATION
#include <cmath>
#include <igl/arap.h>
#include <vcg/complex/algorithms/mesh_to_matrix.h>
#include <vcg/complex/algorithms/clean.h>
#include <vcg/complex/algorithms/update/flag.h>
#include <wrap/igl/lscm_parametrization.h>
namespace vcg {
namespace tri {
template<class MeshType>
void OptimizeUV_ARAP(
MeshType& m,
unsigned int iterations = 100,
unsigned int fixedMask = MeshType::VertexType::BORDER | MeshType::VertexType::SELECTED,
bool generateInitialGuess = true)
{
// check requirements
vcg::tri::RequirePerVertexTexCoord(m);
vcg::tri::RequirePerVertexFlags (m);
vcg::tri::RequireCompactness (m);
if (m.vert.size() <= 1 || m.face.size() == 0)
{
return;
}
// build fixed points data
size_t nFixed = 0;
if (fixedMask != 0)
{
for (size_t i=0; i<m.vert.size(); i++)
{
if (m.vert[i].Flags() & fixedMask) nFixed++;
}
}
// all fixed, nothing to do? get out to avoid crashes
if (nFixed == m.vert.size())
{
return;
}
if (generateInitialGuess)
{
// if not enough vertices are fixed, initialize manually fixed points
// else initialize with the provided fixed values
InitializeArapWithLSCM(m, (nFixed < 2) ? 0 : fixedMask);
}
Eigen::MatrixXd V;
Eigen::MatrixXi F;
Eigen::VectorXi b;
Eigen::MatrixXd bc;
Eigen::MatrixXd V_uv;
vcg::tri::MeshToMatrix<MeshType>::GetTriMeshData(m, F, V);
vcg::tri::MeshToMatrix<MeshType>::GetUVData(m, V_uv);
b.resize(nFixed);
bc.resize(nFixed,2);
for (size_t i=0,k=0; i<m.vert.size(); i++)
{
if (m.vert[i].Flags() & fixedMask)
{
b(k) = i;
bc(k,0) = m.vert[i].T().P()[0];
bc(k,1) = m.vert[i].T().P()[1];
k++;
}
}
// Add dynamic regularization to avoid to specify boundary conditions
::igl::ARAPData arap_data;
arap_data.with_dynamics = true;
arap_data.max_iter = iterations;
// compute ARAP parametrization
::igl::arap_precomputation(V, F, 2, b, arap_data);
::igl::arap_solve(bc, arap_data, V_uv);
// copy results back to mesh
for (size_t i=0; i<m.vert.size(); i++)
{
m.vert[i].T().P()[0] = V_uv(i,0);
m.vert[i].T().P()[1] = V_uv(i,1);
}
}
template <class MeshType>
void InitializeArapWithLSCM(MeshType & m, unsigned int fixedMask = 0)
{
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType::TexCoordType::PointType TexPointType;
typedef typename TexPointType::ScalarType TexScalarType;
if (fixedMask == 0)
{
// manually select fixed vertices
vcg::tri::UpdateFlags<MeshType>::Clear(m);
int fixed0, fixed1 = -1;
ScalarType minD0 = std::numeric_limits<ScalarType>::max();
ScalarType minD1 = std::numeric_limits<ScalarType>::max();
for (size_t i=0; i<m.vert.size(); i++)
{
const ScalarType testD0 =(m.vert[i].P() - m.bbox.min).Norm();
const ScalarType testD1 =(m.vert[i].P() - m.bbox.max).Norm();
if (testD0 < minD0)
{
fixed0 = i;
minD0 = testD0;
}
if (testD1 < minD1)
{
fixed1 = i;
minD1 = testD1;
}
}
assert(fixed0 >= 0);
assert(fixed1 >= 0);
assert(fixed0 != fixed1);
//then select them
m.vert[fixed0].SetS();
m.vert[fixed1].SetS();
m.vert[fixed0].T().P() = TexPointType(0,0);
m.vert[fixed1].T().P() = TexPointType(1,1);
fixedMask = MeshType::VertexType::SELECTED;
}
vcg::tri::OptimizeUV_LSCM(m, fixedMask);
// Rescale the parametrization to match the 3D area
ScalarType meshArea2D = 0;
ScalarType meshArea3D = 0;
for (size_t i=0; i<m.face.size(); i++)
{
vcg::Triangle2<TexScalarType> t2(m.face[i].V(0)->T().P(),
m.face[i].V(1)->T().P(),
m.face[i].V(2)->T().P());
meshArea2D += ScalarType(fabs(((t2.P(1) - t2.P(0)) ^ (t2.P(2) - t2.P(0)))/2));
meshArea3D += vcg::DoubleArea(m.face[i])/2;
}
ScalarType scaleFact = std::sqrt(meshArea3D / meshArea2D);
for (size_t i=0; i<m.vert.size(); i++)
{
TexPointType & UVCoord = m.vert[i].T().P();
UVCoord *= scaleFact;
}
}
}} // namespaces
#endif // __VCG_IGL_ARAP_PARAMETRIZATION