803 lines
35 KiB
C++
803 lines
35 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is Free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
History
|
|
|
|
$Log: not supported by cvs2svn $
|
|
Revision 1.1 2007/02/14 01:20:37 ganovelli
|
|
working draft of VCG Mesh Image importer and exporter. Does not consider optional attributes. The mesh atributes are only vn and fn (no bbox, texture coordiantes)
|
|
|
|
|
|
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCGLIB_IMPORT_VMI
|
|
#define __VCGLIB_IMPORT_VMI
|
|
|
|
#include <vcg/simplex/vertex/component_ocf.h>
|
|
#include <vcg/simplex/face/component_ocf.h>
|
|
#include <wrap/io_trimesh/io_mask.h>
|
|
#include <wrap/callback.h>
|
|
/*
|
|
VMI VCG Mesh Image.
|
|
The vmi image file consists of a header containing the description of the vertex and face type,
|
|
the length of vectors containing vertices of faces and the memory image of the object mesh as it is when
|
|
passed to the function Save(SaveMeshType m)
|
|
NOTE: THIS IS NOT A FILE FORMAT. IT IS ONLY USEFUL FOR DUMPING MESH IMAGES FOR DEBUG PURPOSE.
|
|
Example of use: say you are running a time consuming mesh processing and you want to save intermediate
|
|
state, but no file format support all the attributes you need in your vertex/face type.
|
|
NOTE2: At the present if you add members to your TriMesh these will NOT be saved. More precisely, this file and
|
|
import_vmi must be updated to reflect changes in vcg/complex/trimesh/base.h
|
|
|
|
*/
|
|
|
|
namespace vcg {
|
|
namespace tri {
|
|
namespace io {
|
|
|
|
template <int N> struct DummyType{ char placeholder[N]; };
|
|
|
|
/* ------------------------- derivation chain for the vertex attribute ---------------------------*/
|
|
|
|
/** this class is for testing only the equality with the type optionally provided by the user when calling Open
|
|
*/
|
|
template <class MeshType, class A, class T>
|
|
struct Der:public T{
|
|
typedef typename std::set<typename MeshType::PointerToAttribute >::iterator HWIte;
|
|
|
|
template <int VoF>
|
|
static void AddAttrib(MeshType &m, const char * name, unsigned int s, void * data){
|
|
switch(VoF)
|
|
{
|
|
case 0: if(s == sizeof(A)){
|
|
typename MeshType::template PerVertexAttributeHandle<A> h = vcg::tri::Allocator<MeshType>:: template AddPerVertexAttribute<A>(m,name);
|
|
for(unsigned int i = 0; i < m.vert.size(); ++i)
|
|
memcpy(&h[i], (void*) &((A*)data)[i],sizeof(A)); // we don't want the type conversion
|
|
}
|
|
else
|
|
T::template AddAttrib<0>(m,name,s,data);
|
|
break;
|
|
case 1: if(s == sizeof(A)){
|
|
typename MeshType::template PerFaceAttributeHandle<A> h = vcg::tri::Allocator<MeshType>:: template AddPerFaceAttribute<A>(m,name);
|
|
for(unsigned int i = 0; i < m.face.size(); ++i)
|
|
memcpy(&h[i], (void*) &((A*)data)[i],sizeof(A)); // we don't want the type conversion
|
|
}
|
|
else
|
|
T::template AddAttrib<0>(m,name,s,data);
|
|
break;
|
|
case 2:
|
|
if(s == sizeof(A)){
|
|
typename MeshType::template PerMeshAttributeHandle<A> h = vcg::tri::Allocator<MeshType>:: template AddPerMeshAttribute<A>(m,name);
|
|
memcpy(&h(), (void*) ((A*)data),sizeof(A)); // we don't want the type conversion
|
|
}
|
|
else
|
|
T::template AddAttrib<2>(m,name,s,data);
|
|
break;
|
|
|
|
default:break;
|
|
}
|
|
}
|
|
};
|
|
|
|
/** this class is for testing the list of increasing size types until one is larger than the size of the unknown type
|
|
*/
|
|
template <class MeshType, class A, class T>
|
|
struct DerK:public T{
|
|
typedef typename std::set<typename MeshType::PointerToAttribute >::iterator HWIte;
|
|
template <int VoF>
|
|
static void AddAttrib(MeshType &m, const char * name, unsigned int s, void * data){
|
|
switch(VoF){
|
|
case 0:
|
|
if(s == sizeof(A)){
|
|
typename MeshType::template PerVertexAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerVertexAttribute<A>(m,name);
|
|
for(unsigned int i = 0; i < m.vert.size(); ++i)
|
|
memcpy((void*) &(h[i]), (void*) &((A*)data)[i],sizeof(A)); // we don't want the type conversion
|
|
}
|
|
else
|
|
if(s < sizeof(A)){
|
|
// padding
|
|
int padd = sizeof(A) - s;
|
|
typename MeshType::template PerVertexAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerVertexAttribute<A>(m,name);
|
|
for(unsigned int i = 0; i < m.vert.size(); ++i){
|
|
char * dest = &((char*)(&h[i]))[0];
|
|
memcpy( (void *)dest , (void*) &((A*)data)[i],s); // we don't want the type conversion
|
|
}
|
|
typename MeshType::PointerToAttribute pa;
|
|
pa._name = std::string(name);
|
|
HWIte res = m.vert_attr.find(pa);
|
|
pa = *res;
|
|
m.vert_attr.erase(res);
|
|
pa._padding = padd;
|
|
std::pair<HWIte,bool > new_pa = m.vert_attr.insert(pa);
|
|
assert(new_pa.second);
|
|
}
|
|
else
|
|
T::template AddAttrib<0>(m,name,s,data);
|
|
break;
|
|
case 1:
|
|
if(s == sizeof(A)){
|
|
typename MeshType::template PerVertexAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerVertexAttribute<A>(m,name);
|
|
for(unsigned int i = 0; i < m.vert.size(); ++i)
|
|
memcpy((void*) &(h[i]), (void*) &((A*)data)[i],sizeof(A)); // we don't want the type conversion
|
|
}
|
|
else
|
|
if(s < sizeof(A)){
|
|
// padding
|
|
int padd = sizeof(A) - s;
|
|
typename MeshType::template PerFaceAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerFaceAttribute<A>(m,name);
|
|
for(unsigned int i = 0; i < m.face.size(); ++i){
|
|
char * dest = &((char*)(&h[i]))[0];
|
|
memcpy( (void *)dest , (void*) &((A*)data)[i],s); // we don't want the type conversion
|
|
}
|
|
typename MeshType::PointerToAttribute pa;
|
|
pa._name = std::string(name);
|
|
HWIte res = m.face_attr.find(pa);
|
|
pa = *res;
|
|
m.face_attr.erase(res);
|
|
pa._padding = padd;
|
|
std::pair<HWIte,bool > new_pa = m.face_attr.insert(pa);
|
|
assert(new_pa.second);
|
|
}
|
|
else
|
|
T::template AddAttrib<1>(m,name,s,data);
|
|
break;
|
|
case 2:
|
|
if(s == sizeof(A)){
|
|
typename MeshType::template PerMeshAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerMeshAttribute<A>(m,name);
|
|
memcpy((void*)&h(), (void*)((A*)data),sizeof(A)); // we don't want the type conversion
|
|
}
|
|
else
|
|
if(s < sizeof(A)){
|
|
// padding
|
|
int padd = sizeof(A) - s;
|
|
typename MeshType::template PerMeshAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerMeshAttribute<A>(m,name);
|
|
char * dest = & ((char*)(&h()))[0];
|
|
memcpy( (void *)dest , (void*)((A*)data),s); // we don't want the type conversion
|
|
|
|
typename MeshType::PointerToAttribute pa;
|
|
pa._name = std::string(name);
|
|
HWIte res = m.mesh_attr.find(pa);
|
|
pa = *res;
|
|
m.mesh_attr.erase(res);
|
|
pa._padding = padd;
|
|
std::pair<HWIte,bool > new_pa = m.mesh_attr.insert(pa);
|
|
assert(new_pa.second);
|
|
}
|
|
else
|
|
T::template AddAttrib<2>(m,name,s,data);
|
|
break;
|
|
default: assert(0);break;
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
This is the templated derivation chain
|
|
*/
|
|
template <class MeshType> struct K {
|
|
template <int VoF>
|
|
static void AddAttrib(MeshType &/*m*/, const char * /*name*/, unsigned int /*s*/, void * /*data*/){
|
|
// if yohu got this your attribute is larger than 1048576. Honestly...
|
|
assert(0);
|
|
}
|
|
};
|
|
|
|
template <class MeshType, class B0 > struct K0 : public DerK< MeshType, B0, K<MeshType> > {};
|
|
template <class MeshType, class B0, class B1 > struct K1 : public DerK< MeshType, B1, K0<MeshType, B0> > {};
|
|
template <class MeshType, class B0, class B1, class B2 > struct K2 : public DerK< MeshType, B2, K1<MeshType, B0, B1> > {};
|
|
template <class MeshType, class B0, class B1, class B2,class B3> struct K3 : public DerK< MeshType, B3, K2<MeshType, B0, B1, B2> > {};
|
|
template <class MeshType, class B0, class B1, class B2,class B3,class B4> struct K4 : public DerK< MeshType, B4, K3<MeshType, B0, B1, B2, B3> > {};
|
|
template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5> struct K5 : public DerK< MeshType, B5, K4<MeshType, B0, B1, B2, B3, B4> > {};
|
|
template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6> struct K6 : public DerK< MeshType, B6, K5<MeshType, B0, B1, B2, B3, B4, B5> > {};
|
|
template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7> struct K7 : public DerK< MeshType, B7, K6<MeshType, B0, B1, B2, B3, B4, B5, B6> > {};
|
|
template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8> struct K8 : public DerK< MeshType, B8, K7<MeshType, B0, B1, B2, B3, B4, B5, B6, B7> > {};
|
|
template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8,class B9> struct K9 : public DerK< MeshType, B9, K8<MeshType, B0, B1, B2, B3, B4, B5, B6, B7, B8> > {};
|
|
template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8,class B9,class B10> struct K10 : public DerK< MeshType, B10, K9<MeshType, B0, B1, B2, B3, B4, B5, B6, B7, B8, B9> > {};
|
|
template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8,class B9,class B10,class B11> struct K11 : public DerK< MeshType, B11, K10<MeshType, B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, B11 > > {};
|
|
template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8,class B9,class B10,class B11,class B12>struct K12 : public DerK< MeshType, B12, K11<MeshType, B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, B11, B12 > > {};
|
|
|
|
template <class MeshType, class A0,
|
|
class B0 = DummyType<1048576>,
|
|
class B1 = DummyType<2048>,
|
|
class B2 = DummyType<1024>,
|
|
class B3 = DummyType<512>,
|
|
class B4 = DummyType<256>,
|
|
class B5 = DummyType<128>,
|
|
class B6 = DummyType<64>,
|
|
class B7 = DummyType<32>,
|
|
class B8 = DummyType<16>,
|
|
class B9 = DummyType<8>,
|
|
class B10 = DummyType<4>,
|
|
class B11 = DummyType<2>,
|
|
class B12 = DummyType<1>
|
|
> struct C0 : public DerK< MeshType, A0, K12<MeshType, B0, B1, B2, B3, B4,B5,B6,B7,B8,B9,B10,B11,B12> > {};
|
|
|
|
template <class MeshType, class A0, class A1> struct C1 : public Der< MeshType, A1, C0<MeshType, A0> > {};
|
|
template <class MeshType, class A0, class A1, class A2> struct C2 : public Der< MeshType, A2, C1<MeshType, A0, A1> > {};
|
|
template <class MeshType, class A0, class A1, class A2,class A3> struct C3 : public Der< MeshType, A3, C2<MeshType, A0, A1, A2> > {};
|
|
template <class MeshType, class A0, class A1, class A2,class A3,class A4> struct AttrAll : public Der< MeshType, A4, C3<MeshType, A0, A1, A2, A3> > {};
|
|
|
|
|
|
|
|
template <class OpenMeshType,class A0 = long, class A1 = double, class A2 = int,class A3 = short, class A4 = char >
|
|
class ImporterVMI: public AttrAll<OpenMeshType,A0,A1,A2,A3,A4>
|
|
{
|
|
|
|
static void ReadString(FILE * f,std::string & out){
|
|
unsigned int l; Read(&l,4,1,f);
|
|
char * buf = new char[l+1];
|
|
Read(buf,1,l,f);buf[l]='\0';
|
|
out = std::string(buf);
|
|
delete [] buf;
|
|
}
|
|
|
|
static void ReadInt(FILE *f, unsigned int & i){ Read(&i,1,4,f);}
|
|
static void ReadFloat(FILE *f, float & v){ Read(&v,1,sizeof(float),f);}
|
|
|
|
|
|
static int LoadVertexOcfMask( FILE * f){
|
|
int mask =0;
|
|
std::string s;
|
|
|
|
// vertex quality
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_VERTEX_QUALITY_OCF")) mask |= Mask::IOM_VERTQUALITY;
|
|
|
|
// vertex color
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_VERTEX_COLOR_OCF")) mask |= Mask::IOM_VERTCOLOR;
|
|
|
|
// vertex normal
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_VERTEX_NORMAL_OCF")) mask |= Mask::IOM_VERTNORMAL;
|
|
|
|
// vertex mark
|
|
ReadString(f,s);
|
|
//if( s == std::string("HAS_VERTEX_MARK_OCF")) mask |=
|
|
|
|
// vertex texcoord
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_VERTEX_TEXCOORD_OCF")) mask |= Mask::IOM_VERTTEXCOORD;
|
|
|
|
// vertex-face adjacency
|
|
ReadString(f,s);
|
|
//if( s == std::string("HAS_VERTEX_VFADJACENCY_OCF")) mask |=
|
|
|
|
// vertex curvature
|
|
ReadString(f,s);
|
|
//if( s == std::string("HAS_VERTEX_CURVATURE_OCF")) mask |=
|
|
|
|
//// vertex curvature dir
|
|
ReadString(f,s);
|
|
//if( s == std::string("HAS_VERTEX_CURVATUREDIR_OCF")) mask |=
|
|
|
|
// vertex radius
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_VERTEX_RADIUS_OCF")) mask |= Mask::IOM_VERTRADIUS;
|
|
|
|
return mask;
|
|
}
|
|
|
|
template <typename MeshType, typename CONT>
|
|
struct LoadVertexOcf{
|
|
LoadVertexOcf(FILE* /*f*/,const CONT & /*vert*/){
|
|
// do nothing, it is a std::vector
|
|
}
|
|
};
|
|
|
|
|
|
|
|
template <typename MeshType>
|
|
struct
|
|
LoadVertexOcf<MeshType,vertex::vector_ocf<typename OpenMeshType::VertexType> >{
|
|
typedef typename OpenMeshType::VertexType VertexType;
|
|
LoadVertexOcf( FILE * f, vertex::vector_ocf<typename OpenMeshType::VertexType> & vert){
|
|
std::string s;
|
|
|
|
// vertex quality
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_VERTEX_QUALITY_OCF")) {
|
|
vert.EnableQuality();
|
|
Read((void*)&vert.QV[0],sizeof(typename VertexType::QualityType),vert.size(),f);
|
|
}
|
|
|
|
// vertex color
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_VERTEX_COLOR_OCF")) {
|
|
vert.EnableColor();
|
|
Read((void*)&vert.CV[0],sizeof(typename VertexType::ColorType),vert.size(),f);
|
|
}
|
|
|
|
// vertex normal
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_VERTEX_NORMAL_OCF")) {
|
|
vert.EnableNormal();
|
|
Read((void*)&vert.NV[0],sizeof(typename VertexType::NormalType),vert.size(),f);
|
|
}
|
|
|
|
// vertex mark
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_VERTEX_MARK_OCF")) {
|
|
vert.EnableMark();
|
|
Read((void*)&vert.MV[0],sizeof(typename VertexType::MarkType),vert.size(),f);
|
|
}
|
|
|
|
// vertex texcoord
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_VERTEX_TEXCOORD_OCF")) {
|
|
vert.EnableTexCoord();
|
|
Read((void*)&vert.TV[0],sizeof(typename VertexType::TexCoordType),vert.size(),f);
|
|
}
|
|
|
|
// vertex-face adjacency
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_VERTEX_VFADJACENCY_OCF")) {
|
|
vert.EnableVFAdjacency();
|
|
Read((void*)&vert.AV[0],sizeof(typename vertex::vector_ocf<VertexType>::VFAdjType),vert.size(),f);
|
|
}
|
|
|
|
// vertex curvature
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_VERTEX_CURVATURE_OCF")) {
|
|
vert.EnableCurvature();
|
|
Read((void*)&vert.CuV[0],sizeof(typename VertexType::CurvatureType),vert.size(),f);
|
|
}
|
|
|
|
// vertex curvature dir
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_VERTEX_CURVATUREDIR_OCF")) {
|
|
vert.EnableCurvatureDir();
|
|
Read((void*)&vert.CuDV[0],sizeof(typename VertexType::CurvatureDirType),vert.size(),f);
|
|
}
|
|
|
|
// vertex radius
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_VERTEX_RADIUS_OCF")) {
|
|
vert.EnableRadius();
|
|
Read((void*)&vert.RadiusV[0],sizeof(typename VertexType::RadiusType),vert.size(),f);
|
|
}
|
|
|
|
}
|
|
};
|
|
|
|
template <typename MeshType, typename CONT>
|
|
struct LoadFaceOcf{
|
|
LoadFaceOcf(FILE * /* f */ , const CONT & /* face */){
|
|
// do nothing, it is a std::vector
|
|
}
|
|
};
|
|
|
|
|
|
static int LoadFaceOcfMask( FILE * f){
|
|
int mask=0;
|
|
std::string s;
|
|
|
|
// face quality
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_QUALITY_OCF")) mask |= Mask::IOM_FACEQUALITY;
|
|
|
|
// face color
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_COLOR_OCF")) mask |= Mask::IOM_FACECOLOR;
|
|
|
|
// face normal
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_NORMAL_OCF")) mask |= Mask::IOM_FACENORMAL;
|
|
|
|
//// face mark
|
|
ReadString(f,s);
|
|
//if( s == std::string("HAS_FACE_MARK_OCF")) mask |=
|
|
|
|
// face wedgetexcoord
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_WEDGETEXCOORD_OCF")) mask |= Mask::IOM_WEDGTEXCOORD;
|
|
|
|
|
|
// face-face adjacency
|
|
ReadString(f,s);
|
|
// if( s == std::string("HAS_FACE_FFADJACENCY_OCF")) mask |= */
|
|
|
|
// vertex-face adjacency
|
|
ReadString(f,s);
|
|
//if( s == std::string("HAS_FACE_VFADJACENCY_OCF")) mask |=
|
|
|
|
// face WedgeColor
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_WEDGECOLOR_OCF")) mask |= Mask::IOM_WEDGCOLOR;
|
|
|
|
// face WedgeNormal
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_WEDGENORMAL_OCF")) mask |= Mask::IOM_WEDGNORMAL;
|
|
return mask;
|
|
}
|
|
|
|
|
|
/* partial specialization for vector_ocf */
|
|
template <typename MeshType>
|
|
struct LoadFaceOcf< MeshType, face::vector_ocf<typename OpenMeshType::FaceType> >{
|
|
typedef typename OpenMeshType::FaceType FaceType;
|
|
LoadFaceOcf( FILE * f, face::vector_ocf<FaceType> & face){
|
|
std::string s;
|
|
|
|
// face quality
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_QUALITY_OCF")) {
|
|
face.EnableQuality();
|
|
Read((void*)&face.QV[0],sizeof(typename FaceType::QualityType),face.size(),f);
|
|
}
|
|
|
|
// face color
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_COLOR_OCF")) {
|
|
face.EnableColor();
|
|
Read((void*)&face.CV[0],sizeof(typename FaceType::ColorType),face.size(),f);
|
|
}
|
|
|
|
// face normal
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_NORMAL_OCF")) {
|
|
face.EnableNormal();
|
|
Read((void*)&face.NV[0],sizeof(typename FaceType::NormalType),face.size(),f);
|
|
}
|
|
|
|
// face mark
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_MARK_OCF")) {
|
|
face.EnableMark();
|
|
Read((void*)&face.MV[0],sizeof(typename FaceType::MarkType),face.size(),f);
|
|
}
|
|
|
|
// face wedgetexcoord
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_WEDGETEXCOORD_OCF")) {
|
|
face.EnableWedgeTex();
|
|
Read((void*)&face.WTV[0],sizeof(typename FaceType::WedgeTexCoordType),face.size(),f);
|
|
}
|
|
|
|
|
|
// face-face adjacency
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_FFADJACENCY_OCF")) {
|
|
face.EnableFFAdjacency();
|
|
Read((void*)&face.AF[0],sizeof(typename face::vector_ocf<FaceType>::AdjTypePack),face.size(),f);
|
|
}
|
|
|
|
// vertex-face adjacency
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_VFADJACENCY_OCF")) {
|
|
face.EnableVFAdjacency();
|
|
Read((void*)&face.AV[0],sizeof(typename face::vector_ocf<FaceType>::AdjTypePack),face.size(),f);
|
|
}
|
|
|
|
// face WedgeColor
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_WEDGECOLOR_OCF")) {
|
|
face.EnableWedgeColor();
|
|
Read((void*)&face.WCV[0],sizeof(typename face::vector_ocf<FaceType>::WedgeColorTypePack),face.size(),f);
|
|
}
|
|
|
|
// face WedgeNormal
|
|
ReadString(f,s);
|
|
if( s == std::string("HAS_FACE_WEDGENORMAL_OCF")) {
|
|
face.EnableWedgeNormal();
|
|
Read((void*)&face.WNV[0],sizeof(typename face::vector_ocf<FaceType>::WedgeNormalTypePack),face.size(),f);
|
|
}
|
|
}
|
|
};
|
|
|
|
static int FaceMaskBitFromString(std::string s){
|
|
if( s.find("Color",0) != std::string::npos ) return Mask::IOM_FACECOLOR; else
|
|
if( s.find("BitFlags",0) != std::string::npos ) return Mask::IOM_FACEFLAGS; else
|
|
if( s.find("VertexRef",0) != std::string::npos ) return Mask::IOM_FACEINDEX; else
|
|
if( s.find("Normal",0) != std::string::npos ) return Mask::IOM_FACENORMAL; else
|
|
if( s.find("Quality",0) != std::string::npos ) return Mask::IOM_FACEQUALITY; else
|
|
if( s.find("Quality",0) != std::string::npos ) return Mask::IOM_FACEQUALITY; else
|
|
if( s.find("WedgeColor",0) != std::string::npos ) return Mask::IOM_WEDGCOLOR; else
|
|
if( s.find("WedgeNormal",0) != std::string::npos ) return Mask::IOM_WEDGNORMAL; else
|
|
if( s.find("WedgeTexCoord",0) != std::string::npos) return Mask::IOM_WEDGTEXCOORD; else
|
|
return 0;
|
|
}
|
|
static int VertexMaskBitFromString(std::string s){
|
|
if( s.find("Color",0) != std::string::npos ) return Mask::IOM_VERTCOLOR; else
|
|
if( s.find("Coord",0) != std::string::npos ) return Mask::IOM_VERTCOORD; else
|
|
if( s.find("BitFlags",0) != std::string::npos ) return Mask::IOM_VERTFLAGS; else
|
|
if( s.find("Quality",0) != std::string::npos ) return Mask::IOM_VERTQUALITY; else
|
|
if( s.find("Normal",0) != std::string::npos ) return Mask::IOM_VERTNORMAL; else
|
|
if( s.find("TexCoord",0) != std::string::npos ) return Mask::IOM_VERTTEXCOORD; else
|
|
if( s.find("Radius",0) != std::string::npos ) return Mask::IOM_VERTRADIUS; else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static FILE *& F(){static FILE * f; return f;}
|
|
|
|
|
|
static void * Malloc(unsigned int n){ return (n)?malloc(n):0;}
|
|
static void Free(void * ptr){ if(ptr) free (ptr);}
|
|
|
|
|
|
typedef typename OpenMeshType::FaceType FaceType;
|
|
typedef typename OpenMeshType::FaceContainer FaceContainer;
|
|
typedef typename OpenMeshType::FaceIterator FaceIterator;
|
|
|
|
typedef typename OpenMeshType::VertContainer VertContainer;
|
|
typedef typename OpenMeshType::VertexIterator VertexIterator;
|
|
typedef typename OpenMeshType::VertexType VertexType;
|
|
|
|
public:
|
|
enum VMIErrorCodes {
|
|
VMI_NO_ERROR = 0,
|
|
VMI_INCOMPATIBLE_VERTEX_TYPE,
|
|
VMI_INCOMPATIBLE_FACE_TYPE,
|
|
VMI_FAILED_OPEN
|
|
};
|
|
|
|
/*!
|
|
* Standard call for knowing the meaning of an error code
|
|
* \param message_code The code returned by <CODE>Open</CODE>
|
|
* \return The string describing the error code
|
|
*/
|
|
static const char* ErrorMsg(int message_code)
|
|
{
|
|
static const char* error_msg[] =
|
|
{
|
|
"No errors",
|
|
"The file has a incompatible vertex signature",
|
|
"The file has a incompatible Face signature",
|
|
"General failure of the file opening"
|
|
};
|
|
|
|
if(message_code>4 || message_code<0)
|
|
return "Unknown error";
|
|
else
|
|
return error_msg[message_code];
|
|
};
|
|
|
|
/* Read the info about the mesh. Note: in the header the bounding box is always written/readed
|
|
as a vcg::Box3f, even if the scalar type is not float. The bounding box of the mesh will
|
|
be set properly on loading.
|
|
*/
|
|
static bool GetHeader( std::vector<std::string>& fnameV,
|
|
std::vector<std::string>& fnameF,
|
|
unsigned int & vertSize,
|
|
unsigned int &faceSize,
|
|
vcg::Box3f & bbox,
|
|
int & mask){
|
|
std::string name;
|
|
unsigned int nameFsize,nameVsize,i;
|
|
|
|
ReadString(F(),name); ReadInt(F(),nameFsize);
|
|
|
|
for(i=0; i < nameFsize; ++i)
|
|
{ReadString(F(), name);fnameF.push_back( name );mask |= FaceMaskBitFromString(name);}
|
|
mask |= LoadFaceOcfMask(F());
|
|
|
|
ReadString(F(),name); ReadInt(F() , faceSize);
|
|
ReadString(F(), name); ReadInt(F(),nameVsize);
|
|
|
|
for(i=0; i < nameVsize; ++i)
|
|
{ReadString(F(), name) ;fnameV.push_back( name);mask |= VertexMaskBitFromString(name);}
|
|
mask |= LoadVertexOcfMask(F());
|
|
|
|
ReadString(F(),name);
|
|
ReadInt(F(),vertSize);
|
|
|
|
ReadString(F(),name);
|
|
float float_value;
|
|
for(unsigned int i =0; i < 2; ++i){ReadFloat(F(),float_value); bbox.min[i]=float_value;}
|
|
for(unsigned int i =0; i < 2; ++i){ReadFloat(F(),float_value); bbox.max[i]=float_value;}
|
|
|
|
ReadString(F(),name);
|
|
assert(strstr( name.c_str(),"end_header")!=NULL);
|
|
return true;
|
|
}
|
|
|
|
|
|
static bool GetHeader(const char * filename,std::vector<std::string>& nameV, std::vector<std::string>& nameF, unsigned int & vertSize, unsigned int &faceSize,vcg::Box3f & bbox,int & mask){
|
|
F() = fopen(filename,"rb");
|
|
bool res = GetHeader(nameV, nameF, vertSize, faceSize,bbox,mask);
|
|
fclose(F());
|
|
return res;
|
|
}
|
|
|
|
public:
|
|
static char * & In_mem(){static char * in_mem; return in_mem;}
|
|
static unsigned int & In_mode(){static unsigned int in_mode = 0; return in_mode;}
|
|
|
|
|
|
static unsigned int & pos(){static unsigned int p = 0; return p;}
|
|
static int Read_sim(const void * , size_t size, size_t count, FILE * ){ pos() += size * count;return size * count; }
|
|
static int Read_mem( void *dst , size_t size, size_t count, FILE * ){ memcpy(dst,&In_mem()[pos()],size*count); pos() += size * count;return size * count; }
|
|
|
|
|
|
static int Read( void * dst, size_t size, size_t count, FILE *f){
|
|
switch(In_mode()){
|
|
case 0: return Read_mem(dst, size,count, f ); break;
|
|
case 1: return fread(dst, size,count, f ); break;
|
|
}
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static bool LoadMask(const char * f, int & mask){
|
|
std::vector<std::string> nameV;
|
|
std::vector<std::string> nameF;
|
|
unsigned int vertSize, faceSize;
|
|
vcg::Box3f bbox;
|
|
GetHeader(f,nameV,nameF,vertSize, faceSize, bbox, mask);
|
|
return true;
|
|
}
|
|
|
|
static int Open(OpenMeshType &m, const char * filename, int & mask,CallBackPos * /*cb*/ = 0 ) {
|
|
In_mode() = 1;
|
|
F() = fopen(filename,"rb");
|
|
if(!F()) return VMI_FAILED_OPEN;
|
|
if(F()==NULL) return 1; // 1 is the error code for cant'open, see the ErrorMsg function
|
|
int res = Deserialize(m,mask);
|
|
fclose(F());
|
|
return res;
|
|
}
|
|
static int ReadFromMem( OpenMeshType &m, int & mask,char * ptr){
|
|
In_mode() = 0;
|
|
pos() = 0;
|
|
In_mem() = ptr;
|
|
return Deserialize(m,mask);
|
|
}
|
|
|
|
static int Deserialize(OpenMeshType &m, int & mask)
|
|
{
|
|
typedef typename OpenMeshType::VertexType VertexType;
|
|
typedef typename OpenMeshType::FaceType FaceType;
|
|
typename OpenMeshType::FaceIterator fi;
|
|
typename OpenMeshType::VertexIterator vi;
|
|
|
|
std::vector<std::string> nameF,nameV,fnameF,fnameV;
|
|
unsigned int vertSize,faceSize;
|
|
|
|
/* read the header */
|
|
vcg::Box3f lbbox;
|
|
GetHeader(fnameV, fnameF, vertSize, faceSize,lbbox,mask);
|
|
m.bbox.Import(lbbox);
|
|
/* read the mesh type */
|
|
OpenMeshType::FaceType::Name(nameF);
|
|
OpenMeshType::VertexType::Name(nameV);
|
|
|
|
/* check if the type is the very same, otherwise return */
|
|
if(fnameV != nameV) return VMI_INCOMPATIBLE_VERTEX_TYPE;
|
|
if(fnameF != nameF) return VMI_INCOMPATIBLE_FACE_TYPE;
|
|
|
|
void * offsetV = 0,*offsetF = 0;
|
|
|
|
if(vertSize!=0)
|
|
/* read the address of the first vertex */
|
|
Read(&offsetV,sizeof( void *),1,F());
|
|
|
|
if(faceSize!=0)
|
|
/* read the address of the first face */
|
|
Read(&offsetF,sizeof( void *),1,F());
|
|
|
|
/* read the object mesh */
|
|
Read(&m.shot,sizeof(Shot<typename OpenMeshType::ScalarType>),1,F());
|
|
Read(&m.vn,sizeof(int),1,F());
|
|
Read(&m.fn,sizeof(int),1,F());
|
|
Read(&m.imark,sizeof(int),1,F());
|
|
Read(&m.bbox,sizeof(Box3<typename OpenMeshType::ScalarType>),1,F());
|
|
Read(&m.C(),sizeof(Color4b),1,F());
|
|
|
|
|
|
/* resize the vector of vertices */
|
|
m.vert.resize(vertSize);
|
|
|
|
|
|
size_t read = 0;
|
|
/* load the vertices */
|
|
if(vertSize>0){
|
|
read=Read((void*)& m.vert[0],sizeof(VertexType),vertSize,F());
|
|
LoadVertexOcf<OpenMeshType,VertContainer>(F(),m.vert);
|
|
}
|
|
|
|
read = 0;
|
|
m.face.resize(faceSize);
|
|
if(faceSize>0){
|
|
/* load the faces */
|
|
read = Read((void*)& m.face[0],sizeof(FaceType),faceSize,F());
|
|
LoadFaceOcf<OpenMeshType,FaceContainer>(F(),m.face);
|
|
}
|
|
|
|
|
|
/* load the per vertex attributes */
|
|
std::string _string,_trash;
|
|
unsigned int n,sz;
|
|
|
|
ReadString(F(),_trash); ReadInt(F(),n);
|
|
|
|
for(size_t ia = 0 ; ia < n; ++ia){
|
|
ReadString(F(),_trash); ReadString(F(),_string);
|
|
ReadString(F(),_trash); ReadInt(F(),sz);
|
|
|
|
void * data = Malloc(sz*m.vert.size());
|
|
Read(data,sz,m.vert.size(),F());
|
|
AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<0>(m,_string.c_str(),sz,data);
|
|
Free(data);
|
|
}
|
|
|
|
/* load the per face attributes */
|
|
ReadString(F(),_trash); ReadInt(F(),n);
|
|
for(size_t ia = 0 ; ia < n; ++ia){
|
|
ReadString(F(),_trash); ReadString(F(),_string);
|
|
ReadString(F(),_trash); ReadInt(F(),sz);
|
|
void * data = Malloc(sz*m.face.size());
|
|
Read(data,sz,m.face.size(),F());
|
|
AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<1>(m,_string.c_str(),sz,data);
|
|
Free(data);
|
|
}
|
|
|
|
/* load the per mesh attributes */
|
|
ReadString(F(),_trash); ReadInt(F(),n);
|
|
for(unsigned int ia = 0 ; ia < n; ++ia){
|
|
ReadString(F(),_trash); ReadString(F(),_string);
|
|
ReadString(F(),_trash); ReadInt(F(),sz);
|
|
void * data = Malloc(sz);
|
|
Read(data,1,sz,F());
|
|
AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<2>(m,_string.c_str(),sz,data);
|
|
Free(data);
|
|
}
|
|
|
|
if(!m.face.empty()){
|
|
if(FaceVectorHasPerFaceVFAdjacency(m.face))
|
|
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi){
|
|
(*vi).VFp() = (*vi).VFp()-(FaceType*)offsetF+ &m.face[0];
|
|
(*vi).VFp() = (*vi).VFp()-(FaceType*)offsetF+ &m.face[0];
|
|
(*vi).VFp() = (*vi).VFp()-(FaceType*)offsetF+ &m.face[0];
|
|
}
|
|
|
|
if(FaceVectorHasFVAdjacency(m.face))
|
|
for(fi = m.face.begin(); fi != m.face.end(); ++fi){
|
|
(*fi).V(0) = (*fi).V(0)-(VertexType*)offsetV+ &m.vert[0];
|
|
(*fi).V(1) = (*fi).V(1)-(VertexType*)offsetV+ &m.vert[0];
|
|
(*fi).V(2) = (*fi).V(2)-(VertexType*)offsetV+ &m.vert[0];
|
|
}
|
|
|
|
if(FaceVectorHasFFAdjacency(m.face))
|
|
for(fi = m.face.begin(); fi != m.face.end(); ++fi){
|
|
(*fi).FFp(0) = (*fi).FFp(0)-(FaceType*)offsetF+ &m.face[0];
|
|
(*fi).FFp(1) = (*fi).FFp(1)-(FaceType*)offsetF+ &m.face[0];
|
|
(*fi).FFp(2) = (*fi).FFp(2)-(FaceType*)offsetF+ &m.face[0];
|
|
}
|
|
|
|
}
|
|
|
|
return VMI_NO_ERROR; // zero is the standard (!) code of success
|
|
}
|
|
|
|
}; // end class
|
|
|
|
|
|
} // end Namespace tri
|
|
} // end Namespace io
|
|
} // end Namespace vcg
|
|
|
|
#endif
|