vcglib/vcg/simplex/vertex/base.h

956 lines
23 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.25 2005/10/14 13:25:50 cignoni
Added cVFp member
Revision 1.24 2005/10/06 14:26:39 pietroni
added getBBox method
Revision 1.23 2005/03/18 16:38:36 fiorin
Minor changes
Revision 1.22 2005/03/18 00:13:45 cignoni
Removed NormalizedNormalV (out of standard and wrong) and
added the member functions Normal and NormalizedNormal() (just like for faces)
Revision 1.21 2004/10/28 00:50:49 cignoni
Better Doxygen documentation
Revision 1.20 2004/10/11 17:45:05 ganovelli
added template on corrdinate type (default Point3)
Revision 1.19 2004/09/28 15:24:56 fiorin
DUMMY classes definition moved into vcg namespace
Revision 1.18 2004/08/25 15:15:27 ganovelli
minor changes to comply gcc compiler (typename's and stuff)
Revision 1.17 2004/07/20 15:24:53 pietroni
corrected NormalizedNormalV function...
Revision 1.16 2004/07/15 11:25:01 ganovelli
VFb moved to VFp, userbit to bitflag,setV, inclusion of pos.h
Revision 1.15 2004/07/15 10:13:48 pietroni
adde NormalizedNormalV funtion to compute the normal on a vertex
Revision 1.14 2004/05/13 22:44:40 ganovelli
syntax error (typo)
Revision 1.13 2004/05/13 22:40:02 ganovelli
default template parameters
Revision 1.12 2004/05/13 12:49:22 pietroni
no default template parameters... each one must be specified
Revision 1.12 2004/05/10 13:31:13 ganovelli
function for edge adjacency added
$Log: not supported by cvs2svn $
Revision 1.25 2005/10/14 13:25:50 cignoni
Added cVFp member
Revision 1.24 2005/10/06 14:26:39 pietroni
added getBBox method
Revision 1.23 2005/03/18 16:38:36 fiorin
Minor changes
Revision 1.22 2005/03/18 00:13:45 cignoni
Removed NormalizedNormalV (out of standard and wrong) and
added the member functions Normal and NormalizedNormal() (just like for faces)
Revision 1.21 2004/10/28 00:50:49 cignoni
Better Doxygen documentation
Revision 1.20 2004/10/11 17:45:05 ganovelli
added template on corrdinate type (default Point3)
Revision 1.19 2004/09/28 15:24:56 fiorin
DUMMY classes definition moved into vcg namespace
Revision 1.18 2004/08/25 15:15:27 ganovelli
minor changes to comply gcc compiler (typename's and stuff)
Revision 1.17 2004/07/20 15:24:53 pietroni
corrected NormalizedNormalV function...
Revision 1.16 2004/07/15 11:25:01 ganovelli
VFb moved to VFp, userbit to bitflag,setV, inclusion of pos.h
Revision 1.15 2004/07/15 10:13:48 pietroni
adde NormalizedNormalV funtion to compute the normal on a vertex
Revision 1.14 2004/05/13 22:44:40 ganovelli
syntax error (typo)
Revision 1.13 2004/05/13 22:40:02 ganovelli
default template parameters
Revision 1.12 2004/05/13 12:49:22 pietroni
no default template parameters... each one must be specified
Revision 1.11 2004/05/10 13:31:13 ganovelli
function for edge adjacency added
Revision 1.10 2004/05/10 13:13:17 cignoni
added void to Convert, corrected return object in VFp
Revision 1.9 2004/05/06 15:28:10 pietroni
changed names to VF topology function (was missed)
Revision 1.8 2004/05/05 17:03:25 pietroni
changed name to topology functions
Revision 1.7 2004/04/28 11:37:14 pietroni
*** empty log message ***
Revision 1.6 2004/04/26 09:40:15 pietroni
*** empty log message ***
Revision 1.6 2004/04/23 14:55:06 pietroni
conversion funtion
Revision 1.5 2004/03/10 00:59:06 cignoni
minor changes
Revision 1.4 2004/03/03 16:07:57 cignoni
Yet another cr lf mismatch
Revision 1.3 2004/02/24 21:36:39 cignoni
grouped documentation, changed typenames and reflection mechanism
Revision 1.2 2004/02/13 02:09:39 cignoni
First working release, with doxygen comment structure
Revision 1.1 2004/02/10 01:11:28 cignoni
Edited Comments and GPL license
****************************************************************************/
#ifndef VERTEX_TYPE
#pragma message("\nYou should never directly include this file\_n")
#else
#include<vcg/space/point3.h>
#include<vcg/space/color4.h>
#include<vcg/space/tcoord2.h>
#include<vcg/simplex/face/pos.h>
#include<vcg/space/box3.h>
namespace vcg {
class DUMMYFACETYPE;
class DUMMYEDGETYPE;
class DUMMYTETRATYPE;
/** \addtogroup vertex */
//@{
/*!
* This class represent the generic configurable Vertex;
* Usually you never direclty use this class with this name but you build
* your own type by directly including one of the .h files under the face/with
* directory. Each file specify a class type with the desired fields. So for example
* including 'vcg/simplex/vertex/with/VCVN.h' allow you to use the class VertVCVN that has per-vertex color and normal stored inside.
*/
template <class FLTYPE, class VETYPE = DUMMYEDGETYPE, class VFTYPE = DUMMYFACETYPE, class VTTYPE = DUMMYTETRATYPE,class TCTYPE = TCoord2<float,1>, class CoordTYPE= Point3<FLTYPE> > class VERTEX_TYPE
{
public:
/// The scalar type used to represent coords (i.e. float, double, ...)
typedef FLTYPE ScalarType;
/// The coordinate type used to represent the point (i.e. Point3f, Point3d, ...)
typedef CoordTYPE CoordType;
typedef Point3<ScalarType> NormalType;
/// The type base of the vertex, useful for recovering the original typename after user subclassing
typedef VERTEX_TYPE BaseVertexType;
/// The type of the face pointed by the vertex if vertex edge topology is present
typedef VETYPE EdgeType;
/// The type base of the vertex, useful for recovering the original typename after user subclassing
typedef VFTYPE FaceType;
/***********************************************/
/** @name Vertex Coords
blah
blah
**/
//@{
protected:
/// Spatial coordinates of the vertex
CoordType _p;
public:
/// Return the spatial coordinate of the vertex
inline CoordType & P()
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
return _p;
}
/// Return the constant spatial coordinate of the vertex
inline const CoordType & P() const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
return _p;
}
/// Return the constant spatial coordinate of the vertex
inline const CoordType & cP() const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
return _p;
}
/// Return the spatial coordinate of the vertex, senza effettuare controlli sul flag
inline CoordType & UberP()
{
return _p;
}
/// Return the constant spatial coordinate of the vertex, senza effettuare controlli sul flag
inline const CoordType & UberP() const
{
return _p;
}
//@}
/***********************************************/
/** @name Vertex Flags
For each vertex we store a set of boolean values packed in a int.
The default value for each flag is 0. Most commonly used flags are the \a deleted and the \a selected ones.
Users can ask and dispose for a bit for their own purposes with the vcg::VertexFull::NewUserBit() and vcg::VertexFull::DeleteUserBit() functions.
The value returned by these functions has to be passed to the
vcg::VertexFull::SetUserBit() vcg::VertexFull::ClearUserBit() and vcg::VertexFull::IsUserBit() functions to check and modify the obtained bit flag.
**/
//@{
protected:
/// This are the flags of vertex, the default (reasonable) value is 0
int _flags;
public:
/// Return the vector of _flags
inline int & Flags ()
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
return _flags;
}
/// Return the vector of _flags, senza effettuare controlli sui bit
inline int & UberFlags ()
{
return _flags;
}
inline const int UberFlags() const
{
return _flags;
}
/// checks if the vertex is deleted
bool IsD() const {return (_flags & DELETED) != 0;}
/// checks if the vertex is readable
bool IsR() const {return (_flags & NOTREAD) == 0;}
/// checks if the vertex is modifiable
bool IsW() const {return (_flags & NOTWRITE)== 0;}
/// This funcion checks whether the vertex is both readable and modifiable
bool IsRW() const {return (_flags & (NOTREAD | NOTWRITE)) == 0;}
/// checks if the vertex is Modified
bool IsS() const {return (_flags & SELECTED) != 0;}
/// checks if the vertex is readable
bool IsB() const {return (_flags & BORDER) != 0;}
/// checks if the vertex is visited
bool IsV() const {return (_flags & VISITED) != 0;}
/** Set the flag value
@param flagp Valore da inserire nel flag
*/
void SetFlags(int flagp) {_flags=flagp;}
/** Set the flag value
@param flagp Valore da inserire nel flag
*/
void ClearFlags() {_flags=0;}
/// deletes the vertex from the mesh
void SetD() {_flags |=DELETED;}
/// un-delete a vertex
void ClearD() {_flags &=(~DELETED);}
/// marks the vertex as readable
void SetR() {_flags &=(~NOTREAD);}
/// marks the vertex as not readable
void ClearR() {_flags |=NOTREAD;}
/// marks the vertex as writable
void ClearW() {_flags |=NOTWRITE;}
/// marks the vertex as not writable
void SetW() {_flags &=(~NOTWRITE);}
/// select the vertex
void SetS() {_flags |=SELECTED;}
/// Un-select a vertex
void ClearS() {_flags &= ~SELECTED;}
/// Set vertex as ob border
void SetB() {_flags |=BORDER;}
void ClearB() {_flags &=~BORDER;}
/// checks if the vertex is visited
void ClearV() {_flags &= ~VISITED;}
/// checks if the vertex is visited
void SetV() {_flags |=VISITED;}
/// Return the first bit that is not still used
static int &LastBitFlag()
{
static int b =USER0;
return b;
}
/// allocate a bit among the flags that can be used by user.
static inline int NewBitFlag()
{
LastBitFlag()=LastBitFlag()<<1;
return LastBitFlag();
}
// de-allocate a bit among the flags that can be used by user.
static inline bool DeleteBitFlag(int bitval)
{
if(LastBitFlag()==bitval) {
LastBitFlag()= LastBitFlag()>>1;
return true;
}
assert(0);
return false;
}
/// This function checks if the given user bit is true
bool IsUserBit(int userBit){return (_flags & userBit) != 0;}
/// This function set the given user bit
void SetUserBit(int userBit){_flags |=userBit;}
/// This function clear the given user bit
void ClearUserBit(int userBit){_flags &= (~userBit);}
//@}
/*#*******************
* Bounding box *
**********************/
void GetBBox( Box3<ScalarType> & bb ) const
{
bb.Set( cP() );
}
/***********************************************/
/** @name Vertex Texture Coords
blah
blah
**/
//@{
#ifdef __VCGLIB_VERTEX_VT
protected:
TCTYPE _t;
#endif
public:
TCTYPE & T()
{
#ifdef __VCGLIB_VERTEX_VT
return _t;
#else
assert(0);
return *(TCTYPE*)(&_flags);
#endif
}
const TCTYPE & T() const
{
#ifdef __VCGLIB_VERTEX_VT
return _t;
#else
assert(0);
return *(TCTYPE*)(&_flags);
#endif
}
//@}
/***********************************************/
/** @name Per vertex Color
blah
blah
**/
//@{
#ifdef __VCGLIB_VERTEX_VC
protected:
Color4b _c;
#endif
public:
Color4b & C()
{
#ifdef __VCGLIB_VERTEX_VC
return _c;
#else
assert(0);
return *(Color4b*)(&_flags);
#endif
}
const Color4b & C() const
{
#ifdef __VCGLIB_VERTEX_VC
return _c;
#else
return Color4b(Color4b::White);
#endif
}
//@}
/***********************************************/
/** @name Vertex Quality
blah
blah
**/
//@{
#ifdef __VCGLIB_VERTEX_VQ
protected:
float _q;
#endif
public:
float & Q()
{
#ifdef __VCGLIB_VERTEX_VQ
return _q;
#else
assert(0);
return *(float*)(&_flags);
#endif
}
const float & Q() const
{
#ifdef __VCGLIB_VERTEX_VQ
return _q;
#else
return 1;
#endif
}
//@}
/** @name Vertex-Edge Adjacency
blah
blah
**/
//@{
#if ((defined __VCGLIB_VERTEX_EA) || (defined __VCGLIB_VERTEX_EAS))
// Puntatore ad un edge appartenente alla stella del vertice, implementa l'adiacenza vertice-edge
protected:
EdgeType *_ep;
int _ei;
#endif
public:
inline EdgeType * & Ep()
{
#if ((defined __VCGLIB_VERTEX_EA) || (defined __VCGLIB_VERTEX_EAS))
return _ep;
#else
assert(0);// you are probably trying to use VF topology in a vertex without it
return *((EdgeType **)(_flags));
#endif
}
inline const EdgeType * & Ep() const
{
#if ((defined __VCGLIB_VERTEX_EA) || (defined __VCGLIB_VERTEX_EAS))
return _ep;
#else
assert(0);// you are probably trying to use VF topology in a vertex without it
return (EdgeType *)this;
#endif
}
inline int & Ei()
{
#if ((defined __VCGLIB_VERTEX_EA) || (defined __VCGLIB_VERTEX_EAS))
return _ei;
#else
assert(0);// you are probably trying to use VF topology in a vertex without it
return _flags;
#endif
}
inline const int & Ei() const
{
#if ((defined __VCGLIB_VERTEX_EA) || (defined __VCGLIB_VERTEX_EAS))
return _ei;
#else
assert(0);// you are probably trying to use VF topology in a vertex without it
return (void *)this;
#endif
}
//@}
/***********************************************/
/** @name Vertex-Face Adjacency
blah
blah
**/
//@{
#if ((defined __VCGLIB_VERTEX_AF) || (defined __VCGLIB_VERTEX_AFS))
// Puntatore ad una faccia appartenente alla stella del vertice, implementa l'adiacenza vertice-faccia
protected:
VFTYPE *_vfb;
int _vfi;
#endif
public:
inline VFTYPE * & VFp()
{
#if ((defined __VCGLIB_VERTEX_AF) || (defined __VCGLIB_VERTEX_AFS))
return _vfb;
#else
assert(0);// you are probably trying to use VF topology in a vertex without it
static VFTYPE *dum;
return dum;
#endif
}
inline const VFTYPE * & VFp() const
{
#if ((defined __VCGLIB_VERTEX_AF) || (defined __VCGLIB_VERTEX_AFS))
return _vfb;
#else
assert(0);// you are probably trying to use VF topology in a vertex without it
return (VFTYPE *)0;
#endif
}
inline const VFTYPE * cVFp() const
{
#if ((defined __VCGLIB_VERTEX_AF) || (defined __VCGLIB_VERTEX_AFS))
return _vfb;
#else
assert(0);// you are probably trying to use VF topology in a vertex without it
return (VFTYPE *)0;
#endif
}
inline int & VFi()
{
#if ((defined __VCGLIB_VERTEX_AF) || (defined __VCGLIB_VERTEX_AFS))
return _vfi;
#else
assert(0);// you are probably trying to use VF topology in a vertex without it
return _flags;
#endif
}
inline const int & VFi() const
{
#if ((defined __VCGLIB_VERTEX_AF) || (defined __VCGLIB_VERTEX_AFS))
return _vfi;
#else
assert(0);// you are probably trying to use VF topology in a vertex without it
return (void *)this;
#endif
}
//@}
/***********************************************/
/** @name Vertex-Tetrahedron Adjacency
blah
blah
**/
//@{
#if ((defined __VCGLIB_VERTEX_AT) || (defined __VCGLIB_VERTEX_ATS))
// Pointer to first tetrahedron of the start implements the Vertex-Tetrahedron Topology
protected:
VTTYPE *_vtb;
int _vti;
#endif
public:
inline VTTYPE * & VTb()
{
#if ((defined __VCGLIB_VERTEX_AT) || (defined __VCGLIB_VERTEX_ATS))
return _vtb;
#else
assert(0);// you are probably trying to use VF topology in a vertex without it
return *((VTTYPE **)(_flags));
#endif
}
inline const VTTYPE * & VTb() const
{
#if ((defined __VCGLIB_VERTEX_AT) || (defined __VCGLIB_VERTEX_ATS))
return _vtb;
#else
assert(0);// you are probably trying to use VF topology in a vertex without it
return (VTTYPE *)this;
#endif
}
inline int & VTi()
{
#if ((defined __VCGLIB_VERTEX_AT) || (defined __VCGLIB_VERTEX_ATS))
return _vti;
#else
assert(0);// you are probably trying to use VF topology in a vertex without it
return _flags;
#endif
}
inline const int & VTi() const
{
#if ((defined __VCGLIB_VERTEX_AT) || (defined __VCGLIB_VERTEX_ATS))
return _vti;
#else
assert(0);// you are probably trying to use VF topology in a vertex without it
return (void *)this;
#endif
}
//@}
/***********************************************/
/** @name Vertex Incremental Mark
blah
blah
**/
//@{
#ifdef __VCGLIB_VERTEX_VM
protected:
/// The incremental vertex mark
int _imark;
#endif // Mark
public:
#ifdef __VCGLIB_VERTEX_VM
/// This function return the vertex incremental mark
inline int & IMark()
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
return _imark;
}
/// This function return the constant vertex incremental mark
inline const int & IMark() const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
return _imark;
}
#endif
/// Initialize the _imark system of the vertex
inline void InitIMark()
{
#ifdef __VCGLIB_VERTEX_VM
_imark = 0;
#endif
}
//@}
/***********************************************/
/** @name Vertex Normal
blah
blah
**/
//@{
#ifdef __VCGLIB_VERTEX_VN
protected:
CoordType _n;
#endif
public:
/// Return the vertex normal
inline CoordType & N()
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
#ifdef __VCGLIB_VERTEX_VN
return _n;
#else
assert(0);
return *(CoordType *)this;
#endif
}
/// Return the constant vertex normal
inline const CoordType & N() const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
#ifdef __VCGLIB_VERTEX_VN
return _n;
#else
assert(0);
return *(CoordType *)this;
#endif
}
inline const CoordType cN() const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
#ifdef __VCGLIB_VERTEX_VN
return _n;
#else
return CoordType(0,0,0);
#endif
}
/// Return the Normal of the vertex
inline CoordType & UberN()
{
#ifdef __VCGLIB_VERTEX_VN
return _n;
#else
assert(0);
return *(CoordType *)this;
#endif
}
/// Return the constant normal of the vertex
inline const CoordType & UberN() const
{
#ifdef __VCGLIB_VERTEX_VN
return _n;
#else
assert(0);
return *(CoordType *)this;
#endif
}
template <bool NormalizeFlag>
const CoordType GenericNormal()
{
if (!HasVFAdjacency())
{
assert(0);
return (VERTEX_TYPE::CoordType (0,0,0));
}
else
{
vcg::face::VFIterator<typename VERTEX_TYPE::FaceType> VFi=vcg::face::VFIterator<typename VERTEX_TYPE::FaceType>();
VFi.f=VFp();
VFi.z=VFi();
typename VERTEX_TYPE::CoordType N= typename VERTEX_TYPE::CoordType(0,0,0);
while (!VFi.End())
{
N+=VFi.f->Normal();
VFi++;
}
if(NormalizeFlag) N.Normalize();
return N;
}
}
/// Return the un-normalized value of the vertex normal as it correspond to the current geometry.
/// It is always computed and never use any stored value.
/// REQUIRES vertex-face topology
const CoordType Normal() { return GenericNormal<false>(); }
/// Return the normalized value of the vertex normal as it correspond to the current geometry.
/// It is always computed and never use any stored value.
/// REQUIRES vertex-face topology
const CoordType NormalizedNormal() { return GenericNormal<true>(); }
//@}
/***********************************************/
/** @name Reflection Functions
Static functions that give information about the current vertex type.
Reflection is a mechanism making it possible to investigate yourself. Reflection is used to investigate format of objects at runtime, invoke methods and access fields of these objects. Here we provide static const functions that are resolved at compile time and they give information about the data (normal, color etc.) supported by the current vertex type.
**/
//@{
static bool HasFlags() { // Note the plural because ONE vertex has many Flags (but just one color, normal, mark, quality ecc.)
return true;
}
static bool HasNormal() {
#ifdef __VCGLIB_VERTEX_VN
return true;
#else
return false;
#endif
}
static bool HasColor() {
#ifdef __VCGLIB_VERTEX_VC
return true;
#else
return false;
#endif
}
static bool HasMark() {
#ifdef __VCGLIB_VERTEX_VM
return true;
#else
return false;
#endif
}
static bool HasQuality() {
#ifdef __VCGLIB_VERTEX_VQ
return true;
#else
return false;
#endif
}
static bool HasTexture() {
#ifdef __VCGLIB_VERTEX_VT
return true;
#else
return false;
#endif
}
static bool HasVFAdjacency() {
#ifdef __VCGLIB_VERTEX_AF
return true;
#else
return false;
#endif
}
static bool HasVTAdjacency() {
#ifdef __VCGLIB_VERTEX_AT
return true;
#else
return false;
#endif
}
static bool HasVEAdjacency() {
#ifdef __VCGLIB_VERTEX_EA
return true;
#else
return false;
#endif
}
//@}
/***********************************************/
/** @Conversion to other vertex
**/
//@{
template <class VERT_TYPE>
inline void Convert( VERT_TYPE &v )
{
P()=v.P();
Flags()=v.Flags();
if ((HasNormal())&&(v.HasNormal()))
N()=v.N();
if ((HasColor())&&(v.HasColor()))
C()=v.C();
#ifdef __VCGLIB_VERTEX_VM
if ((HasMark())&&(v.HasMark()))
IMark()=v.IMark();
#endif
if ((HasQuality())&&(v.HasQuality()))
Q()=v.Q();
if ((HasTexture())&&(v.HasTexture()))
T()=v.T();
}
//@}
enum {
// This bit indicate that the vertex is deleted from the mesh
DELETED = 0x0001, // cancellato
// This bit indicate that the vertex of the mesh is not readable
NOTREAD = 0x0002, // non leggibile (ma forse modificabile)
// This bit indicate that the vertex is not modifiable
NOTWRITE = 0x0004, // non modificabile (ma forse leggibile)
// This bit indicate that the vertex is modified
MODIFIED = 0x0008, // modificato
// This bit can be used to mark the visited vertex
VISITED = 0x0010, // Visited
// This bit can be used to select
SELECTED = 0x0020, // Selection flag
// Border Flag
BORDER = 0x0100,
// First user bit
USER0 = 0x0200 // Fisrt user bit
};
/** Return the i-th spatial value of the vertex coordinate.
@param i Index of the spatial vertex coordinate (x=0 y=1 z=2).
*/
inline ScalarType & operator [] ( const int i ){
assert(i>=0 && i<3);
return P().V(i);
}
/** Return the i-th spatial value of the const vertex coordinate.
@param i Index of the spatial vertex coordinate (x=0 y=1 z=2).
*/
inline const FLTYPE & operator [] ( const int i ) const {
assert(i>=0 && i<3);
return P().V(i);
}
/// Operator to compare two vertices using lexicographic order
inline bool operator < ( const VERTEX_TYPE & ve) const {
return _p < ve._p;
}
inline VERTEX_TYPE() {
//#ifdef _DEBUG
_flags=0;
//#endif
};
};
//@}
} // end namespace
#endif