vcglib/vcg/complex/trimesh/hole.h

969 lines
28 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.16 2006/11/22 13:43:28 giec
Code refactory and added minimum weight triangolation.
Revision 1.15 2006/11/13 10:11:38 giec
Clear some useless code
Revision 1.14 2006/11/07 15:13:56 zifnab1974
Necessary changes for compilation with gcc 3.4.6. Especially the hash function is a problem
Revision 1.13 2006/11/07 11:47:11 cignoni
gcc compiling issues
Revision 1.12 2006/11/07 07:56:43 cignoni
Added missing std::
Revision 1.11 2006/11/06 16:12:29 giec
Leipa ear now compute max dihedral angle.
Revision 1.10 2006/10/31 11:30:41 ganovelli
changed access throught iterator with static call to comply 2005 compiler
Revision 1.9 2006/10/20 07:44:45 cignoni
Added missing std::
Revision 1.8 2006/10/18 15:06:47 giec
New policy for compute quality in TrivialEar.
Bugfixed LeipaEar.
Added new algorithm "selfintersection" with test for self intersection.
Revision 1.7 2006/10/10 09:12:02 giec
Bugfix and added a new type of ear (Liepa like)
Revision 1.6 2006/10/09 10:07:07 giec
Optimized version of "EAR HOLE FILLING", the Ear is selected according to its dihedral angle.
Revision 1.5 2006/10/06 15:28:14 giec
first working implementationof "EAR HOLE FILLING".
Revision 1.4 2006/10/02 12:06:40 giec
BugFix
Revision 1.3 2006/09/27 15:33:32 giec
It close one simple hole . . .
Revision 1.2 2006/09/27 09:29:53 giec
Frist working release whit a few bugs.
It almost fills the hole ...
Revision 1.1 2006/09/25 09:17:44 cignoni
First Non working Version
****************************************************************************/
#ifndef __VCG_TRI_UPDATE_HOLE
#define __VCG_TRI_UPDATE_HOLE
#include <vcg/math/base.h>
#include <vcg/complex/trimesh/clean.h>
#include <vcg/space/point3.h>
#include <vector>
#define FLT_MAX 3.402823466e+38F /* max float rappresentable */
/*
Questa Classe serve per gestire la non duplicazione degli edge durante la chiusura
di un buco.
*/
namespace vcg {
namespace tri {
template<class MESH>
class HoleInfo
{
public:
HoleInfo(){}
HoleInfo(face::Pos<typename MESH::FaceType> const &pHole, int const pHoleSize, Box3<typename MESH::ScalarType> &pHoleBB)
{
p=pHole;
size=pHoleSize;
bb=pHoleBB;
}
HoleInfo(face::Pos<typename MESH::FaceType> const &pHole, int const pHoleSize, Box3<typename MESH::ScalarType> &pHoleBB, int FI)
{
p=pHole;
size=pHoleSize;
bb=pHoleBB;
faceindex = FI;
}
typename face::Pos<typename MESH::FaceType> p;
int size;
Box3<typename MESH::ScalarType> bb;
int faceindex;
void Refresh(MESH &m)
{
p.f = (typename MESH::FacePointer)(faceindex + &(*(m.face.begin())));
}
bool operator < (const HoleInfo & hh) const {return size < hh.size;}
bool operator > (const HoleInfo & hh) const {return size > hh.size;}
bool operator == (const HoleInfo & hh) const {return size == hh.size;}
bool operator != (const HoleInfo & hh) const {return size != hh.size;}
bool operator >= (const HoleInfo & hh) const {return size >= hh.size;}
bool operator <= (const HoleInfo & hh) const {return size <= hh.size;}
typename MESH::ScalarType Perimeter()
{
typename MESH::ScalarType sum=0;
face::Pos<typename MESH::FaceType> ip = p;
do
{
sum+=Distance(ip.v->cP(),ip.VFlip()->cP());
ip.NextB();
}
while (ip != p);
return sum;
}
};
//function prototype
template <class MESH>
int GetHoleInfo(MESH &m,bool Selected ,std::vector<typename tri::HoleInfo<MESH> >& VHI);
template<class MESH>
void triangulate(std::vector<typename MESH::VertexPointer > &m,int i, int j, std::vector< std::vector<int> > vi,
std::vector<face::Pos<typename MESH::FaceType> > vv);
template <class MESH>
void getBoundHole (face::Pos<typename MESH::FaceType> sp,std::vector<face::Pos<typename MESH::FaceType> >&ret);
/*
Un ear e' identificato da due hedge pos.
i vertici dell'ear sono
e0.FlipV().v
e0.v
e1.v
Vale che e1== e0.NextB();
e che e1.FlipV() == e0;
Situazioni ear non manifold, e degeneri (buco triangolare)
T XXXXXXXXXXXXX A /XXXXX B en/XXXXX
/XXXXXXXXXXXXXXX /XXXXXX /XXXXXX
XXXXXXep==en XXX ep\ /en XXXX /e1 XXXX
XXXXXX ----/| XX ------ ----/| XX ------ ----/|XXX
XXXXXX| /e1 XX XXXXXX| /e1 XX XXXXXX| o/e0 XX
XXXXXX| /XXXXXX XXXXXX| /XXXXXX XXXXXX| /XXXXXX
XXX e0|o/XXXXXXX XXX e0|o/XXXXXXX XXX ep| /XXXXXXX
XXX \|/XXXXXXXX XXX \|/XXXXXXXX XXX \|/XXXXXXXX
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
*/
template<class MSH_TYPE> class TrivialEar
{
public:
face::Pos<typename MSH_TYPE::FaceType> e0;
face::Pos<typename MSH_TYPE::FaceType> e1;
typedef typename MSH_TYPE::ScalarType ScalarType;
ScalarType quality;
ScalarType angle;
std::vector<typename MSH_TYPE::FaceType>* vf;
TrivialEar(){}
TrivialEar(const face::Pos<typename MSH_TYPE::FaceType> & ep)
{
e0=ep;
assert(e0.IsBorder());
e1=e0;
e1.NextB();
ComputeQuality();
ComputeAngle();
}
void SetAdiacenseRing(std::vector<typename MSH_TYPE::FaceType>* ar){vf = ar;}
void ComputeAngle()
{
Point3f p1 = e0.VFlip()->P() - e0.v->P();
Point3f p2 = e1.v->P() - e0.v->P();
ScalarType w = p2.Norm()*p1.Norm();
if(w==0) angle =90;
ScalarType p = (p2*p1);
p= p/w;
p = acos(p);
if(p < -1) p = -1;
if(p > 1) p = 1;
Point3f t = p2^p1;
ScalarType n = t* e0.v->N();
if(n<0)
{
p = 2.0 *(float)M_PI - p;
}
angle = p;
}
virtual inline bool operator < ( const TrivialEar & c ) const { return quality < c.quality; }
bool IsNull(){return e0.IsNull() || e1.IsNull();}
void SetNull(){e0.SetNull();e1.SetNull();}
virtual void ComputeQuality()
{
ScalarType ar;
ar = ( (e0.VFlip()->P() - e0.v->P()) ^ ( e1.v->P() - e0.v->P()) ).Norm() ;
ScalarType area = (ar);
ScalarType l1 = Distance( e0.v->P(),e1.v->P());
ScalarType l2 = Distance( e0.v->P(),e0.VFlip()->P());
ScalarType l3 = Distance( e0.VFlip()->P(),e1.v->P());
quality = area / ( (l1 *l1) + (l2 * l2) + (l3 * l3) );
};
bool IsUpToDate() {return (e0.IsBorder() && e1.IsBorder());};
bool IsConvex(){return (angle > (float)M_PI);}
bool Degen()
{
face::Pos<typename MSH_TYPE::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
face::Pos<typename MSH_TYPE::FaceType> en=e1; en.NextB(); // he successivo a e1
// caso ear degenere per buco triangolare
if(ep==en) return true;//provo a togliere sto controllo
// Caso ear non manifold a
if(ep.v==en.v) return true;
// Caso ear non manifold b
if(ep.VFlip()==e1.v) return true;
return false;
}
virtual bool Close(TrivialEar &ne0, TrivialEar &ne1, typename MSH_TYPE::FaceType * f)
{
// simple topological check
if(e0.f==e1.f) {
printf("Avoided bad ear");
return false;
}
//usato per generare una delle due nuove orecchie.
face::Pos<typename MSH_TYPE::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
face::Pos<typename MSH_TYPE::FaceType> en=e1; en.NextB(); // he successivo a e1
(*f).V(0) = e0.VFlip();
(*f).V(1) = e0.v;
(*f).V(2) = e1.v;
(*f).FFp(0) = e0.f;
(*f).FFi(0) = e0.z;
(*f).FFp(1) = e1.f;
(*f).FFi(1) = e1.z;
(*f).FFp(2) = f;
(*f).FFi(2) = 2;
e0.f->FFp(e0.z)=f;
e0.f->FFi(e0.z)=0;
e1.f->FFp(e1.z)=f;
e1.f->FFi(e1.z)=1;
// caso ear degenere per buco triangolare
if(ep==en)
{
printf("Closing the last triangle");
f->FFp(2)=en.f;
f->FFi(2)=en.z;
en.f->FFp(en.z)=f;
en.f->FFi(en.z)=2;
ne0.SetNull();
ne1.SetNull();
}
// Caso ear non manifold a
else if(ep.v==en.v)
{
printf("Ear Non manif A\n");
face::Pos<typename MSH_TYPE::FaceType> enold=en;
en.NextB();
f->FFp(2)=enold.f;
f->FFi(2)=enold.z;
enold.f->FFp(enold.z)=f;
enold.f->FFi(enold.z)=2;
ne0=TrivialEar(ep);
ne1=TrivialEar(en);
}
// Caso ear non manifold b
else if(ep.VFlip()==e1.v)
{
printf("Ear Non manif B\n");
face::Pos<typename MSH_TYPE::FaceType> epold=ep;
ep.FlipV(); ep.NextB(); ep.FlipV();
f->FFp(2)=epold.f;
f->FFi(2)=epold.z;
epold.f->FFp(epold.z)=f;
epold.f->FFi(epold.z)=2;
ne0=TrivialEar(ep);
ne1=TrivialEar(en);
}
else // caso standard
// Now compute the new ears;
{
ne0=TrivialEar(ep);
ne1=TrivialEar(face::Pos<typename MSH_TYPE::FaceType>(f,2,e1.v));
}
return true;
}
};
//Ear with FillHoleMinimumWeight's quality policy
template<class MSH_TYPE> class MinimumWeightEar : public TrivialEar<MSH_TYPE>
{
public:
typename MSH_TYPE::ScalarType dihedral;
typename MSH_TYPE::ScalarType area;
MinimumWeightEar(){}
MinimumWeightEar(const face::Pos<typename MSH_TYPE::FaceType> & ep)
{
this->e0=ep;
assert(this->e0.IsBorder());
this->e1=this->e0;
this->e1.NextB();
this->ComputeQuality();
this->ComputeAngle();
}
virtual inline bool operator < ( const MinimumWeightEar & c ) const
{
if(dihedral < c.dihedral)return true;
else return ((dihedral == c.dihedral) && (area < c.area));
}
virtual void ComputeQuality()
{
//comute quality by (dihedral ancgle, area/sum(edge^2) )
Point3f n1 = (this->e0.v->N() + this->e1.v->N() + this->e0.VFlip()->N() ) / 3;
face::Pos<typename MSH_TYPE::FaceType> tmp = this->e1;
tmp.FlipE();tmp.FlipV();
Point3f n2=(this->e1.VFlip()->N() + this->e1.v->N() + tmp.v->N() ) / 3;
tmp = this->e0;
tmp.FlipE(); tmp.FlipV();
Point3f n3=(this->e0.VFlip()->N() + this->e0.v->N() + tmp.v->N() ) / 3;
dihedral = std::max(Angle(n1,n2),Angle(n1,n3));
typename MSH_TYPE::ScalarType ar;
ar = ( (this->e0.VFlip()->P() - this->e0.v->P()) ^ ( this->e1.v->P() - this->e0.v->P()) ).Norm() ;
area = ar ;
}
};
//Ear for selfintersection algorithm
template<class MSH_TYPE> class SelfIntersectionEar : public TrivialEar<MSH_TYPE>
{
public:
SelfIntersectionEar(){}
SelfIntersectionEar(const face::Pos<typename MSH_TYPE::FaceType> & ep)
{
this->e0=ep;
assert(this->e0.IsBorder());
this->e1=this->e0;
this->e1.NextB();
this->ComputeQuality();
this->ComputeAngle();
}
virtual bool Close(SelfIntersectionEar &ne0, SelfIntersectionEar &ne1, typename MSH_TYPE::FaceType * f)
{
// simple topological check
if(this->e0.f==this->e1.f) {
printf("Avoided bad ear");
return false;
}
face::Pos<typename MSH_TYPE::FaceType> ep=this->e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
face::Pos<typename MSH_TYPE::FaceType> en=this->e1; en.NextB(); // he successivo a e1
//costruisco la faccia e poi testo, o copio o butto via.
(*f).V(0) = this->e0.VFlip();
(*f).V(1) = this->e0.v;
(*f).V(2) = this->e1.v;
(*f).FFp(0) = this->e0.f;
(*f).FFi(0) = this->e0.z;
(*f).FFp(1) = this->e1.f;
(*f).FFi(1) = this->e1.z;
(*f).FFp(2) = f;
(*f).FFi(2) = 2;
int a1, a2;
a1= this->e0.z;
a2= this->e1.z;
this->e0.f->FFp(this->e0.z)=f;
this->e0.f->FFi(this->e0.z)=0;
this->e1.f->FFp(this->e1.z)=f;
this->e1.f->FFi(this->e1.z)=1;
typename std::vector<typename MSH_TYPE::FaceType>::iterator it;
for(it = (* this->vf).begin();it!= (* this->vf).end();++it)
{
if(!it->IsD())
if( tri::Clean<MSH_TYPE>::TestIntersection(&(*f),&(*it)))
{
this->e0.f->FFp(this->e0.z)= this->e0.f;
this->e0.f->FFi(this->e0.z)=a1;
this->e1.f->FFp(this->e1.z)=this->e1.f;
this->e1.f->FFi(this->e1.z)=a2;
return false;
}
}
// caso ear degenere per buco triangolare
if(ep==en)
{
printf("Closing the last triangle");
f->FFp(2)=en.f;
f->FFi(2)=en.z;
en.f->FFp(en.z)=f;
en.f->FFi(en.z)=2;
ne0.SetNull();
ne1.SetNull();
}
// Caso ear non manifold a
else if(ep.v==en.v)
{
printf("Ear Non manif A\n");
face::Pos<typename MSH_TYPE::FaceType> enold=en;
en.NextB();
f->FFp(2)=enold.f;
f->FFi(2)=enold.z;
enold.f->FFp(enold.z)=f;
enold.f->FFi(enold.z)=2;
ne0=SelfIntersectionEar(ep);
ne0.SetAdiacenseRing(this->vf);
ne1=SelfIntersectionEar(en);
ne1.SetAdiacenseRing(this->vf);
}
// Caso ear non manifold b
else if(ep.VFlip()==this->e1.v)
{
printf("Ear Non manif B\n");
face::Pos<typename MSH_TYPE::FaceType> epold=ep;
ep.FlipV(); ep.NextB(); ep.FlipV();
f->FFp(2)=epold.f;
f->FFi(2)=epold.z;
epold.f->FFp(epold.z)=f;
epold.f->FFi(epold.z)=2;
ne0=SelfIntersectionEar(ep);
ne0.SetAdiacenseRing(this->vf);
ne1=SelfIntersectionEar(en);
ne1.SetAdiacenseRing(this->vf);
}
else// Now compute the new ears;
{
ne0=SelfIntersectionEar(ep);
ne0.SetAdiacenseRing(this->vf);
ne1=SelfIntersectionEar(face::Pos<typename MSH_TYPE::FaceType>(f,2,this->e1.v));
ne1.SetAdiacenseRing(this->vf);
}
return true;
}
};
// Funzione principale per chiudier un buco in maniera topologicamente corretta.
// Gestisce situazioni non manifold ragionevoli
// (tutte eccetto quelle piu' di 2 facce per 1 edge).
// Controlla che non si generino nuove situazioni non manifold chiudendo orecchie
// che sottendono un edge che gia'esiste.
template <class MESH, class EAR>
void FillHoleEar(MESH &m, tri::HoleInfo<MESH> &h ,int UBIT, std::vector<typename MESH::FaceType > *vf =0)
{
//Aggiungo le facce e aggiorno il puntatore alla faccia!
std::vector<typename MESH::FacePointer *> app;
app.push_back( &h.p.f );
typename MESH::FaceIterator f = tri::Allocator<MESH>::AddFaces(m, h.size-2, app);
h.Refresh(m);
assert(h.p.IsBorder());//test fondamentale altrimenti qualcosa s'e' rotto!
std::vector<EAR > H; //vettore di orecchie
H.reserve(h.size);
//prendo le informazioni sul buco
face::Pos<typename MESH::FaceType> ff = h.p;
face::Pos<typename MESH::FaceType> fp = h.p;
do{
EAR app = EAR(fp);
app.SetAdiacenseRing(vf);
H.push_back( app );
fp.NextB();//semmai da provare a sostituire il codice della NextB();
assert(fp.IsBorder());
}while(fp!=ff);
bool fitted = false;
int cnt=h.size;
typename MESH::FaceIterator tmp;
make_heap(H.begin(), H.end());
//finche' il buco non e' chiuso o non ci sono piu' orecchie da analizzare.
while( cnt > 2 && !H.empty() )
{
pop_heap(H.begin(), H.end());
EAR en0,en1;
typename MESH::FaceIterator Fadd = f;
if(H.back().IsUpToDate() && H.back().IsConvex())
{
if(H.back().Degen()){
// Nota che nel caso di ear degeneri si DEVE permettere la creazione di un edge che gia'esiste.
printf("\n -> Evitata orecchia brutta!");
}
else
{
if(H.back().Close(en0,en1,&*f))
{
if(!en0.IsNull()){
H.push_back(en0);
push_heap( H.begin(), H.end());
}
if(!en1.IsNull()){
H.push_back(en1);
push_heap( H.begin(), H.end());
}
--cnt;
f->SetUserBit(UBIT);
if(vf != 0) (*vf).push_back(*f);
++f;
fitted = true;
}
}
//ultimo buco o unico buco.
if(cnt == 3 && !fitted)
{
if(H.back().Close(en0,en1,&*f))
{
--cnt;
tmp = f;
if(vf != 0)(*vf).push_back(*f);
++f;
}
}
}//is update()
fitted = false;
//non ho messo il triangolo quindi tolgo l'orecchio e continuo.
H.pop_back();
}//fine del while principale.
//tolgo le facce non utilizzate.
while(f!=m.face.end())
{
(*f).SetD();
++f;
m.fn--;
}
}
template<class MESH, class EAR>
void holeFillingEar(MESH &m, int sizeHole,bool Selected = false)
{
std::vector<typename tri::HoleInfo<MESH> > vinfo;
int UBIT = GetHoleInfo<MESH>(m, Selected,vinfo);
typename std::vector<typename tri::HoleInfo<MESH> >::iterator ith;
typename tri::HoleInfo<MESH> app;
for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
{
app=(tri::HoleInfo<MESH>)*ith;
if(app.size < sizeHole){
FillHoleEar<MESH, EAR >(m, app,UBIT);
}
}
typename MESH::FaceIterator fi;
for(fi = m.face.begin(); fi!=m.face.end(); ++fi)
{
if(!(*fi).IsD())
(*fi).ClearUserBit(UBIT);
}
}
template<class MESH, class EAR>
void holeFillingIntersection(MESH &m, int sizeHole,bool Selected = false)
{
std::vector<typename tri::HoleInfo<MESH> > vinfo;
int UBIT = GetHoleInfo<MESH>(m, Selected,vinfo);
std::vector<typename MESH::FaceType > vf;
face::Pos<typename MESH::FaceType>sp;
face::Pos<typename MESH::FaceType>ap;
typename std::vector<tri::HoleInfo<MESH> >::iterator ith;
tri::HoleInfo<MESH> app;
for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
{
app=(tri::HoleInfo<MESH>)*ith;
if(app.size < sizeHole){
app.Refresh(m);
//colleziono il ring intorno al buco per poi fare il test sul'intersezione
sp = app.p;
do
{
ap = sp;
do
{
ap.FlipE();
ap.FlipF();
vf.push_back(*ap.f);
}while(!ap.IsBorder());
sp.NextB();
}while(sp != app.p);
FillHoleEar<MESH, EAR >(m, app,UBIT,&vf);
vf.clear();
}
}
typename MESH::FaceIterator fi;
for(fi = m.face.begin(); fi!=m.face.end(); ++fi)
{
if(!(*fi).IsD())
(*fi).ClearUserBit(UBIT);
}
}
template <class MESH>
int GetHoleInfo(MESH &m,bool Selected ,std::vector<typename tri::HoleInfo<MESH> >& VHI)
{
typename MESH::FaceIterator fi;
int UBIT = MESH::FaceType::LastBitFlag();
for(fi = m.face.begin(); fi!=m.face.end(); ++fi)
{
if(!(*fi).IsD())
{
if(Selected && !(*fi).IsS())
{
//se devo considerare solo i triangoli selezionati e
//quello che sto considerando non lo e' lo marchio e vado avanti
(*fi).SetUserBit(UBIT);
}
else
{
if( !(*fi).IsUserBit(UBIT) )
{
(*fi).SetUserBit(UBIT);
for(int j =0; j<3 ; ++j)
{
if( (*fi).IsB(j) )
{//Trovato una faccia di bordo non ancora visitata.
face::Pos<typename MESH::FaceType> sp(&*fi, j, (*fi).V(j));
face::Pos<typename MESH::FaceType> fp=sp;
int holesize=0;
Box3<typename MESH::ScalarType> hbox;
hbox.Add(sp.v->cP());
do
{
sp.f->SetUserBit(UBIT);
hbox.Add(sp.v->cP());
++holesize;
sp.NextB();
assert(sp.IsBorder());
}while(sp != fp);
int tmp = ((int)(sp.f - &(*(m.face.begin()))));
//ho recuperato l'inofrmazione su tutto il buco
VHI.push_back( tri::HoleInfo<MESH>(sp,holesize,hbox, tmp) );
}
}//for sugli edge del triangolo
}//se e' gia stato visitato
}//S & !S
}//!IsD()
}//for principale!!!
return UBIT;
}
//Minimum Weight Algorithm
class Weight
{
public:
Weight() { ang = 180; ar = FLT_MAX ;}
Weight( float An, float Ar ) { ang=An ; ar= Ar;}
~Weight() {}
float angle() const { return ang; }
float area() const { return ar; }
Weight operator+( const Weight & other ) const {return Weight( std::max( angle(), other.angle() ), area() + other.area());}
bool operator<( const Weight & rhs ) const {return ( angle() < rhs.angle() ||(angle() == rhs.angle() && area() < rhs.area())); }
private:
float ang;
float ar;
};
/*
\ / \/
v1*---------*v4
/ \ /
hole/ \ /
/ \ /
/ear \ /
-*---------*-
/ v3 v2\
*/
template <class MESH>
float ComputeDihedralAngle(typename MESH::VertexPointer v1,typename MESH::VertexPointer v2,
typename MESH::VertexPointer v3,typename MESH::VertexPointer v4)
{
typename MESH::CoordType n1 = ((v1->P() - v2->P()) ^ (v3->P() - v1->P()) ).Normalize();
typename MESH::CoordType n2 = ((v2->P() - v1->P()) ^ (v4->P() - v2->P()) ).Normalize();
typename MESH::ScalarType t = (n1 * n2 ) ;
return ( acos(t)* 180.0 / M_PI);
}
template<class MESH>
bool existEdge(face::Pos<typename MESH::FaceType> pi,face::Pos<typename MESH::FaceType> pf)
{
face::Pos<typename MESH::FaceType> app = pi;
face::Pos<typename MESH::FaceType> appF = pi;
face::Pos<typename MESH::FaceType> tmp;
assert(pi.IsBorder());
appF.NextB();
appF.FlipV();
do
{
tmp = app;
tmp.FlipV();
if(tmp.v == pf.v)
return true;
app.FlipE();
app.FlipF();
if(app == pi)return false;
}while(app != appF);
return false;
}
template<class MESH>
Weight computeWeight( int i, int j, int k,
std::vector<face::Pos<typename MESH::FaceType> > pv,
std::vector< std::vector< int > > v)
{
face::Pos<typename MESH::FaceType> pi = pv[i];
face::Pos<typename MESH::FaceType> pj = pv[j];
face::Pos<typename MESH::FaceType> pk = pv[k];
//test complex edge
if(existEdge<MESH>(pi,pj) || existEdge<MESH>(pj,pk)|| existEdge<MESH>(pk,pi) )
{
return Weight();
}
// Return an infinite weight, if one of the neighboring patches
// could not be created.
if(v[i][j] == -1){return Weight();}
if(v[j][k] == -1){return Weight();}
//calcolo il massimo angolo diedrale, se esiste.
float angle = 0.0f;
face::Pos<typename MESH::FaceType> px;
if(i + 1 == j)
{
px = pj;
px.FlipE(); px.FlipV();
angle = std::max<float>(angle , ComputeDihedralAngle<MESH>(pi.v, pj.v, pk.v, px.v) );
}
else
{
angle = std::max<float>( angle, ComputeDihedralAngle<MESH>(pi.v,pj.v, pk.v, pv[ v[i][j] ].v));
}
if(j + 1 == k)
{
px = pk;
px.FlipE(); px.FlipV();
angle = std::max<float>(angle , ComputeDihedralAngle<MESH>(pj.v, pk.v, pi.v, px.v) );
}
else
{
angle = std::max<float>( angle, ComputeDihedralAngle<MESH>(pj.v,pk.v, pi.v, pv[ v[j][k] ].v));
}
if( i == 0 && k == (int)v.size() - 1)
{
px = pi;
px.FlipE(); px.FlipV();
angle = std::max<float>(angle , ComputeDihedralAngle<MESH>(pk.v, pi.v, pj.v,px.v ) );
}
typename MESH::ScalarType area = ( (pj.v->P() - pi.v->P()) ^ (pk.v->P() - pi.v->P()) ).Norm() * 0.5;
return Weight(angle, area);
}
template <class MESH>
std::vector<typename MESH::VertexPointer > calculateMinimumWeightTriangulation(MESH &m, std::vector<face::Pos<typename MESH::FaceType> > vv )
{
std::vector< std::vector< Weight > > w; //matrice dei pesi minimali di ogni orecchio preso in conzideraione
std::vector< std::vector< int > > vi;//memorizza l'indice del terzo vertice del triangolo
//hole size
int nv = vv.size();
w.clear();
w.resize( nv, std::vector<Weight>( nv, Weight() ) );
vi.resize( nv, std::vector<int>( nv, 0 ) );
//inizializzo tutti i pesi possibili del buco
for ( int i = 0; i < nv-1; ++i )
w[i][i+1] = Weight( 0, 0 );
//doppio ciclo for per calcolare di tutti i possibili triangoli i loro pesi.
for ( int j = 2; j < nv; ++j )
{
for ( int i = 0; i + j < nv; ++i )
{
//per ogni triangolazione mi mantengo il minimo valore del peso tra i triangoli possibili
Weight minval;
//indice del vertice che da il peso minimo nella triangolazione corrente
int minIndex = -1;
//ciclo tra i vertici in mezzo a i due prefissati
for ( int m = i + 1; m < i + j; ++m )
{
Weight a = w[i][m];
Weight b = w[m][i+j];
Weight newval = a + b + computeWeight<MESH>( i, m, i+j, vv, vi);
if ( newval < minval )
{
minval = newval;
minIndex = m;
}
}
w[i][i+j] = minval;
vi[i][i+j] = minIndex;
}
}
//Triangulate
int i, j;
i=0; j=nv-1;
std::vector<typename MESH::VertexPointer > vf;
vf.clear();
triangulate<MESH>(vf, i, j, vi, vv);
return vf;
}
template<class MESH>
void triangulate(std::vector<typename MESH::VertexPointer > &m,int i, int j, std::vector< std::vector<int> > vi,
std::vector<face::Pos<typename MESH::FaceType> > vv)
{
if(i + 1 == j){return;}
if(i==j)return;
int k = vi[i][j];
if(k == -1) return;
m.push_back(vv[i].v);
m.push_back(vv[k].v);
m.push_back(vv[j].v);
triangulate<MESH>(m, i, k, vi, vv);
triangulate<MESH>(m, k, j, vi, vv);
}
template <class MESH>
void FillHoleMinimumWeight(MESH &m, bool Selected)
{
typename MESH::FaceIterator fi;
std::vector<face::Pos<typename MESH::FaceType> > vvi;
std::vector<typename MESH::FacePointer * > vfp;
std::vector<typename tri::HoleInfo<MESH> > vinfo;
typename std::vector<typename tri::HoleInfo<MESH> >::iterator VIT;
int UBIT = GetHoleInfo<MESH>(m, Selected,vinfo);
for(VIT = vinfo.begin(); VIT != vinfo.end();++VIT)
{
vvi.push_back(VIT->p);
}
typename std::vector<face::Pos<typename MESH::FaceType> >::iterator ith;
typename std::vector<face::Pos<typename MESH::FaceType> >::iterator ithn;
typename std::vector<typename MESH::VertexPointer >::iterator itf;
std::vector<face::Pos<typename MESH::FaceType> > app;
face::Pos<typename MESH::FaceType> ps;
std::vector<typename MESH::FaceType > tr;
std::vector<typename MESH::VertexPointer > vf;
for(ith = vvi.begin(); ith!= vvi.end(); ++ith)
{
tr.clear();
vf.clear();
app.clear();
vfp.clear();
for(ithn = vvi.begin(); ithn!= vvi.end(); ++ithn)
vfp.push_back(&(ithn->f));
ps = *ith;
getBoundHole<MESH>(ps,app);
vf = calculateMinimumWeightTriangulation(m, app);
if(vf.size() == 0)continue;//non e' stata trovata la triangolazione
typename MESH::FaceIterator f = tri::Allocator<MESH>::AddFaces(m, app.size()-2, vfp);
for(itf = vf.begin();itf != vf.end(); )
{
(*f).V(0) = (*itf++);
(*f).V(1) = (*itf++);
(*f).V(2) = (*itf++);
++f;
}
}
}
template <class MESH>
void getBoundHole (face::Pos<typename MESH::FaceType> sp,std::vector<face::Pos<typename MESH::FaceType> >&ret)
{
face::Pos<typename MESH::FaceType> fp = sp;
//take vertex around the hole
do
{
assert(fp.IsBorder());
ret.push_back(fp);
fp.NextB();
}while(sp != fp);
}
} // end namespace
}
#endif