291 lines
6.9 KiB
C++
291 lines
6.9 KiB
C++
#include <vector>
|
|
#include <iostream>
|
|
|
|
#include<vcg/space/triangle3.h>
|
|
#include<vcg/simplex/vertex/base.h>
|
|
#include<vcg/simplex/face/base.h>
|
|
#include<vcg/simplex/face/topology.h>
|
|
#include<vcg/complex/trimesh/base.h>
|
|
#include<vcg/complex/trimesh/hole.h>
|
|
#include<vcg/complex/local_optimization.h>
|
|
#include<vcg/complex/local_optimization/tri_edge_flip.h>
|
|
#include<vcg/complex/trimesh/smooth.h>
|
|
#include<vcg/complex/trimesh/refine.h>
|
|
|
|
#include<vcg/complex/trimesh/update/selection.h>
|
|
|
|
// topology computation
|
|
#include<vcg/complex/trimesh/update/topology.h>
|
|
#include <vcg/complex/trimesh/update/flag.h>
|
|
#include <vcg/complex/trimesh/update/normal.h>
|
|
|
|
// half edge iterators
|
|
#include<vcg/simplex/face/pos.h>
|
|
|
|
|
|
|
|
// input output
|
|
#include <wrap/io_trimesh/import_ply.h>
|
|
#include <wrap/io_trimesh/export_ply.h>
|
|
|
|
|
|
|
|
using namespace vcg;
|
|
using namespace std;
|
|
|
|
|
|
class MyFace;
|
|
class MyVertex;
|
|
|
|
struct MyUsedTypes : public UsedTypes< Use<MyVertex> ::AsVertexType,
|
|
Use<MyFace> ::AsFaceType>{};
|
|
|
|
class MyVertex : public Vertex< MyUsedTypes, vertex::Coord3f, vertex::BitFlags, vertex::Normal3f, vertex::Mark, vertex::Color4b >{};
|
|
class MyFace : public Face < MyUsedTypes, face::VertexRef,face::FFAdj, face::Mark, face::BitFlags, face::Normal3f> {};
|
|
|
|
class MyMesh : public tri::TriMesh< vector<MyVertex>, vector<MyFace > >{};
|
|
|
|
//Delaunay
|
|
class MyDelaunayFlip: public vcg::tri::TriEdgeFlip< MyMesh, MyDelaunayFlip > {
|
|
public:
|
|
typedef vcg::tri::TriEdgeFlip< MyMesh, MyDelaunayFlip > TEF;
|
|
inline MyDelaunayFlip( const TEF::PosType &p, int i) :TEF(p,i){}
|
|
};
|
|
|
|
bool callback(int percent, const char *str) {
|
|
cout << "str: " << str << " " << percent << "%\r";
|
|
return true;
|
|
}
|
|
|
|
template <class MESH>
|
|
bool NormalTest(typename face::Pos<typename MESH::FaceType> pos)
|
|
{
|
|
//giro intorno al vertice e controllo le normali
|
|
typename MESH::ScalarType thr = 0.0f;
|
|
typename MESH::CoordType NdP = vcg::Normal<typename MESH::FaceType>(*pos.f);
|
|
typename MESH::CoordType tmp, oop, soglia = typename MESH::CoordType(thr,thr,thr);
|
|
face::Pos<typename MESH::FaceType> aux=pos;
|
|
do{
|
|
aux.FlipF();
|
|
aux.FlipE();
|
|
oop = Abs(tmp - ::vcg::Normal<typename MESH::FaceType>(*pos.f));
|
|
if(oop < soglia )return false;
|
|
}while(aux != pos && !aux.IsBorder());
|
|
|
|
return true;
|
|
}
|
|
|
|
int main(int argc,char ** argv){
|
|
|
|
if(argc<5)
|
|
{
|
|
printf(
|
|
"\n HoleFilling ("__DATE__")\n"
|
|
"Visual Computing Group I.S.T.I. C.N.R.\n"
|
|
"Usage: trimesh_hole #algorithm #size filein.ply fileout.ply \n"
|
|
"#algorithm: \n"
|
|
" 1) Trivial Ear \n"
|
|
" 2) Minimum weight Ear \n"
|
|
" 3) Selfintersection Ear \n"
|
|
" 4) Minimum weight \n"
|
|
);
|
|
exit(0);
|
|
}
|
|
|
|
int algorithm = atoi(argv[1]);
|
|
int holeSize = atoi(argv[2]);
|
|
if(algorithm < 0 && algorithm > 4)
|
|
{
|
|
printf("Error in algorithm's selection\n",algorithm);
|
|
exit(0);
|
|
}
|
|
|
|
MyMesh m;
|
|
|
|
if(tri::io::ImporterPLY<MyMesh>::Open(m,argv[3])!=0)
|
|
{
|
|
printf("Error reading file %s\n",argv[2]);
|
|
exit(0);
|
|
}
|
|
|
|
//update the face-face topology
|
|
tri::UpdateTopology<MyMesh>::FaceFace(m);
|
|
tri::UpdateNormals<MyMesh>::PerVertexPerFace(m);
|
|
tri::UpdateFlags<MyMesh>::FaceBorderFromFF(m);
|
|
assert(tri::Clean<MyMesh>::IsFFAdjacencyConsistent(m));
|
|
|
|
//compute the average of face area
|
|
float AVG,sumA=0.0f;
|
|
int numA=0,indice;
|
|
indice = m.face.size();
|
|
MyMesh::FaceIterator fi;
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
sumA += DoubleArea(*fi)/2;
|
|
numA++;
|
|
for(int ind =0;ind<3;++ind)
|
|
fi->V(ind)->InitIMark();
|
|
}
|
|
AVG=sumA/numA;
|
|
|
|
switch(algorithm)
|
|
{
|
|
case 1: tri::Hole<MyMesh>::EarCuttingFill<tri::TrivialEar<MyMesh> >(m,holeSize,false); break;
|
|
case 2: tri::Hole<MyMesh>::EarCuttingFill<tri::MinimumWeightEar< MyMesh> >(m,holeSize,false,callback); break;
|
|
case 3: tri::Hole<MyMesh>::EarCuttingIntersectionFill<tri::SelfIntersectionEar< MyMesh> >(m,holeSize,false); break;
|
|
case 4: tri::Hole<MyMesh>::MinimumWeightFill(m,holeSize, false); tri::UpdateTopology<MyMesh>::FaceFace(m); break;
|
|
}
|
|
|
|
tri::UpdateFlags<MyMesh>::FaceBorderFromFF(m);
|
|
|
|
assert(tri::Clean<MyMesh>::IsFFAdjacencyConsistent(m));
|
|
|
|
printf("\nStart refinig...\n");
|
|
|
|
/*start refining */
|
|
MyMesh::VertexIterator vi;
|
|
MyMesh::FaceIterator f;
|
|
std::vector<MyMesh::FacePointer> vf;
|
|
f = m.face.begin();
|
|
f += indice;
|
|
for(; f != m.face.end();++f)
|
|
{
|
|
if(!f->IsD())
|
|
{
|
|
f->SetS();
|
|
}
|
|
}
|
|
|
|
std::vector<MyMesh::FacePointer *> FPP;
|
|
std::vector<MyMesh::FacePointer> added;
|
|
std::vector<MyMesh::FacePointer>::iterator vfit;
|
|
int i=1;
|
|
printf("\n");
|
|
|
|
for(f = m.face.begin();f!=m.face.end();++f) if(!(*f).IsD())
|
|
{
|
|
if( f->IsS() )
|
|
{
|
|
f->V(0)->IsW();
|
|
f->V(1)->IsW();
|
|
f->V(2)->IsW();
|
|
}
|
|
else
|
|
{
|
|
f->V(0)->ClearW();
|
|
f->V(1)->ClearW();
|
|
f->V(2)->ClearW();
|
|
}
|
|
}
|
|
vcg::LocalOptimization<MyMesh> Fs(m);
|
|
Fs.SetTargetMetric(0.0f);
|
|
Fs.Init<MyDelaunayFlip >();
|
|
Fs.DoOptimization();
|
|
|
|
|
|
do
|
|
{
|
|
vf.clear();
|
|
f = m.face.begin();
|
|
f += indice;
|
|
for(; f != m.face.end();++f)
|
|
{
|
|
if(f->IsS())
|
|
{
|
|
bool test= true;
|
|
for(int ind =0;ind<3;++ind)
|
|
f->V(ind)->InitIMark();
|
|
test = (DoubleArea<MyMesh::FaceType>(*f)/2) > AVG;
|
|
if(test)
|
|
{
|
|
vf.push_back(&(*f));
|
|
}
|
|
}
|
|
}
|
|
|
|
//info print
|
|
printf("\r Raffino [%d] - > %d",i,vf.size());
|
|
i++;
|
|
|
|
FPP.clear();
|
|
added.clear();
|
|
|
|
for(vfit = vf.begin(); vfit!=vf.end();++vfit)
|
|
{
|
|
FPP.push_back(&(*vfit));
|
|
}
|
|
int toadd= vf.size();
|
|
MyMesh::FaceIterator f1,f2;
|
|
f2 = tri::Allocator<MyMesh>::AddFaces(m,(toadd*2),FPP);
|
|
MyMesh::VertexIterator vertp = tri::Allocator<MyMesh>::AddVertices(m,toadd);
|
|
std::vector<MyMesh::FacePointer> added;
|
|
added.reserve(toadd);
|
|
vfit=vf.begin();
|
|
|
|
for(int i = 0; i<toadd;++i,f2++,vertp++)
|
|
{
|
|
f1=f2;
|
|
f2++;
|
|
TriSplit<MyMesh,CenterPoint<MyMesh> >(vf[i],&(*f1),&(*f2),&(*vertp),CenterPoint<MyMesh>() );
|
|
f1->SetS();
|
|
f2->SetS();
|
|
for(int itr=0;itr<3;itr++)
|
|
{
|
|
f1->V(itr)->SetW();
|
|
f2->V(itr)->SetW();
|
|
}
|
|
added.push_back( &(*f1) );
|
|
added.push_back( &(*f2) );
|
|
}
|
|
|
|
vcg::LocalOptimization<MyMesh> FlippingSession(m);
|
|
FlippingSession.SetTargetMetric(0.0f);
|
|
FlippingSession.Init<MyDelaunayFlip >();
|
|
FlippingSession.DoOptimization();
|
|
|
|
}while(!vf.empty());
|
|
|
|
vcg::LocalOptimization<MyMesh> Fiss(m);
|
|
Fiss.SetTargetMetric(0.0f);
|
|
Fiss.Init<MyDelaunayFlip >();
|
|
Fiss.DoOptimization();
|
|
|
|
/*end refining */
|
|
|
|
tri::io::ExporterPLY<MyMesh>::Save(m,"PreSmooth.ply",false);
|
|
|
|
int UBIT = MyMesh::VertexType::LastBitFlag();
|
|
f = m.face.begin();
|
|
f += indice;
|
|
for(; f != m.face.end();++f)
|
|
{
|
|
if(f->IsS())
|
|
{
|
|
for(int ind =0;ind<3;++ind){
|
|
if(NormalTest<MyMesh>(face::Pos<MyMesh::FaceType>(&(*f),ind )))
|
|
{
|
|
f->V(ind)->SetUserBit(UBIT);
|
|
}
|
|
}
|
|
f->ClearS();
|
|
}
|
|
}
|
|
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
|
|
{
|
|
if( vi->IsUserBit(UBIT) )
|
|
{
|
|
(*vi).SetS();
|
|
vi->ClearUserBit(UBIT);
|
|
}
|
|
}
|
|
|
|
tri::Smooth<MyMesh>::VertexCoordLaplacian(m,1,true);
|
|
|
|
printf("\nCompleted. Saving....\n");
|
|
|
|
tri::io::ExporterPLY<MyMesh>::Save(m,argv[4],false);
|
|
return 0;
|
|
}
|
|
|