729 lines
23 KiB
C++
729 lines
23 KiB
C++
#ifndef MIQ_QUADRANGULATOR_H
|
|
#define MIQ_QUADRANGULATOR_H
|
|
|
|
#include <vcg/complex/complex.h>
|
|
#include <vcg/simplex/face/pos.h>
|
|
#include <vcg/simplex/face/jumping_pos.h>
|
|
#include <vcg/complex/algorithms/attribute_seam.h>
|
|
#include <vcg/complex/algorithms/refine.h>
|
|
#include <vcg/complex/algorithms/smooth.h>
|
|
#include <vcg/complex/algorithms/clean.h>
|
|
#include <vcg/complex/algorithms/update/bounding.h>
|
|
#include <wrap/io_trimesh/export.h>
|
|
#include <vcg/complex/algorithms/update/texture.h>
|
|
|
|
#define precisionQ 0.0000000001
|
|
|
|
template <class TriMesh,class PolyMesh>
|
|
class Quadrangulator
|
|
{
|
|
|
|
public:
|
|
typedef typename TriMesh::FaceType TriFaceType;
|
|
typedef typename TriMesh::VertexType TriVertexType;
|
|
typedef typename TriMesh::CoordType CoordType;
|
|
typedef typename TriMesh::ScalarType ScalarType;
|
|
|
|
typedef typename PolyMesh::FaceType PolyFaceType;
|
|
typedef typename PolyMesh::VertexType PolyVertexType;
|
|
typedef typename PolyMesh::CoordType PolyCoordType;
|
|
typedef typename PolyMesh::ScalarType PolyScalarType;
|
|
|
|
|
|
struct InterpolationInfo
|
|
{
|
|
CoordType Pos3D;
|
|
vcg::Point2<ScalarType> PosUV;
|
|
ScalarType alpha;
|
|
bool to_split;
|
|
|
|
InterpolationInfo()
|
|
{
|
|
Pos3D=CoordType(0,0,0);
|
|
PosUV=vcg::Point2<ScalarType>(0,0);
|
|
to_split=false;
|
|
alpha=-1;
|
|
}
|
|
};
|
|
|
|
//the interpolation map that is saved once to be univoque per edge
|
|
typedef std::pair<CoordType,CoordType > KeyEdgeType;
|
|
|
|
std::map<KeyEdgeType,InterpolationInfo> InterpMap;
|
|
|
|
//ScalarType UVtolerance;
|
|
|
|
private:
|
|
|
|
bool ToSplit(const vcg::Point2<ScalarType> &uv0,
|
|
const vcg::Point2<ScalarType> &uv1,
|
|
int Dir,
|
|
ScalarType &alpha)
|
|
{
|
|
ScalarType val0=uv0.V(Dir);
|
|
ScalarType val1=uv1.V(Dir);
|
|
int IntegerLine0=floor(val0);
|
|
int IntegerLine1=floor(val1);
|
|
if (IntegerLine0==IntegerLine1)
|
|
return false;//no integer line pass throught the edge
|
|
|
|
bool swapped=false;
|
|
if (IntegerLine0>IntegerLine1)
|
|
{
|
|
std::swap(IntegerLine0,IntegerLine1);
|
|
std::swap(val0,val1);
|
|
assert(val1>=val0);
|
|
swapped=true;
|
|
}
|
|
|
|
//then get the first if extist that overcome the threshold
|
|
int IntegerSplit=IntegerLine0+1;
|
|
bool found=false;
|
|
ScalarType dist1,dist0;
|
|
for (int i=IntegerSplit;i<=IntegerLine1;i++)
|
|
{
|
|
dist1=fabs(val1-IntegerSplit);
|
|
dist0=fabs(val0-IntegerSplit);
|
|
|
|
// if ((dist0>=UVtolerance)&&
|
|
// (dist1>=UVtolerance))
|
|
if ((val0!=IntegerSplit)&&
|
|
(val1!=IntegerSplit))
|
|
{
|
|
found=true;
|
|
break;
|
|
}
|
|
IntegerSplit++;
|
|
}
|
|
if (!found)return false;
|
|
|
|
//have to check distance also in opposite direction
|
|
ScalarType lenght=val1-val0;
|
|
assert(lenght>=0);
|
|
//alpha=1.0-(dist/lenght);
|
|
alpha=(dist1/lenght);
|
|
if (swapped)alpha=1-alpha;
|
|
assert((alpha>0)&&(alpha<1));
|
|
return true;
|
|
}
|
|
|
|
void RoundInitial(TriMesh &to_split)
|
|
{
|
|
ScalarType minTolerance=precisionQ;
|
|
//first add all eddge
|
|
for (int i=0;i<to_split.face.size();i++)
|
|
{
|
|
TriFaceType *f=&to_split.face[i];
|
|
for (int j =0;j<3;j++)
|
|
{
|
|
vcg::Point2<ScalarType> UV=f->WT(j).P();
|
|
|
|
int int0=floor(UV.X()+0.5);
|
|
int int1=floor(UV.Y()+0.5);
|
|
|
|
ScalarType diff0=(fabs(UV.X()-(ScalarType)int0));
|
|
ScalarType diff1=(fabs(UV.Y()-(ScalarType)int1));
|
|
|
|
if (diff0<minTolerance)
|
|
UV.X()=(ScalarType)int0;
|
|
if (diff1<minTolerance)
|
|
UV.Y()=(ScalarType)int1;
|
|
|
|
f->WT(j).P()=UV;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RoundSplits(TriMesh &to_split,int dir)
|
|
{
|
|
ScalarType minTolerance=precisionQ;
|
|
//first add all eddge
|
|
for (int i=0;i<to_split.face.size();i++)
|
|
{
|
|
TriFaceType *f=&to_split.face[i];
|
|
for (int j =0;j<3;j++)
|
|
{
|
|
CoordType p0=f->P0(j);
|
|
CoordType p1=f->P1(j);
|
|
KeyEdgeType k(p0,p1);
|
|
assert(InterpMap.count(k)==1);
|
|
if (!InterpMap[k].to_split)continue;
|
|
//then get the intepolated value
|
|
vcg::Point2<ScalarType> UV=InterpMap[k].PosUV;
|
|
|
|
int int0=floor(UV.X()+0.5);
|
|
int int1=floor(UV.Y()+0.5);
|
|
|
|
ScalarType diff0=(fabs(UV.X()-(ScalarType)int0));
|
|
ScalarType diff1=(fabs(UV.Y()-(ScalarType)int1));
|
|
|
|
if (diff0<minTolerance)
|
|
UV.X()=(ScalarType)int0;
|
|
if (diff1<minTolerance)
|
|
UV.Y()=(ScalarType)int1;
|
|
|
|
InterpMap[k].PosUV=UV;
|
|
}
|
|
}
|
|
}
|
|
|
|
void InitSplitMap(TriMesh &to_split,
|
|
int dir)
|
|
{
|
|
assert((dir==0)||(dir==1));
|
|
InterpMap.clear();
|
|
//printf("direction %d\n",dir );
|
|
//first add all eddge
|
|
for (int i=0;i<to_split.face.size();i++)
|
|
{
|
|
TriFaceType *f=&to_split.face[i];
|
|
for (int j =0;j<3;j++)
|
|
{
|
|
CoordType p0=f->P0(j);
|
|
CoordType p1=f->P1(j);
|
|
vcg::Point2<ScalarType> Uv0=f->V0(j)->T().P();
|
|
vcg::Point2<ScalarType> Uv1=f->V1(j)->T().P();
|
|
KeyEdgeType k(p0,p1);
|
|
// printf("p0 (%5.5f,%5.5f,%5.5f) p1(%5.5f,%5.5f,%5.5f) \n",p0.X(),p0.Y(),p0.Z(),p1.X(),p1.Y(),p1.Z());
|
|
// printf("uv0 (%5.5f,%5.5f) uv1(%5.5f,%5.5f) \n",Uv0.X(),Uv0.Y(),Uv1.X(),Uv1.Y());
|
|
// fflush(stdout);
|
|
assert(InterpMap.count(k)==0);
|
|
InterpMap[k]=InterpolationInfo();
|
|
}
|
|
}
|
|
|
|
//then set the ones to be splitted
|
|
for (int i=0;i<to_split.face.size();i++)
|
|
{
|
|
TriFaceType *f=&to_split.face[i];
|
|
for (int j =0;j<3;j++)
|
|
{
|
|
CoordType p0=f->P0(j);
|
|
CoordType p1=f->P1(j);
|
|
vcg::Point2<ScalarType> uv0=f->V0(j)->T().P();
|
|
vcg::Point2<ScalarType> uv1=f->V1(j)->T().P();
|
|
|
|
ScalarType alpha;
|
|
if (!ToSplit(uv0,uv1,dir,alpha))continue;
|
|
|
|
KeyEdgeType k(p0,p1);
|
|
assert(InterpMap.count(k)==1);
|
|
InterpMap[k].Pos3D=p0*alpha+p1*(1-alpha);
|
|
InterpMap[k].PosUV=uv0*alpha+uv1*(1-alpha);
|
|
InterpMap[k].to_split=true;
|
|
InterpMap[k].alpha=alpha;
|
|
}
|
|
}
|
|
|
|
//then make them coherent
|
|
for (int i=0;i<to_split.face.size();i++)
|
|
{
|
|
TriFaceType *f=&to_split.face[i];
|
|
for (int j =0;j<3;j++)
|
|
{
|
|
CoordType p0=f->P0(j);
|
|
CoordType p1=f->P1(j);
|
|
vcg::Point2<ScalarType> uv0=f->V0(j)->T().P();
|
|
vcg::Point2<ScalarType> uv1=f->V1(j)->T().P();
|
|
// if (p0>p1)continue; //only one verse of coherence
|
|
|
|
KeyEdgeType k0(p0,p1);
|
|
assert(InterpMap.count(k0)==1);//there should be already in the
|
|
//table and it should be coherent
|
|
|
|
KeyEdgeType k1(p1,p0);
|
|
if(InterpMap.count(k1)==0)continue;//REAL border, no need for update
|
|
|
|
bool to_split0=InterpMap[k0].to_split;
|
|
bool to_split1=InterpMap[k1].to_split;
|
|
|
|
//the find all possible cases
|
|
if ((!to_split0)&&(!to_split1))continue;
|
|
|
|
if ((to_split0)&&(to_split1))
|
|
{
|
|
CoordType Pos3D=InterpMap[k1].Pos3D;
|
|
InterpMap[k0].Pos3D=Pos3D;
|
|
|
|
//check if need to make coherent also the UV Position
|
|
//skip the fake border and do the rest
|
|
bool IsBorderFF=(f->FFp(j)==f);
|
|
|
|
if (!IsBorderFF) //in this case they should have same UVs
|
|
InterpMap[k0].PosUV=InterpMap[k1].PosUV;
|
|
else
|
|
{
|
|
ScalarType alpha=InterpMap[k1].alpha;
|
|
assert((alpha>=0)&&(alpha<=1));
|
|
alpha=1-alpha;
|
|
InterpMap[k0].PosUV=alpha*uv0+(1-alpha)*uv1;
|
|
InterpMap[k0].alpha=alpha;
|
|
}
|
|
|
|
}
|
|
else
|
|
if ((!to_split0)&&(to_split1))
|
|
{
|
|
CoordType Pos3D=InterpMap[k1].Pos3D;
|
|
InterpMap[k0].Pos3D=Pos3D;
|
|
|
|
//check if need to make coherent also the UV Position
|
|
//skip the fake border and do the rest
|
|
bool IsBorderFF=(f->FFp(j)==f);
|
|
|
|
InterpMap[k0].to_split=true;
|
|
|
|
if (!IsBorderFF) //in this case they should have same UVs
|
|
InterpMap[k0].PosUV=InterpMap[k1].PosUV;
|
|
else //recalculate , it pass across a seam
|
|
{
|
|
ScalarType alpha=InterpMap[k1].alpha;
|
|
assert((alpha>=0)&&(alpha<=1));
|
|
alpha=1-alpha;
|
|
InterpMap[k0].PosUV=alpha*uv0+(1-alpha)*uv1;
|
|
InterpMap[k0].alpha=alpha;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
RoundSplits(to_split,dir);
|
|
}
|
|
|
|
// Basic subdivision class
|
|
// This class must provide methods for finding the position of the newly created vertices
|
|
// In this implemenation we simply put the new vertex in the MidPoint position.
|
|
// Color and TexCoords are interpolated accordingly.
|
|
template<class MESH_TYPE>
|
|
struct SplitMidPoint : public std::unary_function<vcg::face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType >
|
|
{
|
|
typedef typename MESH_TYPE::VertexType VertexType;
|
|
typedef typename MESH_TYPE::FaceType FaceType;
|
|
typedef typename MESH_TYPE::CoordType CoordType;
|
|
|
|
std::map<KeyEdgeType,InterpolationInfo> *MapEdge;
|
|
|
|
void operator()(typename MESH_TYPE::VertexType &nv,
|
|
vcg::face::Pos<typename MESH_TYPE::FaceType> ep)
|
|
{
|
|
VertexType* v0=ep.f->V0(ep.z);
|
|
VertexType* v1=ep.f->V1(ep.z);
|
|
assert(v0!=v1);
|
|
|
|
CoordType p0=v0->P();
|
|
CoordType p1=v1->P();
|
|
assert(p0!=p1);
|
|
|
|
KeyEdgeType k(p0,p1);
|
|
bool found=(MapEdge->count(k)==1);
|
|
assert(found);
|
|
bool to_split=(*MapEdge)[k].to_split;
|
|
assert(to_split);
|
|
|
|
//get the value on which the edge must be splitted
|
|
nv.P()= (*MapEdge)[k].Pos3D;
|
|
//nv.N()= v0->N()*alpha+v1->N()*(1.0-alpha);
|
|
nv.T().P()=(*MapEdge)[k].PosUV;
|
|
}
|
|
|
|
vcg::TexCoord2<ScalarType> WedgeInterp(vcg::TexCoord2<ScalarType> &t0,
|
|
vcg::TexCoord2<ScalarType> &t1)
|
|
{
|
|
return (vcg::TexCoord2<ScalarType>(0,0));
|
|
}
|
|
|
|
SplitMidPoint(std::map<KeyEdgeType,InterpolationInfo> *_MapEdge){MapEdge=_MapEdge;}
|
|
};
|
|
|
|
template <class MESH_TYPE>
|
|
class EdgePredicate
|
|
{
|
|
typedef typename MESH_TYPE::VertexType VertexType;
|
|
typedef typename MESH_TYPE::FaceType FaceType;
|
|
typedef typename MESH_TYPE::ScalarType ScalarType;
|
|
|
|
std::map<KeyEdgeType,InterpolationInfo> *MapEdge;
|
|
|
|
public:
|
|
|
|
bool operator()(vcg::face::Pos<typename MESH_TYPE::FaceType> ep) const
|
|
{
|
|
VertexType* v0=ep.f->V0(ep.z);
|
|
VertexType* v1=ep.f->V1(ep.z);
|
|
assert(v0!=v1);
|
|
|
|
CoordType p0=v0->P();
|
|
CoordType p1=v1->P();
|
|
assert(p0!=p1);
|
|
|
|
KeyEdgeType k(p0,p1);
|
|
bool found=(MapEdge->count(k)==1);
|
|
assert(found);
|
|
bool to_split=(*MapEdge)[k].to_split;
|
|
return(to_split);
|
|
}
|
|
|
|
EdgePredicate(std::map<KeyEdgeType,InterpolationInfo> *_MapEdge){MapEdge=_MapEdge;}
|
|
};
|
|
|
|
void SplitTrisDir(TriMesh &to_split,
|
|
int dir)
|
|
{
|
|
bool done=true;
|
|
//int step=0;
|
|
while (done)
|
|
{
|
|
printf("Number of Vertices %d \n",to_split.vn);
|
|
fflush(stdout);
|
|
|
|
InitSplitMap(to_split,dir);
|
|
|
|
SplitMidPoint<TriMesh> splMd(&InterpMap);
|
|
EdgePredicate<TriMesh> eP(&InterpMap);
|
|
|
|
done=vcg::tri::RefineE<TriMesh,SplitMidPoint<TriMesh>,EdgePredicate<TriMesh> >(to_split,splMd,eP);
|
|
|
|
}
|
|
printf("Number of Vertices %d \n",to_split.vn);
|
|
fflush(stdout);
|
|
fflush(stdout);
|
|
}
|
|
|
|
|
|
bool IsOnIntegerLine(vcg::Point2<ScalarType> uv0,
|
|
vcg::Point2<ScalarType> uv1)
|
|
{
|
|
for (int dir=0;dir<2;dir++)
|
|
{
|
|
ScalarType val0=uv0.V(dir);
|
|
ScalarType val1=uv1.V(dir);
|
|
int integer0=floor(uv0.V(dir)+0.5);
|
|
int integer1=floor(uv1.V(dir)+0.5);
|
|
if (integer0!=integer1)continue;
|
|
// if ((fabs(val0-(ScalarType)integer0))>=UVtolerance)continue;
|
|
// if ((fabs(val1-(ScalarType)integer1))>=UVtolerance)continue;
|
|
if (val0!=(ScalarType)floor(val0))continue;
|
|
if (val1!=(ScalarType)floor(val1))continue;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool IsOnIntegerVertex(vcg::Point2<ScalarType> uv,
|
|
bool IsB)
|
|
{
|
|
int onIntegerL=0;
|
|
for (int dir=0;dir<2;dir++)
|
|
{
|
|
ScalarType val0=uv.V(dir);
|
|
int integer0=floor(val0+0.5);
|
|
//if ((fabs(val0-(ScalarType)integer0))<UVtolerance)onIntegerL++;
|
|
if (val0==(ScalarType)floor(val0))onIntegerL++;
|
|
}
|
|
if ((IsB)&&(onIntegerL>0))return true;
|
|
return (onIntegerL==2);
|
|
}
|
|
|
|
|
|
void InitIntegerEdgesVert(TriMesh &Tmesh)
|
|
{
|
|
//IntegerEdges.clear();
|
|
vcg::tri::UpdateFlags<TriMesh>::FaceSetF(Tmesh);
|
|
vcg::tri::UpdateFlags<TriMesh>::FaceClearS(Tmesh);
|
|
vcg::tri::UpdateFlags<TriMesh>::VertexClearS(Tmesh);
|
|
|
|
for (unsigned int i=0;i<Tmesh.face.size();i++)
|
|
{
|
|
TriFaceType *f=&Tmesh.face[i];
|
|
if (f->IsD())continue;
|
|
for (int j=0;j<3;j++)
|
|
{
|
|
bool IsBorder=f->IsB(j);
|
|
if (IsBorder)
|
|
f->ClearF(j);
|
|
else
|
|
{
|
|
vcg::Point2<ScalarType> uv0=f->WT(j).P();
|
|
vcg::Point2<ScalarType> uv1=f->WT((j+1)%3).P();
|
|
|
|
if (IsOnIntegerLine(uv0,uv1))
|
|
{
|
|
f->ClearF(j);
|
|
TriFaceType *f1=f->FFp(j);
|
|
int z=f->FFi(j);
|
|
assert(f1!=f);
|
|
f1->ClearF(z);
|
|
}
|
|
}
|
|
|
|
bool BorderV=f->V(j)->IsB();
|
|
|
|
if (IsOnIntegerVertex(f->WT(j).P(),BorderV))
|
|
f->V(j)->SetS();
|
|
}
|
|
}
|
|
}
|
|
|
|
short int AlignmentEdge(TriFaceType *f,
|
|
int edge_index)
|
|
{
|
|
vcg::Point2<ScalarType> uv0=f->WT(edge_index).P();
|
|
vcg::Point2<ScalarType> uv1=f->WT((edge_index+1)%3).P();
|
|
if (uv0.X()==uv1.X())return 0;
|
|
if (uv0.Y()==uv1.Y())return 1;
|
|
return -1;
|
|
}
|
|
|
|
void FindPolygon(vcg::face::Pos<TriFaceType> &currPos,
|
|
std::vector<TriVertexType *> &poly,
|
|
std::vector<short int> &UVpoly)
|
|
{
|
|
currPos.F()->SetV();
|
|
currPos.F()->C()=vcg::Color4b(255,0,0,255);
|
|
poly.clear();
|
|
assert(currPos.V()->IsS());
|
|
TriVertexType *v_init=currPos.V();
|
|
poly.push_back(currPos.V());
|
|
|
|
//retrieve UV
|
|
int indexV0=currPos.E();
|
|
|
|
short int Align=AlignmentEdge(currPos.F(),currPos.E());
|
|
|
|
std::vector<short int> TempUVpoly;
|
|
TempUVpoly.push_back(Align);
|
|
|
|
do
|
|
{
|
|
currPos.NextNotFaux();
|
|
currPos.F()->SetV();
|
|
currPos.F()->C()=vcg::Color4b(255,0,0,255);
|
|
|
|
if ((currPos.V()->IsS())&&(currPos.V()!=v_init))
|
|
{
|
|
poly.push_back(currPos.V());
|
|
|
|
short int Align=AlignmentEdge(currPos.F(),currPos.E());
|
|
|
|
TempUVpoly.push_back(Align);
|
|
}
|
|
|
|
}while (currPos.V()!=v_init);
|
|
|
|
//then shift the order of UV by one
|
|
//to be consistent with edge ordering
|
|
int size=TempUVpoly.size();
|
|
for (int i=0;i<size;i++)
|
|
UVpoly.push_back(TempUVpoly[(i+1)%size]);
|
|
}
|
|
|
|
void FindPolygons(TriMesh &Tmesh,
|
|
std::vector<std::vector<TriVertexType *> > &polygons,
|
|
std::vector<std::vector<short int> > &UV)
|
|
{
|
|
vcg::tri::UpdateFlags<TriMesh>::FaceClearV(Tmesh);
|
|
for (unsigned int i=0;i<Tmesh.face.size();i++)
|
|
{
|
|
TriFaceType * f=&Tmesh.face[i];
|
|
if (f->IsV())continue;
|
|
|
|
for (int j=0;j<3;j++)
|
|
{
|
|
TriVertexType* v0=f->V0(j);
|
|
if (!v0->IsS())continue;
|
|
if (f->IsF(j))continue;
|
|
|
|
vcg::face::Pos<TriFaceType> startPos(f,j);
|
|
|
|
std::vector<TriVertexType *> poly;
|
|
std::vector< short int> UVpoly;
|
|
|
|
FindPolygon(startPos,poly,UVpoly);
|
|
|
|
if (poly.size()>2)
|
|
{
|
|
assert(poly.size()==UVpoly.size());
|
|
polygons.push_back(poly);
|
|
UV.push_back(UVpoly);
|
|
}
|
|
//only one polygon per initial face
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//FUNCTIONS NEEDED BY "UV WEDGE TO VERTEX" FILTER
|
|
static void ExtractVertex(const TriMesh & srcMesh,
|
|
const TriFaceType & f,
|
|
int whichWedge,
|
|
const TriMesh & dstMesh,
|
|
TriVertexType & v)
|
|
{
|
|
(void)srcMesh;
|
|
(void)dstMesh;
|
|
// This is done to preserve every single perVertex property
|
|
// perVextex Texture Coordinate is instead obtained from perWedge one.
|
|
v.ImportData(*f.cV(whichWedge));
|
|
v.T() = f.cWT(whichWedge);
|
|
}
|
|
|
|
static bool CompareVertex(const TriMesh & m,
|
|
TriVertexType & vA,
|
|
TriVertexType & vB)
|
|
{
|
|
(void)m;
|
|
return (vA.cT() == vB.cT());
|
|
}
|
|
|
|
void ConvertWTtoVT(TriMesh &Tmesh)
|
|
{
|
|
int vn = Tmesh.vn;
|
|
vcg::tri::AttributeSeam::SplitVertex(Tmesh, ExtractVertex, CompareVertex);
|
|
vcg::tri::UpdateTopology<TriMesh>::FaceFace(Tmesh);
|
|
// vcg::tri::UpdateFlags<TriMesh>::FaceBorderFromFF(Tmesh);
|
|
}
|
|
|
|
void ConvertVTtoWT(TriMesh &Tmesh)
|
|
{
|
|
vcg::tri::UpdateTexture<TriMesh>::WedgeTexFromVertexTex(Tmesh);
|
|
vcg::tri::Clean<TriMesh>::RemoveDuplicateVertex(Tmesh);
|
|
}
|
|
|
|
void ReupdateMesh(TriMesh &Tmesh)
|
|
{
|
|
vcg::tri::UpdateNormal<TriMesh>::PerFaceNormalized(Tmesh); // update Normals
|
|
vcg::tri::UpdateNormal<TriMesh>::PerVertexNormalized(Tmesh);// update Normals
|
|
//compact the mesh
|
|
vcg::tri::Allocator<TriMesh>::CompactVertexVector(Tmesh);
|
|
vcg::tri::Allocator<TriMesh>::CompactFaceVector(Tmesh);
|
|
vcg::tri::UpdateTopology<TriMesh>::FaceFace(Tmesh); // update Topology
|
|
vcg::tri::UpdateTopology<TriMesh>::TestFaceFace(Tmesh); //and test it
|
|
//set flags
|
|
vcg::tri::UpdateFlags<TriMesh>::VertexClearV(Tmesh);
|
|
vcg::tri::UpdateFlags<TriMesh>::FaceBorderFromFF(Tmesh);
|
|
vcg::tri::UpdateFlags<TriMesh>::VertexBorderFromFace(Tmesh);
|
|
}
|
|
|
|
public:
|
|
|
|
|
|
void TestIsProper(TriMesh &Tmesh)
|
|
{
|
|
|
|
|
|
//test manifoldness
|
|
int test=vcg::tri::Clean<TriMesh>::CountNonManifoldVertexFF(Tmesh);
|
|
//assert(test==0);
|
|
if (test != 0)
|
|
cerr << "Assertion failed: TestIsProper NonManifoldVertices!" << endl;
|
|
|
|
test=vcg::tri::Clean<TriMesh>::CountNonManifoldEdgeFF(Tmesh);
|
|
//assert(test==0);
|
|
if (test != 0)
|
|
cerr << "Assertion failed: TestIsProper NonManifoldEdges" << endl;
|
|
|
|
for (unsigned int i=0;i<Tmesh.face.size();i++)
|
|
{
|
|
TriFaceType *f=&Tmesh.face[i];
|
|
assert (!f->IsD());
|
|
for (int z=0;z<3;z++)
|
|
{
|
|
//int indexOpp=f->FFi(z);
|
|
TriFaceType *Fopp=f->FFp(z);
|
|
if (Fopp==f) continue;
|
|
//assert( f->FFp(z)->FFp(f->FFi(z))==f );
|
|
if (f->FFp(z)->FFp(f->FFi(z))!=f)
|
|
cerr << "Assertion failed: TestIsProper f->FFp(z)->FFp(f->FFi(z))!=f " << endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void Quadrangulate(TriMesh &Tmesh,
|
|
PolyMesh &Pmesh,
|
|
std::vector< std::vector< short int> > &UV)
|
|
{
|
|
TestIsProper(Tmesh);
|
|
|
|
RoundInitial(Tmesh);
|
|
|
|
//UVtolerance=tolerance;
|
|
|
|
//split to per vert
|
|
ConvertWTtoVT(Tmesh);
|
|
|
|
|
|
vcg::tri::Allocator<TriMesh>::CompactVertexVector(Tmesh);
|
|
vcg::tri::Allocator<TriMesh>::CompactFaceVector(Tmesh);
|
|
vcg::tri::UpdateTopology<TriMesh>::FaceFace(Tmesh);
|
|
(void)Pmesh;
|
|
//TestIsProper(Tmesh);
|
|
|
|
//then split the tris along X
|
|
SplitTrisDir(Tmesh,0);
|
|
SplitTrisDir(Tmesh,1);
|
|
|
|
//merge back the mesh and WT coords
|
|
ConvertVTtoWT(Tmesh);
|
|
|
|
//CleanMesh(Pmesh);
|
|
|
|
//update properties of the mesh
|
|
ReupdateMesh(Tmesh);
|
|
|
|
//test manifoldness
|
|
TestIsProper(Tmesh);
|
|
|
|
InitIntegerEdgesVert(Tmesh);
|
|
|
|
for (int i=0;i<Tmesh.face.size();i++)
|
|
Tmesh.face[i].C()=vcg::Color4b(255,255,255,255);
|
|
|
|
std::vector<std::vector<TriVertexType *> > polygons;
|
|
FindPolygons(Tmesh,polygons,UV);
|
|
|
|
//then add to the polygonal mesh
|
|
Pmesh.Clear();
|
|
|
|
int numV=vcg::tri::UpdateSelection<TriMesh>::VertexCount(Tmesh);
|
|
|
|
//first create vertices
|
|
vcg::tri::Allocator<PolyMesh>::AddVertices(Pmesh,numV);
|
|
|
|
std::map<CoordType,int> VertMap;
|
|
int index=0;
|
|
for(unsigned int i=0;i<Tmesh.vert.size();i++)
|
|
{
|
|
if (!Tmesh.vert[i].IsS())continue;
|
|
|
|
CoordType pos=Tmesh.vert[i].P();
|
|
CoordType norm=Tmesh.vert[i].N();
|
|
vcg::Point2<ScalarType> UV=Tmesh.vert[i].T().P();
|
|
Pmesh.vert[index].P()=typename PolyMesh::CoordType(pos.X(),pos.Y(),pos.Z());
|
|
Pmesh.vert[index].N()=typename PolyMesh::CoordType(norm.X(),norm.Y(),norm.Z());
|
|
Pmesh.vert[index].T().P()=UV;
|
|
VertMap[pos]=index;
|
|
index++;
|
|
}
|
|
|
|
//then add polygonal mesh
|
|
vcg::tri::Allocator<PolyMesh>::AddFaces(Pmesh,polygons.size());
|
|
for (unsigned int i=0;i<polygons.size();i++)
|
|
{
|
|
int size=polygons[i].size();
|
|
Pmesh.face[i].Alloc(size);
|
|
for (int j=0;j<size;j++)
|
|
{
|
|
CoordType pos=(polygons[i][j])->P();
|
|
assert(VertMap.count(pos)==1);
|
|
int index=VertMap[pos];
|
|
Pmesh.face[i].V(j)=&(Pmesh.vert[index]);
|
|
}
|
|
}
|
|
|
|
}
|
|
};
|
|
|
|
#endif
|