539 lines
16 KiB
C++
539 lines
16 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef POLYGON_H
|
|
#define POLYGON_H
|
|
|
|
#include <vcg/space/plane3.h>
|
|
#include <vcg/space/fitting3.h>
|
|
#include <vcg/space/point_matching.h>
|
|
#include <vcg/math/matrix33.h>
|
|
|
|
namespace vcg {
|
|
|
|
////return true if the
|
|
//template <class CoordType>
|
|
//bool CheckNormalizedCoords(CoordType dir)
|
|
//{
|
|
// typedef typename CoordType::ScalarType ScalarType;
|
|
// if(isnan(dir.X()))return false;
|
|
// if(isnan(dir.Y()))return false;
|
|
// if(isnan(dir.Z()))return false;
|
|
// ScalarType Norm=dir.Norm();
|
|
// if(fabs(Norm-1.f)>0.01f)return false;
|
|
// return true;
|
|
//}
|
|
|
|
//return per vertex Normals of a polygonal face stored as a vector of coords
|
|
template <class CoordType>
|
|
void GetNormals(std::vector<CoordType> &Pos,
|
|
std::vector<CoordType> &Norms)
|
|
{
|
|
Norms.clear();
|
|
int size=Pos.size();
|
|
if (size<=2) return;
|
|
for (int i=0;i<size;i++)
|
|
Norms.push_back(Normal(Pos[i],Pos[(i+1)%size],Pos[(i+2)%size]).Normalize());
|
|
}
|
|
|
|
//return the normal of a polygonal face stored as a vector of coords
|
|
template <class CoordType>
|
|
CoordType Normal(std::vector<CoordType> &Pos)
|
|
{
|
|
std::vector<CoordType> Norms;
|
|
GetNormals(Pos,Norms);
|
|
if (Norms.size()==0)
|
|
return(CoordType(1,0,0));
|
|
|
|
CoordType NSum=CoordType(0,0,0);
|
|
for (size_t i=0;i<Norms.size();i++)
|
|
NSum+=Norms[i];
|
|
|
|
NSum.Normalize();
|
|
return (NSum);
|
|
}
|
|
|
|
//return the area of a polygonal face stored as a vector of coords
|
|
template <class CoordType>
|
|
typename CoordType::ScalarType Area(const std::vector<CoordType> &Pos)
|
|
{
|
|
typedef typename CoordType::ScalarType ScalarType;
|
|
CoordType bary=CoordType(0,0,0);
|
|
for (int i=0;i<Pos.size();i++)
|
|
bary+=Pos[i];
|
|
|
|
bary/=Pos.size();
|
|
ScalarType Area=0;
|
|
for (size_t i=0;i<Pos.size();i++)
|
|
{
|
|
CoordType p0=Pos[i];
|
|
CoordType p1=Pos[(i+1)% Pos.size()];
|
|
CoordType p2=bary;
|
|
vcg::Triangle3<ScalarType> T(p0,p1,p2);
|
|
Area+=(vcg::DoubleArea(T)/2);
|
|
}
|
|
return Area;
|
|
}
|
|
|
|
//return per vertex Normals of a polygonal face
|
|
template<class PolygonType>
|
|
void PolyNormals(const PolygonType &F,
|
|
std::vector<typename PolygonType::CoordType> &Norms)
|
|
{
|
|
typedef typename PolygonType::FaceType FaceType;
|
|
typedef typename PolygonType::CoordType CoordType;
|
|
typedef typename PolygonType::ScalarType ScalarType;
|
|
|
|
Norms.clear();
|
|
if (F.VN()<=2) return;
|
|
for (int i=0;i<F.VN();i++)
|
|
Norms.push_back(Normal(F.cP0(i),F.cP1(i),F.cP2(i)).Normalize());
|
|
}
|
|
|
|
//return the barycenter of a polygonal face
|
|
template<class PolygonType>
|
|
typename PolygonType::CoordType PolyBarycenter(const PolygonType &F)
|
|
{
|
|
typename PolygonType::CoordType bary(0,0,0);
|
|
for (int i=0;i<F.VN();i++)
|
|
bary+=F.cP(i);
|
|
|
|
bary/=(typename PolygonType::ScalarType)F.VN();
|
|
return bary;
|
|
}
|
|
|
|
//return the area of a polygonal face
|
|
template<class PolygonType>
|
|
typename PolygonType::ScalarType PolyArea(const PolygonType &F)
|
|
{
|
|
typedef typename PolygonType::FaceType FaceType;
|
|
typedef typename PolygonType::CoordType CoordType;
|
|
typedef typename PolygonType::ScalarType ScalarType;
|
|
|
|
CoordType bary=PolyBarycenter(F);
|
|
ScalarType Area=0;
|
|
for (size_t i=0;i<F.VN();i++)
|
|
{
|
|
CoordType p0=F.cP0(i);
|
|
CoordType p1=F.cP1(i);
|
|
CoordType p2=bary;
|
|
vcg::Triangle3<ScalarType> T(p0,p1,p2);
|
|
Area+=(vcg::DoubleArea(T)/2);
|
|
}
|
|
return Area;
|
|
}
|
|
|
|
//return the normal of a polygonal face
|
|
template<class PolygonType>
|
|
typename PolygonType::CoordType PolygonNormal(const PolygonType &F)
|
|
{
|
|
typename PolygonType::CoordType n(0,0,0);
|
|
|
|
for (int i=0;i<F.VN();i++)
|
|
n+=Normal(F.cP0(i),F.cP1(i),F.cP2(i)).Normalize();
|
|
|
|
return n.Normalize();
|
|
}
|
|
|
|
//return the perimeter of a polygonal face
|
|
template<class PolygonType>
|
|
typename PolygonType::ScalarType PolyPerimeter(const PolygonType &F)
|
|
{
|
|
typedef typename PolygonType::FaceType FaceType;
|
|
typedef typename PolygonType::CoordType CoordType;
|
|
typedef typename PolygonType::ScalarType ScalarType;
|
|
|
|
ScalarType SumL=0;
|
|
for (int i=0;i<F.VN();i++)
|
|
{
|
|
ScalarType L=(F.cP0(i)-F.cP1(i)).Norm();
|
|
SumL+=L;
|
|
}
|
|
return (SumL);
|
|
}
|
|
|
|
//return a Scalar value that encode the variance of the normals
|
|
//wrt the average one (1 means hight variance, 0 no variance)
|
|
template<class PolygonType>
|
|
typename PolygonType::ScalarType PolyNormDeviation(const PolygonType &F)
|
|
{
|
|
typedef typename PolygonType::FaceType FaceType;
|
|
typedef typename PolygonType::CoordType CoordType;
|
|
typedef typename PolygonType::ScalarType ScalarType;
|
|
|
|
std::vector<typename PolygonType::CoordType> Norms;
|
|
PolyNormals(F,Norms);
|
|
|
|
//calculate the Avg Normal
|
|
CoordType AvgNorm(0,0,0);
|
|
for (int i=0;i<Norms.size();i++)
|
|
AvgNorm+=Norms[i];
|
|
|
|
AvgNorm.Normalize();
|
|
|
|
if (!CheckNormalizedCoords(AvgNorm))return 1;
|
|
|
|
ScalarType Dev=0;
|
|
for (int i=0;i<Norms.size();i++)
|
|
Dev+=pow((Norms[i]-AvgNorm).Norm()/2.0,2);
|
|
|
|
Dev/=(ScalarType)Norms.size();
|
|
Dev=sqrt(Dev);
|
|
return Dev;
|
|
}
|
|
|
|
//return a Scalar value that encode the distance wrt ideal angle for each
|
|
//wrt the average one (1 correspond to hight variance, 0 no variance)
|
|
template<class PolygonType>
|
|
void PolyAngleDeviation(const PolygonType &F,
|
|
typename PolygonType::ScalarType &AvgDev,
|
|
typename PolygonType::ScalarType &MaxDev)
|
|
{
|
|
typedef typename PolygonType::FaceType FaceType;
|
|
typedef typename PolygonType::CoordType CoordType;
|
|
typedef typename PolygonType::ScalarType ScalarType;
|
|
assert(F.VN()>2);
|
|
ScalarType IdealAngle=M_PI-(2*M_PI/(ScalarType)F.VN());
|
|
assert(IdealAngle>0);
|
|
|
|
//then compute the angle deviation
|
|
MaxDev=0;
|
|
AvgDev=0;
|
|
|
|
for (int i=0;i<F.VN();i++)
|
|
{
|
|
CoordType dir0=F.cP0(i)-F.cP1(i);
|
|
CoordType dir1=F.cP2(i)-F.cP1(i);
|
|
|
|
ScalarType VAngle=vcg::Angle(dir0,dir1);
|
|
assert(VAngle>=0);
|
|
ScalarType VAngleDiff=fabs(VAngle-IdealAngle);
|
|
|
|
if (VAngleDiff>MaxDev)MaxDev=VAngleDiff;
|
|
|
|
AvgDev+=VAngleDiff;
|
|
}
|
|
AvgDev/=(ScalarType)F.VN();
|
|
|
|
AvgDev/=(M_PI/2.0);
|
|
MaxDev/=(M_PI/2.0);
|
|
|
|
if (AvgDev>1)AvgDev=1;
|
|
if (MaxDev>1)MaxDev=1;
|
|
}
|
|
|
|
//return the fitting plane of a polygonal face
|
|
template<class PolygonType>
|
|
vcg::Plane3<typename PolygonType::ScalarType> PolyFittingPlane(const PolygonType &F)
|
|
{
|
|
typedef typename PolygonType::FaceType FaceType;
|
|
typedef typename PolygonType::CoordType CoordType;
|
|
typedef typename PolygonType::ScalarType ScalarType;
|
|
vcg::Plane3<ScalarType> BestPL;
|
|
assert(F.VN()>=3);
|
|
std::vector<CoordType> pointVec;
|
|
for (int i=0;i<F.VN();i++)
|
|
pointVec.push_back(F.cP(i));
|
|
|
|
vcg::FitPlaneToPointSet(pointVec,BestPL);
|
|
return BestPL;
|
|
}
|
|
|
|
//return the flatness of a polygonal face as avg distance to the best fitting plane divided by half perimeter
|
|
template<class PolygonType>
|
|
typename PolygonType::ScalarType PolyFlatness(const PolygonType &F)
|
|
{
|
|
typedef typename PolygonType::FaceType FaceType;
|
|
typedef typename PolygonType::CoordType CoordType;
|
|
typedef typename PolygonType::ScalarType ScalarType;
|
|
|
|
if (F.VN()<=3)
|
|
return 0;
|
|
|
|
//average lenght
|
|
ScalarType SumL=PolyPerimeter(F)/2.0;
|
|
|
|
//diagonal distance
|
|
vcg::Plane3<ScalarType> BestPL=PolyFittingPlane(F);
|
|
|
|
//then project points on the plane
|
|
ScalarType Flatness=0;
|
|
for (int i=0;i<F.VN();i++)
|
|
{
|
|
CoordType pos=F.cP(i);
|
|
CoordType proj=BestPL.Projection(pos);
|
|
Flatness+=(pos-proj).Norm();
|
|
}
|
|
Flatness/=(ScalarType)F.VN();
|
|
return((Flatness)/SumL);
|
|
}
|
|
|
|
//evaluate the PCA directions of a polygonal face
|
|
template<class PolygonType>
|
|
void PolyPCA(const PolygonType &F,
|
|
typename PolygonType::CoordType PCA[])
|
|
{
|
|
typedef typename PolygonType::FaceType FaceType;
|
|
typedef typename PolygonType::CoordType CoordType;
|
|
typedef typename PolygonType::ScalarType ScalarType;
|
|
|
|
//compute the covariance matrix
|
|
Eigen::Matrix3d EigenCovMat;
|
|
//ComputeCovarianceMatrix(EigenCovMat);
|
|
//compute covariance matrix
|
|
///compute the barycenter
|
|
CoordType Barycenter=PolyBarycenter(F);
|
|
|
|
// second cycle: compute the covariance matrix
|
|
EigenCovMat.setZero();
|
|
Eigen::Vector3d p;
|
|
for (int i=0;i<F.VN();i++)
|
|
{
|
|
(F.cP(i)-Barycenter).ToEigenVector(p);
|
|
EigenCovMat+= p*p.transpose(); // outer product
|
|
}
|
|
|
|
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d > eig(EigenCovMat);
|
|
|
|
Eigen::Vector3d eval = eig.eigenvalues();
|
|
Eigen::Matrix3d evec = eig.eigenvectors();
|
|
|
|
eval = eval.cwiseAbs();
|
|
int normInd,maxInd,minInd;
|
|
|
|
///get min and max coff ..
|
|
///the minumum is the Normal
|
|
///the other two the anisotropy directions
|
|
eval.minCoeff(&normInd);
|
|
eval.maxCoeff(&maxInd);
|
|
minInd=(maxInd+1)%3;
|
|
|
|
if (minInd==normInd)minInd=(normInd+1)%3;
|
|
assert((minInd!=normInd)&&(minInd!=maxInd)&&(minInd!=maxInd));
|
|
|
|
///maximum direction of PCA
|
|
PCA[0][0] = evec(0,maxInd);
|
|
PCA[0][1] = evec(1,maxInd);
|
|
PCA[0][2] = evec(2,maxInd);
|
|
///minimum direction of PCA
|
|
PCA[1][0] = evec(0,minInd);
|
|
PCA[1][1] = evec(1,minInd);
|
|
PCA[1][2] = evec(2,minInd);
|
|
///Normal direction
|
|
PCA[2][0] = evec(0,normInd);
|
|
PCA[2][1] = evec(1,normInd);
|
|
PCA[2][2] = evec(2,normInd);
|
|
|
|
ScalarType LX=sqrt(eval[maxInd]);
|
|
ScalarType LY=sqrt(eval[minInd]);
|
|
//ScalarType LZ=sqrt(eval[normInd]);
|
|
|
|
///scale the directions
|
|
PCA[0]*=LX;
|
|
PCA[1]*=LY;
|
|
//PCA[2]*=LZ;//.Normalize();
|
|
PCA[2].Normalize();
|
|
}
|
|
|
|
//evaluate the PCA directions of a polygonal face
|
|
//scaled by the area of the face
|
|
template<class PolygonType>
|
|
void PolyScaledPCA(const PolygonType &F,
|
|
typename PolygonType::CoordType PCA[])
|
|
{
|
|
typedef typename PolygonType::FaceType FaceType;
|
|
typedef typename PolygonType::CoordType CoordType;
|
|
typedef typename PolygonType::ScalarType ScalarType;
|
|
|
|
std::vector<CoordType> SwapPos;
|
|
|
|
///compute the barycenter
|
|
//CoordType Barycenter=PolyBarycenter(F);
|
|
|
|
///compute the Area
|
|
ScalarType Area=PolyArea(F);
|
|
|
|
PolyPCA(F,PCA);
|
|
|
|
ScalarType Scale=sqrt(Area/(PCA[0].Norm()*PCA[1].Norm()));
|
|
PCA[0]*=Scale;
|
|
PCA[1]*=Scale;
|
|
|
|
}
|
|
|
|
//return the base template polygon as
|
|
//described by "Static Aware Grid Shells" by Pietroni et Al.
|
|
template<class CoordType>
|
|
void getBaseTemplatePolygon(int N,
|
|
std::vector<CoordType> &TemplatePos)
|
|
{
|
|
typedef typename CoordType::ScalarType ScalarType;
|
|
///first find positions in the
|
|
///reference frame of the passed matrix
|
|
ScalarType AngleInterval=2.0*M_PI/(ScalarType)N;
|
|
ScalarType CurrAngle=0;
|
|
TemplatePos.resize(N);
|
|
for (size_t i=0;i<TemplatePos.size();i++)
|
|
{
|
|
///find with trigonometric functions
|
|
TemplatePos[i].X()=cos(CurrAngle);
|
|
TemplatePos[i].Y()=sin(CurrAngle);
|
|
TemplatePos[i].Z()=0;
|
|
// TemplatePos[i].Normalize();
|
|
// TemplatePos[i].X()*=Anisotropy;
|
|
// TemplatePos[i].Y()*=(1-Anisotropy);
|
|
|
|
///increment the angle
|
|
CurrAngle+=AngleInterval;
|
|
}
|
|
}
|
|
|
|
//return the rigidly aligned template polygon as
|
|
//described by "Static Aware Grid Shells" by Pietroni et Al.
|
|
template<class PolygonType>
|
|
void GetPolyTemplatePos(const PolygonType &F,
|
|
std::vector<typename PolygonType::CoordType> &TemplatePos)
|
|
{
|
|
typedef typename PolygonType::FaceType FaceType;
|
|
typedef typename PolygonType::CoordType CoordType;
|
|
typedef typename PolygonType::ScalarType ScalarType;
|
|
std::vector<CoordType> UniformPos,UniformTempl;
|
|
|
|
CoordType Barycenter=PolyBarycenter(F);
|
|
|
|
getBaseTemplatePolygon(F.VN(),TemplatePos);
|
|
|
|
CoordType PCA[3];
|
|
PolyPCA(F,PCA);
|
|
|
|
vcg::Matrix44<ScalarType> ToPCA,ToPCAInv;
|
|
ToPCA.SetIdentity();
|
|
|
|
CoordType dirX=PCA[0];
|
|
CoordType dirY=PCA[1];
|
|
CoordType dirZ=PCA[2];
|
|
|
|
///set the Rotation matrix
|
|
ToPCA.SetColumn(0,dirX);
|
|
ToPCA.SetColumn(1,dirY);
|
|
ToPCA.SetColumn(2,dirZ);
|
|
ToPCAInv=ToPCA;
|
|
ToPCA=vcg::Inverse(ToPCA);
|
|
|
|
///then transform the polygon to PCA space
|
|
for (int i=0;i<F.VN();i++)
|
|
{
|
|
///translate
|
|
CoordType Pos=F.cP(i)-Barycenter;
|
|
///rotate
|
|
Pos=ToPCA*Pos;
|
|
//retranslate
|
|
UniformPos.push_back(Pos);
|
|
}
|
|
|
|
///calculate the Area
|
|
ScalarType AreaTemplate=Area(TemplatePos);
|
|
ScalarType AreaUniform=Area(UniformPos);
|
|
|
|
ScalarType Scale=sqrt(AreaTemplate/AreaUniform);
|
|
|
|
for (size_t i=0;i<UniformPos.size();i++)
|
|
UniformPos[i]*=Scale;
|
|
|
|
///check side
|
|
CoordType N0=Normal(UniformPos);
|
|
CoordType N1=Normal(TemplatePos);
|
|
if ((N0*N1)<0)std::reverse(TemplatePos.begin(),TemplatePos.end());
|
|
|
|
///initialize
|
|
std::vector<CoordType> FixPoints(UniformPos.begin(),UniformPos.end());
|
|
std::vector<CoordType> MovPoints(TemplatePos.begin(),TemplatePos.end());
|
|
|
|
///add displacement along Z
|
|
for (size_t i=0;i<FixPoints.size();i++)
|
|
{
|
|
FixPoints[i]+=CoordType(0,0,0.01);
|
|
MovPoints[i]+=CoordType(0,0,0.01);
|
|
}
|
|
///add original points
|
|
FixPoints.insert(FixPoints.end(),UniformPos.begin(),UniformPos.end());
|
|
MovPoints.insert(MovPoints.end(),TemplatePos.begin(),TemplatePos.end());
|
|
|
|
///then find the alignment
|
|
vcg::Matrix44<ScalarType> Rigid;
|
|
///compute rigid match
|
|
vcg::ComputeRigidMatchMatrix<ScalarType>(FixPoints,MovPoints,Rigid);
|
|
|
|
///then apply transformation
|
|
UniformTempl.resize(TemplatePos.size(),CoordType(0,0,0));
|
|
for (size_t i=0;i<TemplatePos.size();i++)
|
|
UniformTempl[i]=Rigid*TemplatePos[i];
|
|
|
|
///then map back to 3D space
|
|
for (size_t i=0;i<TemplatePos.size();i++)
|
|
{
|
|
TemplatePos[i]=UniformTempl[i];
|
|
TemplatePos[i]*=1/Scale;
|
|
TemplatePos[i]=ToPCAInv*TemplatePos[i];
|
|
}
|
|
|
|
// if (use_fixed_area)
|
|
// {
|
|
// ScalarType A0=Area(TemplatePos);
|
|
// ScalarType A1=FixedArea;
|
|
// //ScalarType Scale1=A1/A0;
|
|
// for (size_t i=0;i<TemplatePos.size();i++)
|
|
// TemplatePos[i]*=A1/A0;
|
|
// }
|
|
|
|
|
|
for (size_t i=0;i<TemplatePos.size();i++)
|
|
TemplatePos[i]+=Barycenter;
|
|
|
|
}
|
|
|
|
//compute the aspect ratio using the rigidly aligned template polygon as
|
|
//described by "Static Aware Grid Shells" by Pietroni et Al.
|
|
template<class PolygonType>
|
|
typename PolygonType::ScalarType PolyAspectRatio(const PolygonType &F)
|
|
{
|
|
typedef typename PolygonType::FaceType FaceType;
|
|
typedef typename PolygonType::CoordType CoordType;
|
|
typedef typename PolygonType::ScalarType ScalarType;
|
|
std::vector<CoordType> TemplatePos;
|
|
|
|
GetPolyTemplatePos(F,TemplatePos);
|
|
|
|
ScalarType diff=0;
|
|
assert((int)TemplatePos.size()==F.VN());
|
|
|
|
ScalarType AreaP=PolyArea(F);
|
|
for (size_t i=0;i<TemplatePos.size();i++)
|
|
diff+=pow((TemplatePos[i]-F.cP(i)).Norm(),2)/AreaP;
|
|
|
|
return(diff);
|
|
}
|
|
|
|
}
|
|
#endif // POLYGON_H
|