1462 lines
46 KiB
C++
1462 lines
46 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCGLIB_CLEAN
|
|
#define __VCGLIB_CLEAN
|
|
|
|
// Standard headers
|
|
#include <map>
|
|
#include <algorithm>
|
|
#include <stack>
|
|
|
|
// VCG headers
|
|
#include <vcg/simplex/face/pos.h>
|
|
#include <vcg/simplex/face/topology.h>
|
|
#include <vcg/complex/trimesh/base.h>
|
|
#include <vcg/complex/trimesh/closest.h>
|
|
#include <vcg/space/index/grid_static_ptr.h>
|
|
#include <vcg/space/index/spatial_hashing.h>
|
|
#include <vcg/complex/trimesh/allocate.h>
|
|
#include <vcg/complex/trimesh/update/selection.h>
|
|
#include <vcg/complex/trimesh/update/flag.h>
|
|
#include <vcg/complex/trimesh/update/normal.h>
|
|
#include <vcg/complex/trimesh/update/topology.h>
|
|
#include <vcg/space/triangle3.h>
|
|
|
|
|
|
namespace vcg {
|
|
namespace tri{
|
|
template <class ConnectedMeshType>
|
|
class ConnectedIterator
|
|
{
|
|
public:
|
|
typedef ConnectedMeshType MeshType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef typename MeshType::ConstFaceIterator ConstFaceIterator;
|
|
typedef typename MeshType::FaceContainer FaceContainer;
|
|
|
|
|
|
public:
|
|
void operator ++()
|
|
{
|
|
FacePointer fpt=sf.top();
|
|
sf.pop();
|
|
for(int j=0;j<3;++j)
|
|
if( !face::IsBorder(*fpt,j) )
|
|
{
|
|
FacePointer l=fpt->FFp(j);
|
|
if( !tri::IsMarked(*mp,l) )
|
|
{
|
|
tri::Mark(*mp,l);
|
|
sf.push(l);
|
|
}
|
|
}
|
|
}
|
|
|
|
void start(MeshType &m, FacePointer p)
|
|
{
|
|
mp=&m;
|
|
while(!sf.empty()) sf.pop();
|
|
UnMarkAll(m);
|
|
assert(p);
|
|
assert(!p->IsD());
|
|
tri::Mark(m,p);
|
|
sf.push(p);
|
|
}
|
|
bool completed() {
|
|
return sf.empty();
|
|
}
|
|
|
|
FacePointer operator *()
|
|
{
|
|
return sf.top();
|
|
}
|
|
private:
|
|
std::stack<FacePointer> sf;
|
|
MeshType *mp;
|
|
};
|
|
|
|
|
|
///
|
|
/** \addtogroup trimesh */
|
|
/*@{*/
|
|
/// Class of static functions to clean/correct/restore meshs.
|
|
template <class CleanMeshType>
|
|
class Clean
|
|
{
|
|
|
|
public:
|
|
typedef CleanMeshType MeshType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::ConstVertexIterator ConstVertexIterator;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef typename MeshType::ConstFaceIterator ConstFaceIterator;
|
|
typedef typename MeshType::FaceContainer FaceContainer;
|
|
typedef typename vcg::Box3<ScalarType> Box3Type;
|
|
|
|
typedef GridStaticPtr<FaceType, ScalarType > TriMeshGrid;
|
|
typedef Point3<ScalarType> Point3x;
|
|
|
|
//TriMeshGrid gM;
|
|
//FaceIterator fi;
|
|
//FaceIterator gi;
|
|
//vcg::face::Pos<FaceType> he;
|
|
//vcg::face::Pos<FaceType> hei;
|
|
|
|
/* classe di confronto per l'algoritmo di eliminazione vertici duplicati*/
|
|
class RemoveDuplicateVert_Compare{
|
|
public:
|
|
inline bool operator()(VertexPointer const &a, VertexPointer const &b)
|
|
{
|
|
return (*a).cP() < (*b).cP();
|
|
}
|
|
};
|
|
|
|
|
|
/** This function removes all duplicate vertices of the mesh by looking only at their spatial positions.
|
|
Note that it does not update any topology relation that could be affected by this like the VT or TT relation.
|
|
the reason this function is usually performed BEFORE building any topology information.
|
|
*/
|
|
static int RemoveDuplicateVertex( MeshType & m, bool RemoveDegenerateFlag=true) // V1.0
|
|
{
|
|
if(m.vert.size()==0 || m.vn==0) return 0;
|
|
|
|
std::map<VertexPointer, VertexPointer> mp;
|
|
size_t i,j;
|
|
VertexIterator vi;
|
|
int deleted=0;
|
|
int k=0;
|
|
size_t num_vert = m.vert.size();
|
|
std::vector<VertexPointer> perm(num_vert);
|
|
for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi, ++k)
|
|
perm[k] = &(*vi);
|
|
|
|
RemoveDuplicateVert_Compare c_obj;
|
|
|
|
std::sort(perm.begin(),perm.end(),c_obj);
|
|
|
|
j = 0;
|
|
i = j;
|
|
mp[perm[i]] = perm[j];
|
|
++i;
|
|
for(;i!=num_vert;)
|
|
{
|
|
if( (! (*perm[i]).IsD()) &&
|
|
(! (*perm[j]).IsD()) &&
|
|
(*perm[i]).P() == (*perm[j]).cP() )
|
|
{
|
|
VertexPointer t = perm[i];
|
|
mp[perm[i]] = perm[j];
|
|
++i;
|
|
Allocator<MeshType>::DeleteVertex(m,*t);
|
|
deleted++;
|
|
}
|
|
else
|
|
{
|
|
j = i;
|
|
++i;
|
|
}
|
|
}
|
|
FaceIterator fi;
|
|
for(fi = m.face.begin(); fi!=m.face.end(); ++fi)
|
|
if( !(*fi).IsD() )
|
|
for(k = 0; k < 3; ++k)
|
|
if( mp.find( (typename MeshType::VertexPointer)(*fi).V(k) ) != mp.end() )
|
|
{
|
|
(*fi).V(k) = &*mp[ (*fi).V(k) ];
|
|
}
|
|
|
|
if(RemoveDegenerateFlag) RemoveDegenerateFace(m);
|
|
return deleted;
|
|
}
|
|
|
|
class SortedTriple
|
|
{
|
|
public:
|
|
SortedTriple() {}
|
|
SortedTriple(unsigned int v0, unsigned int v1, unsigned int v2,FacePointer _fp)
|
|
{
|
|
v[0]=v0;v[1]=v1;v[2]=v2;
|
|
fp=_fp;
|
|
std::sort(v,v+3);
|
|
}
|
|
bool operator < (const SortedTriple &p) const
|
|
{
|
|
return (v[2]!=p.v[2])?(v[2]<p.v[2]):
|
|
(v[1]!=p.v[1])?(v[1]<p.v[1]):
|
|
(v[0]<p.v[0]); }
|
|
|
|
bool operator == (const SortedTriple &s) const
|
|
{
|
|
if( (v[0]==s.v[0]) && (v[1]==s.v[1]) && (v[2]==s.v[2]) ) return true;
|
|
return false;
|
|
}
|
|
|
|
unsigned int v[3];
|
|
FacePointer fp;
|
|
};
|
|
|
|
|
|
/** This function removes all duplicate faces of the mesh by looking only at their vertex reference.
|
|
So it should be called after unification of vertices.
|
|
Note that it does not update any topology relation that could be affected by this like the VT or TT relation.
|
|
the reason this function is usually performed BEFORE building any topology information.
|
|
*/
|
|
static int RemoveDuplicateFace( MeshType & m) // V1.0
|
|
{
|
|
FaceIterator fi;
|
|
std::vector<SortedTriple> fvec;
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
if(!(*fi).IsD())
|
|
{
|
|
fvec.push_back(SortedTriple( tri::Index(m,(*fi).V(0)),
|
|
tri::Index(m,(*fi).V(1)),
|
|
tri::Index(m,(*fi).V(2)),
|
|
&*fi));
|
|
}
|
|
assert (size_t(m.fn) == fvec.size());
|
|
//for(int i=0;i<fvec.size();++i) qDebug("fvec[%i] = (%i %i %i)(%i)",i,fvec[i].v[0],fvec[i].v[1],fvec[i].v[2],tri::Index(m,fvec[i].fp));
|
|
std::sort(fvec.begin(),fvec.end());
|
|
int total=0;
|
|
for(size_t i=0;i<fvec.size()-1;++i)
|
|
{
|
|
if(fvec[i]==fvec[i+1])
|
|
{
|
|
total++;
|
|
tri::Allocator<MeshType>::DeleteFace(m, *(fvec[i].fp) );
|
|
//qDebug("deleting face %i (pos in fvec %i)",tri::Index(m,fvec[i].fp) ,i);
|
|
}
|
|
}
|
|
return total;
|
|
}
|
|
/** This function removes that are not referenced by any face. The function updates the vn counter.
|
|
@param m The mesh
|
|
@return The number of removed vertices
|
|
*/
|
|
static int RemoveUnreferencedVertex( MeshType& m, bool DeleteVertexFlag=true) // V1.0
|
|
{
|
|
FaceIterator fi;
|
|
VertexIterator vi;
|
|
int referredBit = VertexType::NewBitFlag();
|
|
|
|
int j;
|
|
int deleted = 0;
|
|
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
(*vi).ClearUserBit(referredBit);
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
if( !(*fi).IsD() )
|
|
for(j=0;j<3;++j)
|
|
(*fi).V(j)->SetUserBit(referredBit);
|
|
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
if( (!(*vi).IsD()) && (!(*vi).IsUserBit(referredBit)))
|
|
{
|
|
if(DeleteVertexFlag) Allocator<MeshType>::DeleteVertex(m,*vi);
|
|
++deleted;
|
|
}
|
|
VertexType::DeleteBitFlag(referredBit);
|
|
return deleted;
|
|
}
|
|
|
|
/**
|
|
Degenerate vertices are vertices that have coords with invalid floating point values,
|
|
All the faces incident on deleted vertices are also deleted
|
|
*/
|
|
static int RemoveDegenerateVertex(MeshType& m)
|
|
{
|
|
VertexIterator vi;
|
|
int count_vd = 0;
|
|
|
|
for(vi=m.vert.begin(); vi!=m.vert.end();++vi)
|
|
if(math::IsNAN( (*vi).P()[0]) ||
|
|
math::IsNAN( (*vi).P()[1]) ||
|
|
math::IsNAN( (*vi).P()[2]) )
|
|
{
|
|
count_vd++;
|
|
Allocator<MeshType>::DeleteVertex(m,*vi);
|
|
}
|
|
|
|
FaceIterator fi;
|
|
int count_fd = 0;
|
|
|
|
for(fi=m.face.begin(); fi!=m.face.end();++fi)
|
|
if(!(*fi).IsD())
|
|
if( (*fi).V(0)->IsD() ||
|
|
(*fi).V(1)->IsD() ||
|
|
(*fi).V(2)->IsD() )
|
|
{
|
|
count_fd++;
|
|
Allocator<MeshType>::DeleteFace(m,*fi);
|
|
}
|
|
return count_vd;
|
|
}
|
|
|
|
/**
|
|
Degenerate faces are faces that are Topologically degenerate,
|
|
i.e. have two or more vertex reference that link the same vertex
|
|
(and not only two vertexes with the same coordinates).
|
|
All Degenerate faces are zero area faces BUT not all zero area faces are degenerate.
|
|
We do not take care of topology because when we have degenerate faces the
|
|
topology calculation functions crash.
|
|
*/
|
|
static int RemoveDegenerateFace(MeshType& m)
|
|
{
|
|
FaceIterator fi;
|
|
int count_fd = 0;
|
|
|
|
for(fi=m.face.begin(); fi!=m.face.end();++fi)
|
|
if(!(*fi).IsD())
|
|
{
|
|
if((*fi).V(0) == (*fi).V(1) ||
|
|
(*fi).V(0) == (*fi).V(2) ||
|
|
(*fi).V(1) == (*fi).V(2) )
|
|
{
|
|
count_fd++;
|
|
Allocator<MeshType>::DeleteFace(m,*fi);
|
|
}
|
|
}
|
|
return count_fd;
|
|
}
|
|
|
|
static int RemoveNonManifoldVertex(MeshType& m)
|
|
{
|
|
/*int count_vd = */
|
|
CountNonManifoldVertexFF(m,true);
|
|
/*int count_fd = */
|
|
tri::UpdateSelection<MeshType>::FaceFromVertexLoose(m);
|
|
int count_removed = 0;
|
|
FaceIterator fi;
|
|
for(fi=m.face.begin(); fi!=m.face.end();++fi)
|
|
if(!(*fi).IsD() && (*fi).IsS())
|
|
Allocator<MeshType>::DeleteFace(m,*fi);
|
|
VertexIterator vi;
|
|
for(vi=m.vert.begin(); vi!=m.vert.end();++vi)
|
|
if(!(*vi).IsD() && (*vi).IsS()) {
|
|
++count_removed;
|
|
Allocator<MeshType>::DeleteVertex(m,*vi);
|
|
}
|
|
return count_removed;
|
|
}
|
|
|
|
|
|
static int RemoveNonManifoldFace(MeshType& m)
|
|
{
|
|
FaceIterator fi;
|
|
int count_fd = 0;
|
|
std::vector<FacePointer> ToDelVec;
|
|
|
|
for(fi=m.face.begin(); fi!=m.face.end();++fi)
|
|
if (!fi->IsD())
|
|
{
|
|
if ((!IsManifold(*fi,0))||
|
|
(!IsManifold(*fi,1))||
|
|
(!IsManifold(*fi,2)))
|
|
ToDelVec.push_back(&*fi);
|
|
}
|
|
|
|
for(size_t i=0;i<ToDelVec.size();++i)
|
|
{
|
|
if(!ToDelVec[i]->IsD())
|
|
{
|
|
FaceType &ff= *ToDelVec[i];
|
|
if ((!IsManifold(ff,0))||
|
|
(!IsManifold(ff,1))||
|
|
(!IsManifold(ff,2)))
|
|
{
|
|
for(int j=0;j<3;++j)
|
|
if(!face::IsBorder<FaceType>(ff,j))
|
|
vcg::face::FFDetach<FaceType>(ff,j);
|
|
|
|
Allocator<MeshType>::DeleteFace(m,ff);
|
|
count_fd++;
|
|
}
|
|
}
|
|
}
|
|
return count_fd;
|
|
}
|
|
|
|
/*
|
|
The following functions remove faces that are geometrically "bad" according to edges and area criteria.
|
|
They remove the faces that are out of a given range of area or edges (e.g. faces too large or too small, or with edges too short or too long)
|
|
but that could be topologically correct.
|
|
These functions can optionally take into account only the selected faces.
|
|
*/
|
|
template<bool Selected>
|
|
static int RemoveFaceOutOfRangeAreaSel(MeshType& m, ScalarType MinAreaThr=0, ScalarType MaxAreaThr=(std::numeric_limits<ScalarType>::max)())
|
|
{
|
|
FaceIterator fi;
|
|
int count_fd = 0;
|
|
MinAreaThr*=2;
|
|
MaxAreaThr*=2;
|
|
for(fi=m.face.begin(); fi!=m.face.end();++fi)
|
|
if(!(*fi).IsD())
|
|
if(!Selected || (*fi).IsS())
|
|
{
|
|
const ScalarType doubleArea=DoubleArea<FaceType>(*fi);
|
|
if((doubleArea<=MinAreaThr) || (doubleArea>=MaxAreaThr) )
|
|
{
|
|
Allocator<MeshType>::DeleteFace(m,*fi);
|
|
count_fd++;
|
|
}
|
|
}
|
|
return count_fd;
|
|
}
|
|
|
|
// alias for the old style. Kept for backward compatibility
|
|
static int RemoveZeroAreaFace(MeshType& m) { return RemoveFaceOutOfRangeArea(m);}
|
|
|
|
// Aliases for the functions that do not look at selection
|
|
static int RemoveFaceOutOfRangeArea(MeshType& m, ScalarType MinAreaThr=0, ScalarType MaxAreaThr=(std::numeric_limits<ScalarType>::max)())
|
|
{
|
|
return RemoveFaceOutOfRangeAreaSel<false>(m,MinAreaThr,MaxAreaThr);
|
|
}
|
|
|
|
/**
|
|
* Is the mesh only composed by quadrilaterals?
|
|
*/
|
|
static bool IsBitQuadOnly(const MeshType &m)
|
|
{
|
|
typedef typename MeshType::FaceType F;
|
|
if (!m.HasPerFaceFlags()) return false;
|
|
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
|
|
unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2);
|
|
if ( tmp != F::FAUX0 && tmp != F::FAUX1 && tmp != F::FAUX2) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* Is the mesh only composed by triangles? (non polygonal faces)
|
|
*/
|
|
static bool IsBitTriOnly(const MeshType &m)
|
|
{
|
|
if (!m.HasPerFaceFlags()) return true;
|
|
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) {
|
|
if (
|
|
!fi->IsD() && fi->IsAnyF()
|
|
) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool IsBitPolygonal(const MeshType &m){
|
|
return !IsBitTriOnly(m);
|
|
}
|
|
|
|
/**
|
|
* Is the mesh only composed by quadrilaterals and triangles? (no pentas, etc)
|
|
*/
|
|
static bool IsBitTriQuadOnly(const MeshType &m)
|
|
{
|
|
typedef typename MeshType::FaceType F;
|
|
if (!m.HasPerFaceFlags()) return false;
|
|
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
|
|
unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2);
|
|
if ( tmp!=F::FAUX0 && tmp!=F::FAUX1 && tmp!=F::FAUX2 && tmp!=0 ) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* How many quadrilaterals?
|
|
*/
|
|
static int CountBitQuads(const MeshType &m)
|
|
{
|
|
if (!m.HasPerFaceFlags()) return 0;
|
|
typedef typename MeshType::FaceType F;
|
|
int count=0;
|
|
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
|
|
unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2);
|
|
if ( tmp==F::FAUX0 || tmp==F::FAUX1 || tmp==F::FAUX2) count++;
|
|
}
|
|
return count / 2;
|
|
}
|
|
|
|
/**
|
|
* How many triangles? (non polygonal faces)
|
|
*/
|
|
static int CountBitTris(const MeshType &m)
|
|
{
|
|
if (!m.HasPerFaceFlags()) return m.fn;
|
|
int count=0;
|
|
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
|
|
if (!(fi->IsAnyF())) count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* How many polygons of any kind? (including triangles)
|
|
*/
|
|
static int CountBitPolygons(const MeshType &m)
|
|
{
|
|
if (!m.HasPerFaceFlags()) return m.fn;
|
|
typedef typename MeshType::FaceType F;
|
|
int count = 0;
|
|
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
|
|
if (fi->IsF(0)) count++;
|
|
if (fi->IsF(1)) count++;
|
|
if (fi->IsF(2)) count++;
|
|
}
|
|
return m.fn - count/2;
|
|
}
|
|
|
|
/**
|
|
* The number of polygonal faces is
|
|
* FN - EN_f (each faux edge hides exactly one triangular face or in other words a polygon of n edges has n-3 faux edges.)
|
|
* In the general case where a The number of polygonal faces is
|
|
* FN - EN_f + VN_f
|
|
* where:
|
|
* EN_f is the number of faux edges.
|
|
* VN_f is the number of faux vertices (e.g vertices completely surrounded by faux edges)
|
|
* as a intuitive proof think to a internal vertex that is collapsed onto a border of a polygon:
|
|
* it deletes 2 faces, 1 faux edges and 1 vertex so to keep the balance you have to add back the removed vertex.
|
|
*/
|
|
static int CountBitLargePolygons(MeshType &m)
|
|
{
|
|
|
|
UpdateFlags<MeshType>::VertexSetV(m);
|
|
// First loop Clear all referenced vertices
|
|
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if (!fi->IsD())
|
|
for(int i=0;i<3;++i) fi->V(i)->ClearV();
|
|
|
|
|
|
// Second Loop, count (twice) faux edges and mark all vertices touched by non faux edges (e.g vertexes on the boundary of a polygon)
|
|
if (!m.HasPerFaceFlags()) return m.fn;
|
|
typedef typename MeshType::FaceType F;
|
|
int countE = 0;
|
|
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if (!fi->IsD()) {
|
|
for(int i=0;i<3;++i)
|
|
{
|
|
if (fi->IsF(i))
|
|
countE++;
|
|
else
|
|
{
|
|
fi->V0(i)->SetV();
|
|
fi->V1(i)->SetV();
|
|
}
|
|
}
|
|
}
|
|
// Third Loop, count the number of referenced vertexes that are completely surrounded by faux edges.
|
|
|
|
int countV = 0;
|
|
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if (!vi->IsD() && !vi->IsV()) countV++;
|
|
|
|
return m.fn - countE/2 + countV ;
|
|
}
|
|
|
|
|
|
/**
|
|
* Checks that the mesh has consistent per-face faux edges
|
|
* (the ones that merges triangles into larger polygons).
|
|
* A border edge should never be faux, and faux edges should always be
|
|
* reciprocated by another faux edges.
|
|
* It requires FF adjacency.
|
|
*/
|
|
static bool HasConsistentPerFaceFauxFlag(const MeshType &m)
|
|
{
|
|
assert(m.HasPerFaceFlags());
|
|
assert(m.HasFFTopology()); // todo: remove this constraint
|
|
|
|
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD())
|
|
for (int k=0; k<3; k++)
|
|
if( fi->IsF(k) != fi->cFFp(k)->IsF(fi->cFFi(k)) ) {
|
|
return false;
|
|
}
|
|
// non-reciprocal faux edge!
|
|
// (OR: border faux edge, which is likewise inconsistent)
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool HasConsistentEdges(const MeshType &m)
|
|
{
|
|
assert(m.HasPerFaceFlags());
|
|
|
|
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD())
|
|
for (int k=0; k<3; k++)
|
|
{
|
|
VertexType *v0=(*fi).V(0);
|
|
VertexType *v1=(*fi).V(1);
|
|
VertexType *v2=(*fi).V(2);
|
|
if ((v0==v1)||(v0==v2)||(v1==v2))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Count the number of non manifold edges in a mesh, e.g. the edges where there are more than 2 incident faces.
|
|
*
|
|
* Note that this test is not enough to say that a mesh is two manifold,
|
|
* you have to count also the non manifold vertexes.
|
|
*/
|
|
static int CountNonManifoldEdgeFF( MeshType & m, bool SelectFlag=false)
|
|
{
|
|
int nmfBit[3];
|
|
nmfBit[0]= FaceType::NewBitFlag();
|
|
nmfBit[1]= FaceType::NewBitFlag();
|
|
nmfBit[2]= FaceType::NewBitFlag();
|
|
|
|
|
|
UpdateFlags<MeshType>::FaceClear(m,nmfBit[0]+nmfBit[1]+nmfBit[2]);
|
|
|
|
if(SelectFlag){
|
|
UpdateSelection<MeshType>::ClearVertex(m);
|
|
UpdateSelection<MeshType>::ClearFace(m);
|
|
}
|
|
assert(tri::HasFFAdjacency(m));
|
|
|
|
int edgeCnt = 0;
|
|
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
{
|
|
if (!fi->IsD())
|
|
{
|
|
for(int i=0;i<3;++i)
|
|
if(!IsManifold(*fi,i))
|
|
{
|
|
if(!(*fi).IsUserBit(nmfBit[i]))
|
|
{
|
|
++edgeCnt;
|
|
if(SelectFlag)
|
|
{
|
|
(*fi).V0(i)->SetS();
|
|
(*fi).V1(i)->SetS();
|
|
}
|
|
// follow the ring of faces incident on edge i;
|
|
face::Pos<FaceType> nmf(&*fi,i);
|
|
do
|
|
{
|
|
if(SelectFlag) nmf.F()->SetS();
|
|
nmf.F()->SetUserBit(nmfBit[nmf.E()]);
|
|
nmf.NextF();
|
|
}
|
|
while(nmf.f != &*fi);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return edgeCnt;
|
|
}
|
|
|
|
/** Count (and eventually select) non 2-Manifold vertexes of a mesh
|
|
* e.g. the vertices with a non 2-manif. neighbourhood but that do not belong to not 2-manif edges.
|
|
* typical situation two cones connected by one vertex.
|
|
*/
|
|
static int CountNonManifoldVertexFF( MeshType & m, bool selectVert = true )
|
|
{
|
|
assert(tri::HasFFAdjacency(m));
|
|
UpdateSelection<MeshType>::ClearVertex(m);
|
|
|
|
int nonManifoldCnt=0;
|
|
SimpleTempData<typename MeshType::VertContainer, int > TD(m.vert,0);
|
|
|
|
// First Loop, just count how many faces are incident on a vertex and store it in the TemporaryData Counter.
|
|
FaceIterator fi;
|
|
for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
|
|
{
|
|
TD[(*fi).V(0)]++;
|
|
TD[(*fi).V(1)]++;
|
|
TD[(*fi).V(2)]++;
|
|
}
|
|
|
|
tri::UpdateFlags<MeshType>::VertexClearV(m);
|
|
// Second Loop.
|
|
// mark out of the game the vertexes that are incident on non manifold edges.
|
|
for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
|
|
{
|
|
for(int i=0;i<3;++i)
|
|
if (!IsManifold(*fi,i)) {
|
|
(*fi).V0(i)->SetV();
|
|
(*fi).V1(i)->SetV();
|
|
}
|
|
}
|
|
// Third Loop, for safe vertexes, check that the number of faces that you can reach starting
|
|
// from it and using FF is the same of the previously counted.
|
|
for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
|
|
{
|
|
for(int i=0;i<3;i++) if(!(*fi).V(i)->IsV()){
|
|
(*fi).V(i)->SetV();
|
|
face::Pos<FaceType> pos(&(*fi),i);
|
|
|
|
int starSizeFF = pos.NumberOfIncidentFaces();
|
|
|
|
if (starSizeFF != TD[(*fi).V(i)])
|
|
{
|
|
if(selectVert) (*fi).V(i)->SetS();
|
|
nonManifoldCnt++;
|
|
}
|
|
}
|
|
}
|
|
return nonManifoldCnt;
|
|
}
|
|
|
|
static void CountEdges( MeshType & m, int &count_e, int &boundary_e )
|
|
{
|
|
count_e=0;
|
|
boundary_e=0;
|
|
UpdateFlags<MeshType>::FaceClearV(m);
|
|
FaceIterator fi;
|
|
vcg::face::Pos<FaceType> he;
|
|
vcg::face::Pos<FaceType> hei;
|
|
bool counted =false;
|
|
for(fi=m.face.begin();fi!=m.face.end();fi++)
|
|
{
|
|
if(!((*fi).IsD()))
|
|
{
|
|
(*fi).SetV();
|
|
count_e +=3; //assume that we have to increase the number of edges with three
|
|
for(int j=0; j<3; j++)
|
|
{
|
|
if (face::IsBorder(*fi,j)) //If this edge is a border edge
|
|
boundary_e++; // then increase the number of boundary edges
|
|
else if (IsManifold(*fi,j))//If this edge is manifold
|
|
{
|
|
if((*fi).FFp(j)->IsV()) //If the face on the other side of the edge is already selected
|
|
count_e--; // we counted one edge twice
|
|
}
|
|
else//We have a non-manifold edge
|
|
{
|
|
hei.Set(&(*fi), j , fi->V(j));
|
|
he=hei;
|
|
he.NextF();
|
|
while (he.f!=hei.f)// so we have to iterate all faces that are connected to this edge
|
|
{
|
|
if (he.f->IsV())// if one of the other faces was already visited than this edge was counted already.
|
|
{
|
|
counted=true;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
he.NextF();
|
|
}
|
|
}
|
|
if (counted)
|
|
{
|
|
count_e--;
|
|
counted=false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int CountHoles( MeshType & m)
|
|
{
|
|
int numholev=0;
|
|
FaceIterator fi;
|
|
FaceIterator gi;
|
|
vcg::face::Pos<FaceType> he;
|
|
vcg::face::Pos<FaceType> hei;
|
|
|
|
std::vector< std::vector<Point3x> > holes; //indices of vertices
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
(*fi).ClearS();
|
|
gi=m.face.begin(); fi=gi;
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();fi++)//for all faces do
|
|
{
|
|
for(int j=0;j<3;j++)//for all edges
|
|
{
|
|
if(fi->V(j)->IsS()) continue;
|
|
|
|
if(face::IsBorder(*fi,j))//found an unvisited border edge
|
|
{
|
|
he.Set(&(*fi),j,fi->V(j)); //set the face-face iterator to the current face, edge and vertex
|
|
std::vector<Point3x> hole; //start of a new hole
|
|
hole.push_back(fi->P(j)); // including the first vertex
|
|
numholev++;
|
|
he.v->SetS(); //set the current vertex as selected
|
|
he.NextB(); //go to the next boundary edge
|
|
|
|
|
|
while(fi->V(j) != he.v)//will we do not encounter the first boundary edge.
|
|
{
|
|
Point3x newpoint = he.v->P(); //select its vertex.
|
|
if(he.v->IsS())//check if this vertex was selected already, because then we have an additional hole.
|
|
{
|
|
//cut and paste the additional hole.
|
|
std::vector<Point3x> hole2;
|
|
int index = static_cast<int>(find(hole.begin(),hole.end(),newpoint)
|
|
- hole.begin());
|
|
for(unsigned int i=index; i<hole.size(); i++)
|
|
hole2.push_back(hole[i]);
|
|
|
|
hole.resize(index);
|
|
if(hole2.size()!=0) //annoying in degenerate cases
|
|
holes.push_back(hole2);
|
|
}
|
|
hole.push_back(newpoint);
|
|
numholev++;
|
|
he.v->SetS(); //set the current vertex as selected
|
|
he.NextB(); //go to the next boundary edge
|
|
}
|
|
holes.push_back(hole);
|
|
}
|
|
}
|
|
}
|
|
return static_cast<int>(holes.size());
|
|
}
|
|
|
|
/*
|
|
Compute the set of connected components of a given mesh
|
|
it fills a vector of pair < int , faceptr > with, for each connecteed component its size and a represnant
|
|
*/
|
|
static int CountConnectedComponents(MeshType &m)
|
|
{
|
|
std::vector< std::pair<int,FacePointer> > CCV;
|
|
return ConnectedComponents(m,CCV);
|
|
}
|
|
|
|
static int ConnectedComponents(MeshType &m, std::vector< std::pair<int,FacePointer> > &CCV)
|
|
{
|
|
FaceIterator fi;
|
|
FacePointer l;
|
|
CCV.clear();
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
(*fi).ClearS();
|
|
|
|
int Compindex=0;
|
|
std::stack<FacePointer> sf;
|
|
FacePointer fpt=&*(m.face.begin());
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
if(!((*fi).IsD()) && !(*fi).IsS())
|
|
{
|
|
(*fi).SetS();
|
|
CCV.push_back(std::make_pair(0,&*fi));
|
|
sf.push(&*fi);
|
|
while (!sf.empty())
|
|
{
|
|
fpt=sf.top();
|
|
++CCV.back().first;
|
|
sf.pop();
|
|
for(int j=0;j<3;++j)
|
|
{
|
|
if( !face::IsBorder(*fpt,j) )
|
|
{
|
|
l=fpt->FFp(j);
|
|
if( !(*l).IsS() )
|
|
{
|
|
(*l).SetS();
|
|
sf.push(l);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Compindex++;
|
|
}
|
|
}
|
|
assert(int(CCV.size())==Compindex);
|
|
return Compindex;
|
|
}
|
|
|
|
|
|
/**
|
|
GENUS.
|
|
|
|
A topologically invariant property of a surface defined as
|
|
the largest number of non-intersecting simple closed curves that can be
|
|
drawn on the surface without separating it.
|
|
|
|
Roughly speaking, it is the number of holes in a surface.
|
|
The genus g of a closed surface, also called the geometric genus, is related to the
|
|
Euler characteristic by the relation $chi$ by $chi==2-2g$.
|
|
|
|
The genus of a connected, orientable surface is an integer representing the maximum
|
|
number of cuttings along closed simple curves without rendering the resultant
|
|
manifold disconnected. It is equal to the number of handles on it.
|
|
|
|
For general polyhedra the <em>Euler Formula</em> is:
|
|
|
|
V + F - E = 2 - 2G - B
|
|
|
|
where V is the number of vertices, F is the number of faces, E is the
|
|
number of edges, G is the genus and B is the number of <em>boundary polygons</em>.
|
|
|
|
The above formula is valid for a mesh with one single connected component.
|
|
By considering multiple connected components the formula becomes:
|
|
|
|
V + F - E = 2C - 2Gs - B
|
|
|
|
where C is the number of connected components and Gs is the sum of
|
|
the genus of all connected components.
|
|
|
|
*/
|
|
static int MeshGenus(MeshType &m, int numholes, int numcomponents, int count_e)
|
|
{
|
|
int V = m.vn;
|
|
int F = m.fn;
|
|
int E = count_e;
|
|
return -((V + F - E + numholes - 2 * numcomponents) / 2);
|
|
}
|
|
|
|
/**
|
|
* Check if the given mesh is regular, semi-regular or irregular.
|
|
*
|
|
* Each vertex of a \em regular mesh has valence 6 except for border vertices
|
|
* which have valence 4.
|
|
*
|
|
* A \em semi-regular mesh is derived from an irregular one applying
|
|
* 1-to-4 subdivision recursively. (not checked for now)
|
|
*
|
|
* All other meshes are \em irregular.
|
|
*/
|
|
static void IsRegularMesh(MeshType &m, bool &Regular, bool &Semiregular)
|
|
{
|
|
// This algorithm requires Vertex-Face topology
|
|
assert(m.HasVFTopology());
|
|
|
|
Regular = true;
|
|
|
|
VertexIterator vi;
|
|
|
|
// for each vertex the number of edges are count
|
|
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
{
|
|
if (!vi->IsD())
|
|
{
|
|
face::Pos<FaceType> he((*vi).VFp(), &*vi);
|
|
face::Pos<FaceType> ht = he;
|
|
|
|
int n=0;
|
|
bool border=false;
|
|
do
|
|
{
|
|
++n;
|
|
ht.NextE();
|
|
if (ht.IsBorder())
|
|
border=true;
|
|
}
|
|
while (ht != he);
|
|
|
|
if (border)
|
|
n = n/2;
|
|
|
|
if ((n != 6)&&(!border && n != 4))
|
|
{
|
|
Regular = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Regular)
|
|
Semiregular = false;
|
|
else
|
|
{
|
|
// For now we do not account for semi-regularity
|
|
Semiregular = false;
|
|
}
|
|
}
|
|
|
|
static void IsOrientedMesh(MeshType &m, bool &Oriented, bool &Orientable)
|
|
{
|
|
assert(&Oriented != &Orientable);
|
|
// This algorithms requires FF topology
|
|
assert(m.HasFFTopology());
|
|
|
|
Orientable = true;
|
|
Oriented = true;
|
|
|
|
// Ensure that each face is deselected
|
|
FaceIterator fi;
|
|
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
fi->ClearS();
|
|
|
|
// initialize stack
|
|
std::stack<FacePointer> faces;
|
|
|
|
// for each face of the mesh
|
|
FacePointer fp,fpaux;
|
|
int iaux;
|
|
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
{
|
|
if (!fi->IsD() && !fi->IsS())
|
|
{
|
|
// each face put in the stack is selected (and oriented)
|
|
fi->SetS();
|
|
faces.push(&(*fi));
|
|
|
|
// empty the stack
|
|
while (!faces.empty())
|
|
{
|
|
fp = faces.top();
|
|
faces.pop();
|
|
|
|
// make consistently oriented the adjacent faces
|
|
for (int j = 0; j < 3; j++)
|
|
{
|
|
// get one of the adjacent face
|
|
fpaux = fp->FFp(j);
|
|
iaux = fp->FFi(j);
|
|
|
|
if (!fpaux->IsD() && fpaux != fp && face::IsManifold<FaceType>(*fp, j))
|
|
{
|
|
if (!CheckOrientation(*fpaux, iaux))
|
|
{
|
|
Oriented = false;
|
|
|
|
if (!fpaux->IsS())
|
|
{
|
|
face::SwapEdge<FaceType,true>(*fpaux, iaux);
|
|
assert(CheckOrientation(*fpaux, iaux));
|
|
}
|
|
else
|
|
{
|
|
Orientable = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// put the oriented face into the stack
|
|
|
|
if (!fpaux->IsS())
|
|
{
|
|
fpaux->SetS();
|
|
faces.push(fpaux);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Orientable) break;
|
|
}
|
|
}
|
|
/// Flip the orientation of the whole mesh flipping all the faces (by swapping the first two vertices)
|
|
static void FlipMesh(MeshType &m, bool selected=false)
|
|
{
|
|
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD())
|
|
if(!selected || (*fi).IsS())
|
|
{
|
|
face::SwapEdge<FaceType,false>((*fi), 0);
|
|
if (HasPerWedgeTexCoord(m))
|
|
std::swap((*fi).WT(0),(*fi).WT(1));
|
|
}
|
|
}
|
|
// Search and remove small single triangle folds
|
|
// - a face has normal opposite to all other faces
|
|
// - choose the edge that brings to the face f1 containing the vertex opposite to that edge.
|
|
static int RemoveFaceFoldByFlip(MeshType &m, float normalThresholdDeg=175, bool repeat=true)
|
|
{
|
|
assert(m.HasFFTopology());
|
|
assert(m.HasPerVertexMark());
|
|
//Counters for logging and convergence
|
|
int count, total = 0;
|
|
|
|
do {
|
|
tri::UpdateTopology<MeshType>::FaceFace(m);
|
|
tri::UnMarkAll(m);
|
|
count = 0;
|
|
|
|
ScalarType NormalThrRad = math::ToRad(normalThresholdDeg);
|
|
ScalarType eps = 0.0001; // this epsilon value is in absolute value. It is a distance from edge in baricentric coords.
|
|
//detection stage
|
|
for(FaceIterator fi=m.face.begin();fi!= m.face.end();++fi ) if(!(*fi).IsV())
|
|
{ Point3<ScalarType> NN = vcg::NormalizedNormal((*fi));
|
|
if( vcg::Angle(NN,vcg::NormalizedNormal(*(*fi).FFp(0))) > NormalThrRad &&
|
|
vcg::Angle(NN,vcg::NormalizedNormal(*(*fi).FFp(1))) > NormalThrRad &&
|
|
vcg::Angle(NN,vcg::NormalizedNormal(*(*fi).FFp(2))) > NormalThrRad )
|
|
{
|
|
(*fi).SetS();
|
|
//(*fi).C()=Color4b(Color4b::Red);
|
|
// now search the best edge to flip
|
|
for(int i=0;i<3;i++)
|
|
{
|
|
Point3<ScalarType> &p=(*fi).P2(i);
|
|
Point3<ScalarType> L;
|
|
bool ret = vcg::InterpolationParameters((*(*fi).FFp(i)),vcg::Normal(*(*fi).FFp(i)),p,L);
|
|
if(ret && L[0]>eps && L[1]>eps && L[2]>eps)
|
|
{
|
|
(*fi).FFp(i)->SetS();
|
|
(*fi).FFp(i)->SetV();
|
|
//(*fi).FFp(i)->C()=Color4b(Color4b::Green);
|
|
if(face::CheckFlipEdge<FaceType>( *fi, i )) {
|
|
face::FlipEdge<FaceType>( *fi, i );
|
|
++count; ++total;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// tri::UpdateNormals<MeshType>::PerFace(m);
|
|
}
|
|
while( repeat && count );
|
|
return total;
|
|
}
|
|
|
|
|
|
static int RemoveTVertexByFlip(MeshType &m, float threshold=40, bool repeat=true)
|
|
{
|
|
assert(m.HasFFTopology());
|
|
assert(m.HasPerVertexMark());
|
|
//Counters for logging and convergence
|
|
int count, total = 0;
|
|
|
|
do {
|
|
tri::UpdateTopology<MeshType>::FaceFace(m);
|
|
tri::UnMarkAll(m);
|
|
count = 0;
|
|
|
|
//detection stage
|
|
for(unsigned int index = 0 ; index < m.face.size(); ++index )
|
|
{
|
|
FacePointer f = &(m.face[index]); float sides[3]; Point3<float> dummy;
|
|
sides[0] = Distance(f->P(0), f->P(1));
|
|
sides[1] = Distance(f->P(1), f->P(2));
|
|
sides[2] = Distance(f->P(2), f->P(0));
|
|
// Find largest triangle side
|
|
int i = std::find(sides, sides+3, std::max( std::max(sides[0],sides[1]), sides[2])) - (sides);
|
|
if( tri::IsMarked(m,f->V2(i) )) continue;
|
|
|
|
if( PSDist(f->P2(i),f->P(i),f->P1(i),dummy)*threshold <= sides[i] )
|
|
{
|
|
tri::Mark(m,f->V2(i));
|
|
if(face::CheckFlipEdge<FaceType>( *f, i )) {
|
|
// Check if EdgeFlipping improves quality
|
|
FacePointer g = f->FFp(i); int k = f->FFi(i);
|
|
Triangle3<float> t1(f->P(i), f->P1(i), f->P2(i)), t2(g->P(k), g->P1(k), g->P2(k)),
|
|
t3(f->P(i), g->P2(k), f->P2(i)), t4(g->P(k), f->P2(i), g->P2(k));
|
|
|
|
if ( std::min( t1.QualityFace(), t2.QualityFace() ) < std::min( t3.QualityFace(), t4.QualityFace() ))
|
|
{
|
|
face::FlipEdge<FaceType>( *f, i );
|
|
++count; ++total;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
// tri::UpdateNormals<MeshType>::PerFace(m);
|
|
}
|
|
while( repeat && count );
|
|
return total;
|
|
}
|
|
|
|
static int RemoveTVertexByCollapse(MeshType &m, float threshold=40, bool repeat=true)
|
|
{
|
|
assert(tri::HasPerVertexMark(m));
|
|
//Counters for logging and convergence
|
|
int count, total = 0;
|
|
|
|
do {
|
|
tri::UnMarkAll(m);
|
|
count = 0;
|
|
|
|
//detection stage
|
|
for(unsigned int index = 0 ; index < m.face.size(); ++index )
|
|
{
|
|
FacePointer f = &(m.face[index]); float sides[3]; Point3<float> dummy;
|
|
sides[0] = Distance(f->P(0), f->P(1)); sides[1] = Distance(f->P(1), f->P(2)); sides[2] = Distance(f->P(2), f->P(0));
|
|
int i = std::find(sides, sides+3, std::max( std::max(sides[0],sides[1]), sides[2])) - (sides);
|
|
if( tri::IsMarked(m,f->V2(i) )) continue;
|
|
|
|
if( PSDist(f->P2(i),f->P(i),f->P1(i),dummy)*threshold <= sides[i] )
|
|
{
|
|
tri::Mark(m,f->V2(i));
|
|
|
|
int j = Distance(dummy,f->P(i))<Distance(dummy,f->P1(i))?i:(i+1)%3;
|
|
f->P2(i) = f->P(j); tri::Mark(m,f->V(j));
|
|
++count; ++total;
|
|
}
|
|
}
|
|
|
|
|
|
tri::Clean<MeshType>::RemoveDuplicateVertex(m);
|
|
tri::Allocator<MeshType>::CompactFaceVector(m);
|
|
tri::Allocator<MeshType>::CompactVertexVector(m);
|
|
}
|
|
while( repeat && count );
|
|
|
|
return total;
|
|
}
|
|
|
|
static bool SelfIntersections(MeshType &m, std::vector<FaceType*> &ret)
|
|
{
|
|
assert(HasPerFaceMark(m));// Needed by the UG
|
|
Box3< ScalarType> bbox;
|
|
TriMeshGrid gM;
|
|
ret.clear();
|
|
FaceIterator fi;
|
|
int referredBit = FaceType::NewBitFlag();
|
|
tri::UpdateFlags<MeshType>::FaceClear(m,referredBit);
|
|
|
|
std::vector<FaceType*> inBox;
|
|
gM.Set(m.face.begin(),m.face.end());
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
|
|
{
|
|
(*fi).SetUserBit(referredBit);
|
|
(*fi).GetBBox(bbox);
|
|
vcg::tri::GetInBoxFace(m, gM, bbox,inBox);
|
|
bool Intersected=false;
|
|
typename std::vector<FaceType*>::iterator fib;
|
|
for(fib=inBox.begin();fib!=inBox.end();++fib)
|
|
{
|
|
if(!(*fib)->IsUserBit(referredBit) && (*fib != &*fi) )
|
|
if(TestIntersection(&*fi,*fib)){
|
|
ret.push_back(*fib);
|
|
if(!Intersected) {
|
|
ret.push_back(&*fi);
|
|
Intersected=true;
|
|
}
|
|
}
|
|
}
|
|
inBox.clear();
|
|
}
|
|
|
|
FaceType::DeleteBitFlag(referredBit);
|
|
return (ret.size()>0);
|
|
}
|
|
|
|
/**
|
|
This function simply test that the vn and fn counters be consistent with the size of the containers and the number of deleted simplexes.
|
|
*/
|
|
static bool IsSizeConsistent(MeshType &m)
|
|
{
|
|
int DeletedVertexNum=0;
|
|
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if((*vi).IsD()) DeletedVertexNum++;
|
|
|
|
int DeletedFaceNum=0;
|
|
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if((*fi).IsD()) DeletedFaceNum++;
|
|
|
|
if(size_t(m.vn+DeletedVertexNum) != m.vert.size()) return false;
|
|
if(size_t(m.fn+DeletedFaceNum) != m.face.size()) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
This function simply test that all the faces have a consistent face-face topology relation.
|
|
useful for checking that a topology modifying algorithm does not mess something.
|
|
*/
|
|
static bool IsFFAdjacencyConsistent(MeshType &m)
|
|
{
|
|
if(!HasFFAdjacency(m)) return false;
|
|
|
|
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD())
|
|
{
|
|
for(int i=0;i<3;++i)
|
|
if(!FFCorrectness(*fi, i)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
This function simply test that a mesh has some reasonable tex coord.
|
|
*/
|
|
static bool HasConsistentPerWedgeTexCoord(MeshType &m)
|
|
{
|
|
if(!HasPerWedgeTexCoord(m)) return false;
|
|
|
|
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD())
|
|
{ FaceType &f=(*fi);
|
|
if( ! ( (f.WT(0).N() == f.WT(1).N()) && (f.WT(0).N() == (*fi).WT(2).N()) ) )
|
|
return false; // all the vertices must have the same index.
|
|
|
|
if((*fi).WT(0).N() <0) return false; // no undefined texture should be allowed
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
Simple check that there are no face with all collapsed tex coords.
|
|
*/
|
|
static bool HasZeroTexCoordFace(MeshType &m)
|
|
{
|
|
if(!HasPerWedgeTexCoord(m)) return false;
|
|
|
|
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD())
|
|
{
|
|
if( (*fi).WT(0).P() == (*fi).WT(1).P() && (*fi).WT(0).P() == (*fi).WT(2).P() ) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
This function test if two face intersect.
|
|
We assume that the two faces are different.
|
|
if the faces share an edge no test is done.
|
|
if the faces share only a vertex, the opposite edge is tested against the face
|
|
*/
|
|
static bool TestIntersection(FaceType *f0,FaceType *f1)
|
|
{
|
|
assert(f0!=f1);
|
|
int sv = face::CountSharedVertex(f0,f1);
|
|
if(sv==0) return (vcg::IntersectionTriangleTriangle<FaceType>((*f0),(*f1)));
|
|
// if the faces share only a vertex, the opposite edge is tested against the face
|
|
if(sv==1)
|
|
{
|
|
int i0,i1; ScalarType a,b;
|
|
face::SharedVertex(f0,f1,i0,i1);
|
|
if(vcg::IntersectionSegmentTriangle(Segment3<ScalarType>((*f0).V1(i0)->P(),(*f0).V2(i0)->P()), *f1, a, b) ) return true;
|
|
if(vcg::IntersectionSegmentTriangle(Segment3<ScalarType>((*f1).V1(i1)->P(),(*f1).V2(i1)->P()), *f0, a, b) ) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
This function merge all the vertices that are closer than the given radius
|
|
*/
|
|
static int MergeCloseVertex(MeshType &m, const ScalarType radius)
|
|
{
|
|
int mergedCnt=0;
|
|
mergedCnt = ClusterVertex(m,radius);
|
|
RemoveDuplicateVertex(m,true);
|
|
return mergedCnt;
|
|
}
|
|
|
|
static int ClusterVertex(MeshType &m, const ScalarType radius)
|
|
{
|
|
typedef vcg::SpatialHashTable<VertexType, ScalarType> SampleSHT;
|
|
SampleSHT sht;
|
|
tri::VertTmark<MeshType> markerFunctor;
|
|
typedef vcg::vertex::PointDistanceFunctor<ScalarType> VDistFunct;
|
|
std::vector<VertexType*> closests;
|
|
int mergedCnt=0;
|
|
Point3f closestPt;
|
|
sht.Set(m.vert.begin(), m.vert.end());
|
|
UpdateFlags<MeshType>::VertexClearV(m);
|
|
for(VertexIterator viv = m.vert.begin(); viv!= m.vert.end(); ++viv)
|
|
if(!(*viv).IsD() && !(*viv).IsV())
|
|
{
|
|
(*viv).SetV();
|
|
Point3f p = viv->cP();
|
|
Box3f bb(p-Point3f(radius,radius,radius),p+Point3f(radius,radius,radius));
|
|
GridGetInBox(sht, markerFunctor, bb, closests);
|
|
// qDebug("Vertex %i has %i closest", &*viv - &*m.vert.begin(),closests.size());
|
|
for(size_t i=0; i<closests.size(); ++i)
|
|
{
|
|
float dist = Distance(p,closests[i]->cP());
|
|
if(dist < radius && !closests[i]->IsV())
|
|
{
|
|
printf("%f %f \n",dist,radius);
|
|
mergedCnt++;
|
|
closests[i]->SetV();
|
|
closests[i]->P()=p;
|
|
}
|
|
}
|
|
}
|
|
return mergedCnt;
|
|
}
|
|
|
|
|
|
static std::pair<int,int> RemoveSmallConnectedComponentsSize(MeshType &m, int maxCCSize)
|
|
{
|
|
std::vector< std::pair<int, typename MeshType::FacePointer> > CCV;
|
|
int TotalCC=ConnectedComponents(m, CCV);
|
|
int DeletedCC=0;
|
|
|
|
ConnectedIterator<MeshType> ci;
|
|
for(unsigned int i=0;i<CCV.size();++i)
|
|
{
|
|
std::vector<typename MeshType::FacePointer> FPV;
|
|
if(CCV[i].first<maxCCSize)
|
|
{
|
|
DeletedCC++;
|
|
for(ci.start(m,CCV[i].second);!ci.completed();++ci)
|
|
FPV.push_back(*ci);
|
|
|
|
typename std::vector<typename MeshType::FacePointer>::iterator fpvi;
|
|
for(fpvi=FPV.begin(); fpvi!=FPV.end(); ++fpvi)
|
|
Allocator<MeshType>::DeleteFace(m,(**fpvi));
|
|
}
|
|
}
|
|
return std::make_pair<int,int>(TotalCC,DeletedCC);
|
|
}
|
|
|
|
/// Remove the connected components smaller than a given diameter
|
|
// it returns a pair with the number of connected components and the number of deleted ones.
|
|
static std::pair<int,int> RemoveSmallConnectedComponentsDiameter(MeshType &m, ScalarType maxDiameter)
|
|
{
|
|
std::vector< std::pair<int, typename MeshType::FacePointer> > CCV;
|
|
int TotalCC=ConnectedComponents(m, CCV);
|
|
int DeletedCC=0;
|
|
tri::ConnectedIterator<MeshType> ci;
|
|
for(unsigned int i=0;i<CCV.size();++i)
|
|
{
|
|
Box3f bb;
|
|
std::vector<typename MeshType::FacePointer> FPV;
|
|
for(ci.start(m,CCV[i].second);!ci.completed();++ci)
|
|
{
|
|
FPV.push_back(*ci);
|
|
bb.Add((*ci)->P(0));
|
|
bb.Add((*ci)->P(1));
|
|
bb.Add((*ci)->P(2));
|
|
}
|
|
if(bb.Diag()<maxDiameter)
|
|
{
|
|
DeletedCC++;
|
|
typename std::vector<typename MeshType::FacePointer>::iterator fpvi;
|
|
for(fpvi=FPV.begin(); fpvi!=FPV.end(); ++fpvi)
|
|
tri::Allocator<MeshType>::DeleteFace(m,(**fpvi));
|
|
}
|
|
}
|
|
return std::make_pair<int,int>(TotalCC,DeletedCC);
|
|
}
|
|
|
|
}; // end class
|
|
/*@}*/
|
|
|
|
} //End Namespace Tri
|
|
} // End Namespace vcg
|
|
#endif
|