vcglib/wrap/io_tetramesh/import_msh.h

516 lines
16 KiB
C++

#ifndef __VCGLIB_IMPORTTETMSH_H
#define __VCGLIB_IMPORTTETMSH_H
#include <iostream>
namespace vcg {
namespace tetra {
namespace io {
template <class MeshType>
class MshInfo
{
typedef std::map<std::string, double *> FieldMap;
FieldMap nodeFields;
FieldMap elemFields;
template <typename Scalar, int Dimensions>
struct AttribTraits
{
typedef std::vector<Scalar> Type;
enum { Dimension = Dimensions };
};
template <typename Scalar>
struct AttribTraits<Scalar, 1>
{
typedef Scalar Type;
enum { Dimension = 1 };
};
template <typename AttrHandle, typename Scalar, int Dimension>
struct AttribHelper
{
static void assign(AttrHandle & handle, int index, const double * data)
{
for (int i=0; i<Dimension; ++i)
{
handle[index][i] = Scalar(data[Dimension * index + i]);
}
}
};
template <typename AttrHandle, typename Scalar>
struct AttribHelper<AttrHandle, Scalar, 1>
{
static void assign(AttrHandle & handle, int index, const double * data)
{
handle[index] = Scalar(data[index]);
}
};
template <bool PerNode, typename Scalar>
static void fillMeshAttributes(const std::string & attrib_name, int attrib_dim, MeshType & mesh, const double * data)
{
if (PerNode)
{
switch(attrib_dim)
{
case 1 : fillMeshWithAttributePerNode<Scalar, 1>(attrib_name, mesh, data); break;
case 2 : fillMeshWithAttributePerNode<Scalar, 2>(attrib_name, mesh, data); break;
case 3 : fillMeshWithAttributePerNode<Scalar, 3>(attrib_name, mesh, data); break;
case 4 : fillMeshWithAttributePerNode<Scalar, 4>(attrib_name, mesh, data); break;
case 5 : fillMeshWithAttributePerNode<Scalar, 5>(attrib_name, mesh, data); break;
case 6 : fillMeshWithAttributePerNode<Scalar, 6>(attrib_name, mesh, data); break;
case 7 : fillMeshWithAttributePerNode<Scalar, 7>(attrib_name, mesh, data); break;
case 8 : fillMeshWithAttributePerNode<Scalar, 8>(attrib_name, mesh, data); break;
case 9 : fillMeshWithAttributePerNode<Scalar, 9>(attrib_name, mesh, data); break;
default : throw std::string("Dimension of custom attribute vector unsupported");
}
}
else
{
switch(attrib_dim)
{
case 1 : fillMeshWithAttributePerElement<Scalar, 1>(attrib_name, mesh, data); break;
case 2 : fillMeshWithAttributePerElement<Scalar, 2>(attrib_name, mesh, data); break;
case 3 : fillMeshWithAttributePerElement<Scalar, 3>(attrib_name, mesh, data); break;
case 4 : fillMeshWithAttributePerElement<Scalar, 4>(attrib_name, mesh, data); break;
case 5 : fillMeshWithAttributePerElement<Scalar, 5>(attrib_name, mesh, data); break;
case 6 : fillMeshWithAttributePerElement<Scalar, 6>(attrib_name, mesh, data); break;
case 7 : fillMeshWithAttributePerElement<Scalar, 7>(attrib_name, mesh, data); break;
case 8 : fillMeshWithAttributePerElement<Scalar, 8>(attrib_name, mesh, data); break;
case 9 : fillMeshWithAttributePerElement<Scalar, 9>(attrib_name, mesh, data); break;
default : throw std::string("Dimension of custom attribute vector unsupported");
}
}
}
template <typename Scalar, int Dimension/* = 1*/>
static void fillMeshWithAttributePerNode(const std::string & attrib_name, MeshType & mesh, const double * data)
{
typedef typename AttribTraits<Scalar, Dimension>::Type AttrType;
typedef typename MeshType::template PerVertexAttributeHandle<AttrType> AttrHandle;
AttrHandle handle = vcg::tetra::Allocator<MeshType>::template GetPerVertexAttribute<AttrType>(mesh, attrib_name);
size_t num_nodes = size_t(mesh.VN());
for (int i=0; i<int(num_nodes); ++i)
AttribHelper<AttrHandle, Scalar, Dimension>::assign(handle, i, data);
}
template <typename Scalar, int Dimension/* = 1*/>
static void fillMeshWithAttributePerElement(const std::string & attrib_name, MeshType & mesh, const double * data)
{
typedef typename AttribTraits<Scalar, Dimension>::Type AttrType;
typedef typename MeshType::template PerFaceAttributeHandle<AttrType> AttrHandle;
AttrHandle handle = vcg::tetra::Allocator<MeshType>::template GetPerFaceAttribute<AttrType>(mesh, attrib_name);
size_t num_elements = size_t(mesh.TN());
for (int i=0; i<int(num_elements); ++i)
AttribHelper<AttrHandle, Scalar, Dimension>::assign(handle, i, data);
}
};
template <class MeshType>
class ImporterMSH
{
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::TetraType TetraType;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::TetraIterator TetraIterator;
enum ErrorCodes
{
INVALID_FORMAT = 1,
INVALID_VERSION,
NOT_IMPLEMENTED,
IO_ERROR
};
static inline void parseWhiteSpace(std::ifstream &fin)
{
//we don't want to consume non whitespace bytes, just peek it..
char next = fin.peek();
while (next == '\n' || next == ' ' || next == '\t' || next == '\r')
{
fin.get();
next = fin.peek();
}
}
static int parseNodes(MeshType &m, std::ifstream &fin, bool binary)
{
int numOfNodes;
fin >> numOfNodes;
if (numOfNodes < 0)
return INVALID_FORMAT;
VertexIterator vi = vcg::tri::Allocator<MeshType>::AddVertices(m, numOfNodes);
if (binary)
{
size_t lineBytes = (4 + 3 * 8); //int index + 3 * double coords
size_t bytes = numOfNodes * lineBytes;
char *data = new char[bytes];
parseWhiteSpace(fin);
fin.read(data, bytes);
for (int i = 0; i < numOfNodes; ++i)
{
int index = *reinterpret_cast<int *>(&data[i * lineBytes]) - 1;
if (index < 0)
return INVALID_FORMAT;
m.vert[index].P().X() = *reinterpret_cast<double *>(&data[i * lineBytes + 4]);
m.vert[index].P().Y() = *reinterpret_cast<double *>(&data[i * lineBytes + 4 + 8]);
m.vert[index].P().Z() = *reinterpret_cast<double *>(&data[i * lineBytes + 4 + 2 * 8]);
}
delete[] data;
}
else
{
for (int i = 0; i < numOfNodes; ++i)
{
int index;
fin >> index;
--index;
if (index < 0)
return INVALID_FORMAT;
fin >> m.vert[index].P().X();
fin >> m.vert[index].P().Y();
fin >> m.vert[index].P().Z();
}
}
return 0;
}
static int parseElements(MeshType &m, std::ifstream &fin, bool binary)
{
int numOfElements;
fin >> numOfElements;
if (numOfElements < 0)
return INVALID_FORMAT;
TetraIterator ti = vcg::tri::Allocator<MeshType>::AddTetras(m, numOfElements);
if (binary)
{
parseWhiteSpace(fin);
size_t parsedElems = 0;
while (parsedElems < numOfElements)
{
//MSH in binary format has a elem-header 3*4 bytes: {elems_type, numElems, tagsPerElem}
//followed by the list of elems under this header and eventually a new header and list.
int type, elements, tags;
fin.read((char *)&type, sizeof(int));
fin.read((char *)&elements, sizeof(int));
fin.read((char *)&tags, sizeof(int));
//check for tetra type
if (type != 4)
return NOT_IMPLEMENTED;
//read tags and throw them
for (size_t j = 0; j < tags; ++j)
{
int tag;
fin.read((char *)&tag, sizeof(int));
}
//foreach element
for (int i = 0; i < elements; ++i)
{
int index;
fin.read((char *)&index, sizeof(int));
--index;
//check index validity
if (index < 0)
return INVALID_FORMAT;
//read element nodes
TetraType * t = &m.tetra[index];
for (int i = 0; i < 4; ++i)
{
int nodeIndex;
fin.read((char *)&nodeIndex, sizeof(int));
--nodeIndex;
if (nodeIndex < 0 || nodeIndex >= m.VN())
return INVALID_FORMAT;
t->V(i) = &m.vert[nodeIndex];
}
++parsedElems;
}
}
}
else
{
for (int i = 0; i < numOfElements; ++i)
{
int index, type, tags;
fin >> index >> type >> tags;
--index;
//check for tetra type
if (type != 4)
return NOT_IMPLEMENTED;
//check index validity
if (index < 0)
return INVALID_FORMAT;
//read tags and throw them
for (size_t j = 0; j < tags; ++j)
{
int tag;
fin >> tag;
}
TetraType *t = &m.tetra[index];
for (int i = 0; i < 4; ++i)
{
int nodeIndex;
fin >> nodeIndex;
--nodeIndex;
if (nodeIndex < 0 || nodeIndex > m.VN())
return INVALID_FORMAT;
t->V(i) = &m.vert[nodeIndex];
}
}
}
return 0;
}
static int parseDataField(MeshType &m, std::ifstream &fin, bool binary)
{
int numString, numReal, numInteger;
fin >> numString;
std::string *strTags = new std::string[numString];
for (int i = 0; i < numString; ++i)
{
parseWhiteSpace(fin);
fin >> strTags[i];
}
fin >> numReal;
double *doubleTags = new double[numReal];
for (int i = 0; i < numReal; ++i)
fin >> doubleTags[i];
fin >> numInteger;
if (numString <= 0 || numInteger < 3)
return INVALID_FORMAT;
int *integerTags = new int[numInteger];
for (int i = 0; i < numInteger; ++i)
fin >> integerTags[i];
std::string fieldName = strTags[0];
int fieldComponents = integerTags[1];
int fieldSize = integerTags[2];
double *fieldVec = new double[fieldComponents * fieldSize];
delete[] strTags;
delete[] doubleTags;
delete[] integerTags;
if (binary)
{
size_t totalBytes = (4 + 8 * fieldComponents) * fieldSize;
char *data = new char[totalBytes];
parseWhiteSpace(fin);
fin.read(data, totalBytes);
for (int i = 0; i < fieldSize; ++i)
{
int index = *reinterpret_cast<int *>(&data[i * (4 + fieldComponents * 8)]);
--index;
if (index < 0)
return INVALID_FORMAT;
//values
int baseIndex = i * (4 + fieldComponents * 8) + 4;
for (int j = 0; j < fieldComponents; ++j)
fieldVec[index * fieldComponents + j] = *reinterpret_cast<float *>(&data[baseIndex + j * 8]);
}
}
else
{
for (int i = 0; i < fieldSize; ++i)
{
int index;
fin >> index;
--index;
if (index < 0)
return INVALID_FORMAT;
for (int j = 0; j < fieldComponents; ++j)
fin >> fieldVec[index * fieldComponents + j];
}
}
}
static int parseNodeData(MeshType &m, MshInfo<MeshType> & info, std::ifstream &fin, bool binary)
{
return parseDataField(m, fin, binary);
}
static int parseElementData(MeshType &m, MshInfo<MeshType> & info, std::ifstream &fin, bool binary)
{
return parseDataField(m, fin, binary);
}
static int parseUnsupportedTag(std::ifstream &fin, std::string &tag)
{
std::cerr << "found unsupported tag" << std::endl;
std::string tagName = tag.substr(1, tag.size() - 1);
std::string tagEnd = tag.substr(0, 1) + "End" + tagName;
std::string buf;
while (buf != tagEnd && !fin.eof())
fin >> buf;
return 0;
}
static int parseMshMesh(MeshType &m, std::string &filename, MshInfo<MeshType> & info)
{
std::ifstream fin(filename.c_str(), std::ios::in | std::ios::binary);
if (!fin.is_open())
return IO_ERROR;
std::string lookAhead;
fin >> lookAhead;
if (lookAhead != "$MeshFormat")
return INVALID_FORMAT;
double version;
int type, dataSize;
fin >> version >> type >> dataSize;
if (version != 2.2)
return INVALID_VERSION;
bool binary = (type == 1);
if (dataSize != 8)
return INVALID_FORMAT;
// Read endiannes info in binary header...it's a 1 used to detect endiannes.
if (binary)
{
int one;
parseWhiteSpace(fin);
fin.read(reinterpret_cast<char *>(&one), sizeof(int));
if (one != 1)
{
std::cerr << "Warning: binary msh file " << filename
<< " is saved with different endianness than this machine."
<< std::endl;
throw NOT_IMPLEMENTED;
}
}
lookAhead.clear();
fin >> lookAhead;
if (lookAhead != "$EndMeshFormat")
return INVALID_FORMAT;
while (!fin.eof())
{
lookAhead.clear();
fin >> lookAhead;
if (lookAhead == "$Nodes")
{
int res = parseNodes(m, fin, binary);
if (res != 0)
return res;
fin >> lookAhead;
if (lookAhead != "$EndNodes")
return INVALID_FORMAT;
}
else if (lookAhead == "$Elements")
{
int res = parseElements(m, fin, binary);
if (res != 0)
return res;
fin >> lookAhead;
if (lookAhead != "$EndElements")
return INVALID_FORMAT;
}
else if (lookAhead == "$NodeData")
{
parseNodeData(m, info, fin, binary);
fin >> lookAhead;
if (lookAhead != "$EndNodeData")
return INVALID_FORMAT;
}
else if (lookAhead == "$ElementData")
{
parseElementData(m, info, fin, binary);
fin >> lookAhead;
if (lookAhead != "$EndElementData")
return INVALID_FORMAT;
}
else if (fin.eof())
{
break;
}
else
{
parseUnsupportedTag(fin, lookAhead);
}
}
fin.close();
return 0;
}
public:
static int Open(MeshType &m, const char *filename, CallBackPos *cb = 0)
{
MshInfo<MeshType> info;
return Open(m, filename, info, cb);
}
static int Open(MeshType &m, const char *filename, MshInfo<MeshType> & info, CallBackPos *cb = 0)
{
std::string name(filename);
return parseMshMesh(m, name, info);
}
};
} // namespace io
} // namespace tetra
} // namespace vcg
#endif