724 lines
22 KiB
C++
724 lines
22 KiB
C++
/****************************************************************************
|
||
* VCGLib o o *
|
||
* Visual and Computer Graphics Library o o *
|
||
* _ O _ *
|
||
* Copyright(C) 2004 \/)\/ *
|
||
* Visual Computing Lab /\/| *
|
||
* ISTI - Italian National Research Council | *
|
||
* \ *
|
||
* All rights reserved. *
|
||
* *
|
||
* This program is free software; you can redistribute it and/or modify *
|
||
* it under the terms of the GNU General Public License as published by *
|
||
* the Free Software Foundation; either version 2 of the License, or *
|
||
* (at your option) any later version. *
|
||
* *
|
||
* This program is distributed in the hope that it will be useful, *
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||
* for more details. *
|
||
* *
|
||
****************************************************************************/
|
||
|
||
|
||
#ifndef VCG_SPACE_INDEX_OCTREETEMPLATE_H
|
||
#define VCG_SPACE_INDEX_OCTREETEMPLATE_H
|
||
|
||
#include <vcg/space/point3.h>
|
||
#include <vcg/space/box3.h>
|
||
#include <vector>
|
||
|
||
|
||
namespace vcg
|
||
{
|
||
|
||
/* Octree Template
|
||
|
||
Tiene un dataset volumetrico come un octree
|
||
Assunzione che la grandezza sia una potenza di due
|
||
La prof max e' fissa.
|
||
E' un octree in cui il dato e' nella cella dell'octree.
|
||
Anche i nodi non foglia hanno il dato Voxel
|
||
|
||
Assunzioni sul tipo voxel:
|
||
che abbia definiti gli operatori per poterci fare sopra pushpull.
|
||
|
||
Si tiene int invece di puntatori per garantirsi reallocazione dinamica.
|
||
I dati veri e propri stanno in un vettore di nodi
|
||
*/
|
||
|
||
template <typename VOXEL_TYPE, class SCALAR_TYPE>
|
||
class OctreeTemplate
|
||
{
|
||
protected:
|
||
struct Node;
|
||
|
||
public:
|
||
// Octree Type Definitions
|
||
typedef unsigned long long ZOrderType;
|
||
typedef SCALAR_TYPE ScalarType;
|
||
typedef VOXEL_TYPE VoxelType;
|
||
typedef VoxelType * VoxelPointer;
|
||
typedef vcg::Point3i CenterType;
|
||
static const ScalarType EXPANSION_FACTOR;
|
||
typedef Node NodeType;
|
||
typedef int NodeIndex;
|
||
typedef NodeType * NodePointer;
|
||
typedef vcg::Box3<ScalarType> BoundingBoxType;
|
||
typedef vcg::Point3<ScalarType> CoordinateType;
|
||
|
||
protected:
|
||
/*
|
||
* Inner structures:
|
||
* Contains the information related to the octree node
|
||
*/
|
||
struct Node
|
||
{
|
||
// Default constructor: fill the data members with non-meaningful values
|
||
Node()
|
||
{
|
||
parent = NULL;
|
||
level = -1;
|
||
}
|
||
|
||
// Constructor: create a new Node
|
||
Node(NodePointer parent, int level)
|
||
{
|
||
this->parent = parent;
|
||
this->level = (char) level;
|
||
}
|
||
|
||
inline virtual NodePointer &Son(int sonIndex) = 0;
|
||
|
||
inline virtual bool IsLeaf() = 0;
|
||
|
||
// The position of the center of the node in integer coords in the 0..2^(2*sz) -1 range
|
||
// The root has position (lsz/2,lsz/2,lsz/2)
|
||
CenterType center;
|
||
char level;
|
||
NodePointer parent;
|
||
VoxelType voxel;
|
||
};
|
||
|
||
/*
|
||
* Inner struct: Node
|
||
*/
|
||
struct InnerNode : public Node
|
||
{
|
||
InnerNode() : Node() {};
|
||
InnerNode(NodePointer parent, int level) : Node(parent, level)
|
||
{
|
||
memset(&sons[0], 0, 8*sizeof(Node*));
|
||
}
|
||
|
||
inline NodePointer &Son(int sonIndex)
|
||
{
|
||
assert(0<=sonIndex && sonIndex<=8);
|
||
return sons[sonIndex];
|
||
}
|
||
|
||
inline bool IsLeaf()
|
||
{
|
||
return false;
|
||
}
|
||
|
||
NodePointer sons[8];
|
||
};
|
||
|
||
/*
|
||
* Inner struct: Leaf
|
||
*/
|
||
struct Leaf : public Node
|
||
{
|
||
Leaf() : Node() {};
|
||
Leaf(NodePointer parent, int level) : Node(parent, level) {}
|
||
|
||
inline NodePointer &Son(int /*sonIndex*/)
|
||
{
|
||
assert(false);
|
||
NodePointer p = NULL;
|
||
return p;
|
||
}
|
||
|
||
inline bool IsLeaf()
|
||
{
|
||
return true;
|
||
}
|
||
};
|
||
|
||
public:
|
||
// Inizializza l'octree
|
||
void Initialize(int maximumDepth)
|
||
{
|
||
this->maximumDepth = maximumDepth;
|
||
size = 1<< maximumDepth; // e.g. 1*2^maxDepth
|
||
lSize = 1<<(maximumDepth+1); // e.g. 1*2^(maxDepth+1)
|
||
|
||
InnerNode *root = new InnerNode(NULL,0);
|
||
nodes.clear();
|
||
nodes.push_back( root );
|
||
root->center = CenterType(size, size, size);
|
||
|
||
ScalarType szf = (ScalarType) size;
|
||
leafDimension = boundingBox.Dim();
|
||
leafDimension /= szf;
|
||
leafDiagonal = leafDimension.Norm();
|
||
};
|
||
|
||
// Return the octree bounding-box
|
||
inline BoundingBoxType BoundingBox() { return boundingBox; }
|
||
|
||
// Return the Voxel of the n-th node
|
||
inline VoxelPointer Voxel(const NodePointer n) { return &(n->voxel); }
|
||
|
||
// Return the octree node count
|
||
inline int NodeCount() const { return int(nodes.size()); }
|
||
|
||
// Return the root index
|
||
inline const NodePointer Root() const { return nodes[0]; }
|
||
|
||
// Return the level of the n-th node
|
||
inline char Level(const NodePointer n) const { return n->level; }
|
||
|
||
// Return the referente to the i-th son of the n-th node
|
||
inline NodePointer& Son(NodePointer n, int i) const { return n->Son(i); }
|
||
|
||
// Return the parent index of the n-th node
|
||
inline NodePointer Parent(const NodePointer n) const { return n->parent; }
|
||
|
||
// Return the index of the current node in its father
|
||
int WhatSon(NodePointer n) const
|
||
{
|
||
if(n==Root())
|
||
assert(false);
|
||
|
||
NodePointer parent = Parent(n);
|
||
for(int i=0;i<8;++i)
|
||
if(parent->Son(i)==n)
|
||
return i;
|
||
|
||
return -1;
|
||
}
|
||
|
||
// Return the center of the n-th node
|
||
inline CenterType CenterInOctreeCoordinates(const NodePointer n) const { return n->center;}
|
||
|
||
/*!
|
||
* Return the center of the n-th node expressed in world-coordinate
|
||
* \param NodePointer the pointer to the node whose center in world coordinate has to be computed
|
||
*/
|
||
inline void CenterInWorldCoordinates(const NodePointer n, CoordinateType &wc_Center) const
|
||
{
|
||
assert(0<=n && n<NodeCount());
|
||
|
||
int shift = maximumDepth - Level(n) + 1;
|
||
CoordinateType ocCenter = CenterInOctreeCoordinates(n);
|
||
CoordinateType nodeSize = boundingBox.Dim()/float(1<<Level(n));
|
||
wc_Center.X() = boundingBox.min.X() + (nodeSize.X()*(0.5f+(ocCenter.X()>>shift)));
|
||
wc_Center.Y() = boundingBox.min.Y() + (nodeSize.Y()*(0.5f+(ocCenter.Y()>>shift)));
|
||
wc_Center.Z() = boundingBox.min.Z() + (nodeSize.Z()*(0.5f+(ocCenter.Z()>>shift)));
|
||
};
|
||
|
||
// Given a node (even not leaf) it returns the center of the box it represent.
|
||
// the center is expressed not in world-coordinates.
|
||
// e.g. the root is (sz/2,sz/2,sz/2);
|
||
// and the finest element in the grid in lower left corner has center (.5, .5, .5)
|
||
/*
|
||
|
||
4---------------- 4---------------- 4----------------
|
||
| | | | | | | | | |
|
||
3---+---+---+---| 3 | | 3 |
|
||
| | | | | | | | | |
|
||
2---+---+---+---| 2---+---+---+---| 2 c |
|
||
| | | | | | | | | |
|
||
1---+---+---+---| 1 b + | 1 |
|
||
| a | | | | | | | | |
|
||
0---1---2---3---4 0---1---2---3---4 0---1---2---3---4
|
||
|
||
This is a tree with maxdepth==2, so sz is 2^2=4
|
||
|
||
a) a leaf at the deepest level 2 has position (.5,.5)
|
||
b) a mid node (lev 1) has position (1,1)
|
||
c) root has level 0 and position (sz/2,sz/2) = (2,2)
|
||
|
||
The center of a node has integer coords in the 2^(MaxDepth+1) range.
|
||
|
||
The other approach is to use position as a bit string
|
||
codifying the tree path, but in this case you have to
|
||
supply also the level (e.g. the string lenght)
|
||
you desire. The lower left corner node is always 0 ( (,) for the root (0,0) level 1, and (00,00) for level 2)
|
||
|
||
| ~~~ |
|
||
| 0~~ | 1~~ |
|
||
| 00~ | 01~ | 10~ | 11~ |
|
||
|000|001|010|011|100|101|110|111|
|
||
|
||
The interesting properties is that
|
||
if your octree represent a space [minv,maxv] and you want
|
||
to find the octree cell containing a point p in [minv,maxv]
|
||
you just have to convert p in the range [0,sz) truncate it to an integer and use it as a path.
|
||
For example, consider an octree of depth 3, representing a range [0..100)
|
||
sz=8 (each cell contains form 0 to 12.5
|
||
the point
|
||
5 -> 0.4 -> path is 000
|
||
45 -> 3.6 -> path is 011
|
||
50 -> 4.0 -> path is 100
|
||
100 -> 8 -> ERROR the interval is right open!!!
|
||
|
||
Note how each cell is meant to contains a right open interval (e.g. the first cell contains [0,12.5) and the second [12.5,25) and so on)
|
||
|
||
The center of each cell can simply be obtained by adding .5 to the path of the leaves.
|
||
*/
|
||
CoordinateType Center(NodePointer n) const
|
||
{
|
||
CoordinateType center;
|
||
center.Import(GetPath(n));
|
||
center+=Point3f(.5f,.5f,.5f);
|
||
|
||
//TODO verify the assert
|
||
assert(center==nodes[n]->center);
|
||
|
||
return center;
|
||
}
|
||
|
||
// Return the bounding-box of the n-th node expressed in world-coordinate
|
||
BoundingBoxType BoundingBoxInWorldCoordinates(const NodePointer n)
|
||
{
|
||
char level = Level(n);
|
||
int shift = maximumDepth-level+1;
|
||
CoordinateType nodeDim = boundingBox.Dim()/float(1<<level);
|
||
CenterType center = CenterInOctreeCoordinates(n);
|
||
BoundingBoxType nodeBB;
|
||
nodeBB.min.X() = boundingBox.min.X() + (nodeDim.X()*(center.X()>>shift));
|
||
nodeBB.min.Y() = boundingBox.min.Y() + (nodeDim.Y()*(center.Y()>>shift));
|
||
nodeBB.min.Z() = boundingBox.min.Z() + (nodeDim.Z()*(center.Z()>>shift));
|
||
nodeBB.max = nodeBB.min+nodeDim;
|
||
return nodeBB;
|
||
};
|
||
|
||
/*!
|
||
* Return the bounding-box of a node expressed in world-coordinate
|
||
* \param NodePointer the node whose bounding-box has to be computed
|
||
* \param wc_BB the bounding-box of the node in world coordinta
|
||
*/
|
||
inline void BoundingBoxInWorldCoordinates(const NodePointer n, BoundingBoxType &wc_bb) const
|
||
{
|
||
char level = Level(n);
|
||
int shift = maximumDepth - level + 1;
|
||
CoordinateType node_dimension = boundingBox.Dim()/ScalarType(1<<level);
|
||
wc_bb.min.X() = boundingBox.min.X()+(node_dimension.X()*(n->center.X()>>shift));
|
||
wc_bb.min.Y() = boundingBox.min.Y()+(node_dimension.Y()*(n->center.Y()>>shift));
|
||
wc_bb.min.Z() = boundingBox.min.Z()+(node_dimension.Z()*(n->center.Z()>>shift));
|
||
wc_bb.max = wc_bb.min+node_dimension;
|
||
};
|
||
|
||
// Return one of the 8 subb box of a given box.
|
||
BoundingBoxType SubBox(BoundingBoxType &lbb, int i)
|
||
{
|
||
BoundingBoxType bs;
|
||
if (i&1) bs.min.X()=(lbb.min.X()+(bs.max.X()=lbb.max.X()))/2.0f;
|
||
else bs.max.X()=((bs.min.X()=lbb.min.X())+lbb.max.X())/2.0f;
|
||
if (i&2) bs.min.Y()=(lbb.min.Y()+(bs.max.Y()=lbb.max.Y()))/2.0f;
|
||
else bs.max.Y()=((bs.min.Y()=lbb.min.Y())+lbb.max.Y())/2.0f;
|
||
if (i&4) bs.min.Z()=(lbb.min.Z()+(bs.max.Z()=lbb.max.Z()))/2.0f;
|
||
else bs.max.Z()=((bs.min.Z()=lbb.min.Z())+lbb.max.Z())/2.0f;
|
||
|
||
return bs;
|
||
}
|
||
|
||
// Given the bounding-box and the center (both in world-coordinates)
|
||
// of a node, return the bounding-box (in world-coordinats) of the i-th son
|
||
BoundingBoxType SubBoxAndCenterInWorldCoordinates(BoundingBoxType &lbb, CoordinateType ¢er, int i)
|
||
{
|
||
BoundingBoxType bs;
|
||
if (i&1)
|
||
{
|
||
bs.min[0]=center[0];
|
||
bs.max[0]=lbb.max[0];
|
||
}
|
||
else
|
||
{
|
||
bs.min[0]=lbb.min[0];
|
||
bs.max[0]=center[0];
|
||
}
|
||
if (i&2)
|
||
{
|
||
bs.min[1]=center[1];
|
||
bs.max[1]=lbb.max[1];
|
||
}
|
||
else
|
||
{
|
||
bs.max[1]=center[1];
|
||
bs.min[1]=lbb.min[1];
|
||
}
|
||
if (i&4)
|
||
{
|
||
bs.min[2]=center[2];
|
||
bs.max[2]=lbb.max[2];
|
||
}
|
||
else
|
||
{
|
||
bs.max[2]=center[2];
|
||
bs.min[2]=lbb.min[2];
|
||
}
|
||
return bs;
|
||
};
|
||
|
||
/*
|
||
* Add a new Node to the octree.
|
||
* The created node is the i-th son of the node pointed to by parent.
|
||
* Return the pointer to the new node
|
||
*/
|
||
NodePointer NewNode(NodePointer parent, int i)
|
||
{
|
||
assert(0<=i && i<8);
|
||
assert(Son(parent, i)==NULL);
|
||
|
||
//int index = NodeCount();
|
||
char level = Level(parent)+1;
|
||
|
||
Node *node = (level<maximumDepth)? (Node*) new InnerNode(parent, level) : (Node*) new Leaf(parent, level);
|
||
nodes.push_back( node );
|
||
Son(parent, i) = node;
|
||
|
||
CenterType *parentCenter = &(parent->center);
|
||
int displacement = 1<<(maximumDepth-level);
|
||
node->center.X() = parentCenter->X() + ((i&1)? displacement : -displacement);
|
||
node->center.Y() = parentCenter->Y() + ((i&2)? displacement : -displacement);
|
||
node->center.Z() = parentCenter->Z() + ((i&4)? displacement : -displacement);
|
||
|
||
return node;
|
||
}
|
||
|
||
// Aggiunge un nodo all'octree nella posizione specificata e al livello specificato.
|
||
// Vengono inoltre inseriti tutti gli antenati mancanti per andare dalla radice
|
||
// al nodo ed al livello specificato seguendo path.
|
||
NodePointer AddNode(CenterType path)
|
||
{
|
||
//the input coordinates must be in the range 0..2^maxdepth
|
||
assert(path[0]>=0 && path[0]<size);
|
||
assert(path[1]>=0 && path[1]<size);
|
||
assert(path[2]>=0 && path[2]<size);
|
||
|
||
NodePointer curNode = Root();
|
||
int rootLevel = 0;
|
||
int shiftLevel = maximumDepth-1;
|
||
|
||
while(shiftLevel >= rootLevel)
|
||
{
|
||
int nextSon=0;
|
||
if((path[0]>>shiftLevel)%2) nextSon +=1;
|
||
if((path[1]>>shiftLevel)%2) nextSon +=2;
|
||
if((path[2]>>shiftLevel)%2) nextSon +=4;
|
||
NodePointer nextNode = Son(curNode, nextSon);
|
||
if(nextNode!=NULL) // nessun nodo pu<70> aver Root() per figlio
|
||
curNode = nextNode;
|
||
else
|
||
{
|
||
NodePointer newNode = NewNode(curNode, nextSon);
|
||
assert(Son(curNode, nextSon)==newNode); // TODO delete an assignment
|
||
curNode=newNode;
|
||
}
|
||
--shiftLevel;
|
||
}
|
||
return curNode;
|
||
}
|
||
|
||
/*!
|
||
* Given a query point, compute the z_order of the leaf where this point would be contained.
|
||
* This leaf not necessarily must be exist!
|
||
*/
|
||
// Convert the point p coordinates to the integer based representation
|
||
// in the range 0..size, where size is 2^maxdepth
|
||
CenterType Interize(const CoordinateType &pf) const
|
||
{
|
||
CenterType pi;
|
||
|
||
assert(pf.X()>=boundingBox.min.X() && pf.X()<=boundingBox.max.X());
|
||
assert(pf.Y()>=boundingBox.min.Y() && pf.Y()<=boundingBox.max.Y());
|
||
assert(pf.Z()>=boundingBox.min.Z() && pf.Z()<=boundingBox.max.Z());
|
||
|
||
pi.X() = int((pf.X() - boundingBox.min.X()) * size / (boundingBox.max.X() - boundingBox.min.X()));
|
||
pi.Y() = int((pf.Y() - boundingBox.min.Y()) * size / (boundingBox.max.Y() - boundingBox.min.Y()));
|
||
pi.Z() = int((pf.Z() - boundingBox.min.Z()) * size / (boundingBox.max.Z() - boundingBox.min.Z()));
|
||
|
||
return pi;
|
||
}
|
||
|
||
// Inverse function of Interize;
|
||
// Return to the original coords space (not to the original values!!)
|
||
CoordinateType DeInterize(const CenterType &pi ) const
|
||
{
|
||
CoordinateType pf;
|
||
|
||
assert(pi.X()>=0 && pi.X()<size);
|
||
assert(pi.Y()>=0 && pi.Y()<size);
|
||
assert(pi.Z()>=0 && pi.Z()<size);
|
||
|
||
pf.X() = pi.X() * (boundingBox.max.X() - boundingBox.min.X()) / size + boundingBox.min.X();
|
||
pf.Y() = pi.Y() * (boundingBox.max.Y() - boundingBox.min.Y()) / size + boundingBox.min.Y();
|
||
pf.Z() = pi.Z() * (boundingBox.max.Z() - boundingBox.min.Z()) / size + boundingBox.min.Z();
|
||
|
||
return pf;
|
||
}
|
||
|
||
// Compute the z-ordering integer value for a given node;
|
||
// this value can be used to compute a complete ordering of the nodes of a given level of the octree.
|
||
// It assumes that the octree has a max depth of 10.
|
||
ZOrderType ZOrder(NodePointer n) const { return ZOrder(GetPath(n), Level(n)); }
|
||
ZOrderType ComputeZOrder(const CoordinateType &query) const { return ZOrder(CenterType::Construct(Interize(query)), maximumDepth); };
|
||
|
||
inline ZOrderType ZOrder(const CenterType &path, const char level) const
|
||
{
|
||
ZOrderType finalPosition = 0;
|
||
ZOrderType currentPosition;
|
||
|
||
for(int i=0; i<level; ++i)
|
||
{
|
||
currentPosition = 0;
|
||
int mask=1<<i;
|
||
if(path[0]&mask) currentPosition|=1;
|
||
if(path[1]&mask) currentPosition|=2;
|
||
if(path[2]&mask) currentPosition|=4;
|
||
currentPosition = currentPosition<<(i*3);
|
||
finalPosition |= currentPosition;
|
||
}
|
||
return finalPosition;
|
||
};
|
||
|
||
// Funzione principale di accesso secondo un path;
|
||
// restituisce l'indice del voxel di profondita' massima
|
||
// che contiene il punto espresso in range 0..2^maxk
|
||
NodePointer DeepestNode(CenterType path, int MaxLev)
|
||
{
|
||
assert(path[0]>=0 && path[0]<size);
|
||
assert(path[1]>=0 && path[1]<size);
|
||
assert(path[2]>=0 && path[2]<size);
|
||
|
||
NodePointer curNode = Root();
|
||
int shift = maximumDepth-1;
|
||
|
||
while(shift && Level(curNode) < MaxLev)
|
||
{
|
||
int son = 0;
|
||
if((path[0]>>shift)%2) son +=1;
|
||
if((path[1]>>shift)%2) son +=2;
|
||
if((path[2]>>shift)%2) son +=4;
|
||
NodePointer nextNode = Son(curNode, son);
|
||
if(nextNode!=NULL)
|
||
curNode=nextNode;
|
||
else
|
||
break;
|
||
|
||
--shift;
|
||
}
|
||
return curNode;
|
||
}
|
||
|
||
|
||
// Return the 'path' from root to the specified node;
|
||
// the path is coded as a point3s; each bit of each component code the direction in one level
|
||
// only the last 'level' bits of the returned value are meaningful
|
||
// for example for the root no bit are meaningfull (path is 0)
|
||
// for the first level only one bit of each one of the three components are maninguful;
|
||
CenterType GetPath(NodePointer n) const
|
||
{
|
||
if(n==Root())
|
||
return CenterType(0,0,0);
|
||
|
||
CenterType path(0,0,0);
|
||
|
||
int shift, mask, son;
|
||
int startingLevel = int(Level(n));
|
||
while (n!=Root())
|
||
{
|
||
shift = startingLevel-Level(n); //nodes[n].level
|
||
mask = 1 << shift; // e.g. 1*2^shift
|
||
son = WhatSon(n);
|
||
if(son&1) path[0] |= mask;
|
||
if(son&2) path[1] |= mask;
|
||
if(son&4) path[2] |= mask;
|
||
n = Parent(n); // nodes[n].parent
|
||
}
|
||
return path;
|
||
}
|
||
|
||
// Dato un punto 3D nello spazio restituisce un array contenente
|
||
// i puntatori ai nodi che lo contengono, dalla radice fino alle foglie.
|
||
// I nodi mancanti dalla radice fino a profondit<69> maxDepth vengono aggiunti.
|
||
// In posizione i ci sar<61> il nodo di livello i.
|
||
// Restituisce lo z-order del punto p
|
||
ZOrderType BuildRoute(const CoordinateType &p, NodePointer *&route)
|
||
{
|
||
assert( boundingBox.min.X()<=p.X() && p.X()<=boundingBox.max.X() );
|
||
assert( boundingBox.min.Y()<=p.Y() && p.Y()<=boundingBox.max.Y() );
|
||
assert( boundingBox.min.Z()<=p.Z() && p.Z()<=boundingBox.max.Z() );
|
||
|
||
route[0] = Root();
|
||
NodePointer curNode = Root();
|
||
int shift = maximumDepth-1;
|
||
CenterType path = CenterType::Construct(Interize(p));
|
||
while(shift >= 0)
|
||
{
|
||
int son = 0;
|
||
if((path[0]>>shift)%2) son +=1;
|
||
if((path[1]>>shift)%2) son +=2;
|
||
if((path[2]>>shift)%2) son +=4;
|
||
NodePointer nextNode = Son(curNode, son);
|
||
|
||
if(nextNode!=NULL)
|
||
{
|
||
route[maximumDepth-shift] = nextNode;
|
||
curNode = nextNode;
|
||
}
|
||
else
|
||
{
|
||
NodePointer newNode = NewNode(curNode, son);
|
||
route[maximumDepth-shift] = newNode;
|
||
curNode = newNode;
|
||
}
|
||
--shift;
|
||
}
|
||
return ZOrder(route[maximumDepth]);
|
||
}; //end of BuildRoute
|
||
|
||
|
||
// Restituisce il percorso dalla radice fino al nodo di profondit<69>
|
||
// massima presente nell'octree contenente il nodo p. Nessun nuovo nodo <20> aggiunto
|
||
// all'octree. In route sono inseriti gli indici dei nodi contenti p, dalla radice
|
||
// fino al nodo di profontid<69> massima presente; nelle eventuali posizioni rimaste
|
||
// libere <20> inserito il valore -1. Restituisce true se il punto p cade in una foglia
|
||
// dell'otree, false altrimenti
|
||
bool GetRoute(const CoordinateType &p, NodePointer *&route)
|
||
{
|
||
assert( boundingBox.min.X()<=p.X() && p.X()<=boundingBox.max.X() );
|
||
assert( boundingBox.min.Y()<=p.Y() && p.Y()<=boundingBox.max.Y() );
|
||
assert( boundingBox.min.Z()<=p.Z() && p.Z()<=boundingBox.max.Z() );
|
||
|
||
memset(route, NULL, maximumDepth*sizeof(NodePointer));
|
||
|
||
CenterType path = CenterType::Construct(Interize(p));
|
||
int shift = maximumDepth-1;
|
||
NodePointer finalLevel = Root();
|
||
NodePointer curNode = Root();
|
||
|
||
while(shift >= finalLevel)
|
||
{
|
||
int son=0;
|
||
if((path[0]>>shift)%2) son +=1;
|
||
if((path[1]>>shift)%2) son +=2;
|
||
if((path[2]>>shift)%2) son +=4;
|
||
NodePointer nextNode = Son(curNode, son);
|
||
if(nextNode!=NULL)
|
||
{
|
||
route[maximumDepth-shift] = nextNode;
|
||
curNode = nextNode;
|
||
}
|
||
else
|
||
return false;
|
||
|
||
--shift;
|
||
}
|
||
return true;
|
||
}; //end of GetReoute
|
||
|
||
// Data una bounding-box bb_query, calcola l'insieme dei nodi di
|
||
// profondit<69> depth il cui bounding-box ha intersezione non nulla con
|
||
// bb (la bounding-box dell'octree); i puntatori a tali nodi sono
|
||
// inseriti progressivamente in contained_nodes.
|
||
// The vector nodes must be cleared before calling this method.
|
||
void ContainedNodes
|
||
(
|
||
BoundingBoxType &query,
|
||
std::vector< NodePointer > &nodes,
|
||
int depth,
|
||
NodePointer n,
|
||
BoundingBoxType &nodeBB)
|
||
{
|
||
if (!query.Collide(nodeBB))
|
||
return;
|
||
|
||
if (Level(n)==depth)
|
||
nodes.push_back(n);
|
||
else
|
||
{
|
||
NodePointer son;
|
||
BoundingBoxType sonBB;
|
||
CoordinateType nodeCenter = nodeBB.Center();
|
||
for (int s=0; s<8; s++)
|
||
{
|
||
son = Son(n, s);
|
||
if (son!=NULL)
|
||
{
|
||
sonBB = SubBoxAndCenterInWorldCoordinates(nodeBB, nodeCenter, s);
|
||
ContainedNodes(query, nodes, depth, son, sonBB);
|
||
}
|
||
}
|
||
}
|
||
}; //end of ContainedNodes
|
||
|
||
|
||
// Data una bounding-box bb, calcola l'insieme delle foglie il cui
|
||
// bounding-box ha intersezione non nulla con bb; i loro indici
|
||
// sono inseriti all'interno di leaves.
|
||
void ContainedLeaves(
|
||
BoundingBoxType &query,
|
||
std::vector< NodePointer > &leaves,
|
||
NodePointer node,
|
||
BoundingBoxType &nodeBB
|
||
)
|
||
{
|
||
NodePointer son;
|
||
BoundingBoxType sonBB;
|
||
CoordinateType nodeCenter = nodeBB.Center();
|
||
for (int s=0; s<8; s++)
|
||
{
|
||
son = Son(node, s); //nodes[nodeIndex].sonIndex[s]
|
||
if (son!=NULL)
|
||
{
|
||
sonBB = SubBoxAndCenterInWorldCoordinates(nodeBB, nodeCenter, s);
|
||
if ( query.Collide(sonBB) )
|
||
{
|
||
if ( son->IsLeaf() )
|
||
leaves.push_back(son);
|
||
else
|
||
ContainedLeaves(query, leaves, son, sonBB);
|
||
}
|
||
}
|
||
}
|
||
}; //end of ContainedLeaves
|
||
|
||
|
||
/*
|
||
* Octree Data Members
|
||
*/
|
||
public:
|
||
// the size of the finest grid available (2^maxDepth)
|
||
int size;
|
||
|
||
// double the size(2^maxDepth)
|
||
int lSize;
|
||
|
||
// The allowed maximum depth
|
||
int maximumDepth;
|
||
|
||
// The dimension of a leaf
|
||
CoordinateType leafDimension;
|
||
|
||
// The diagonal of a leaf
|
||
ScalarType leafDiagonal;
|
||
|
||
// The Octree nodes
|
||
std::vector< Node* > nodes;
|
||
|
||
// The bounding box containing the octree (in world coordinate)
|
||
BoundingBoxType boundingBox;
|
||
}; //end of class OctreeTemplate
|
||
|
||
template <typename VOXEL_TYPE, class SCALAR_TYPE>
|
||
const SCALAR_TYPE OctreeTemplate<VOXEL_TYPE, SCALAR_TYPE>::EXPANSION_FACTOR = SCALAR_TYPE(0.035);
|
||
}
|
||
|
||
#endif //VCG_SPACE_INDEX_OCTREETEMPLATE_H
|