544 lines
12 KiB
C++
544 lines
12 KiB
C++
#ifndef __VCGLIB_SPATIAL_ITERATORS
|
|
#define __VCGLIB_SPATIAL_ITERATORS
|
|
|
|
#include <vector>
|
|
//#include <vcg/space/intersection3.h>
|
|
#include <vcg/space/point3.h>
|
|
#include <vcg/space/box3.h>
|
|
//#include <vcg/space/point4.h>
|
|
#include <vcg/space/ray3.h>
|
|
#include <vcg/math/base.h>
|
|
#include <algorithm>
|
|
#include <float.h>
|
|
|
|
|
|
namespace vcg{
|
|
template <class Spatial_Idexing,class INTFUNCTOR,class TMARKER>
|
|
class RayIterator
|
|
{
|
|
protected:
|
|
typedef typename Spatial_Idexing::ObjType ObjType;
|
|
typedef typename Spatial_Idexing::ScalarType ScalarType;
|
|
typedef typename vcg::Point3<ScalarType> CoordType;
|
|
typedef typename vcg::Ray3<ScalarType> RayType;
|
|
typedef typename Spatial_Idexing::CellIterator CellIterator;
|
|
|
|
///control right bonding current cell index (only on initialization)
|
|
void _ControlLimits()
|
|
{
|
|
for (int i=0;i<3;i++)
|
|
{
|
|
vcg::Point3i dim=Si.siz;
|
|
if (CurrentCell.V(i)<0)
|
|
CurrentCell.V(i) = 0;
|
|
else
|
|
if (CurrentCell.V(i)>=dim.V(i))
|
|
CurrentCell.V(i)=dim.V(i)-1;
|
|
}
|
|
}
|
|
|
|
///find initial line parameters
|
|
void _FindLinePar()
|
|
{
|
|
/* Punti goal */
|
|
|
|
///da verificare se vanno oltre ai limiti
|
|
vcg::Point3i ip;
|
|
Si.PToIP(start,ip);
|
|
Si.IPToP(ip,goal);
|
|
for (int i=0;i<3;i++)
|
|
if(r.Direction().V(i)>0.0)
|
|
goal.V(i)+=Si.voxel.V(i);
|
|
|
|
ScalarType gx=goal.X();
|
|
ScalarType gy=goal.Y();
|
|
ScalarType gz=goal.Z();
|
|
|
|
dist=(r.Origin()-goal).Norm();
|
|
|
|
const float MAXFLOAT = FLT_MAX;
|
|
const float EPSILON = 1e-50f;
|
|
|
|
/* Parametri della linea */
|
|
ScalarType tx,ty,tz;
|
|
|
|
if( fabs(r.Direction().X())>EPSILON )
|
|
tx = (gx-r.Origin().X())/r.Direction().X();
|
|
else
|
|
tx =MAXFLOAT;
|
|
|
|
if( fabs(r.Direction().Y())>EPSILON )
|
|
ty = (gy-r.Origin().Y())/r.Direction().Y();
|
|
else
|
|
ty =MAXFLOAT;
|
|
|
|
if( fabs(r.Direction().Z())>EPSILON )
|
|
tz = (gz-r.Origin().Z())/r.Direction().Z();
|
|
else
|
|
tz =MAXFLOAT;
|
|
|
|
t=CoordType(tx,ty,tz);
|
|
}
|
|
|
|
bool _controlEnd()
|
|
{
|
|
return (((CurrentCell.X()<0)||(CurrentCell.Y()<0)||(CurrentCell.Z()<0))||
|
|
((CurrentCell.X()>=Si.siz.X())||(CurrentCell.Y()>=Si.siz.Y())||(CurrentCell.Z()>=Si.siz.Z())));
|
|
}
|
|
|
|
void _NextCell()
|
|
{
|
|
assert(!end);
|
|
if( t.X()<t.Y() && t.X()<t.Z() )
|
|
{
|
|
if(r.Direction().X()<0.0)
|
|
{goal.X() -= Si.voxel.X(); --CurrentCell.X();}
|
|
else
|
|
{goal.X() += Si.voxel.X(); ++CurrentCell.X();}
|
|
t.X() = (goal.X()-r.Origin().X())/r.Direction().X();
|
|
}
|
|
else if( t.Y()<t.Z() ){
|
|
if(r.Direction().Y()<0.0)
|
|
{goal.Y() -= Si.voxel.Y(); --CurrentCell.Y();}
|
|
else
|
|
{goal.Y() += Si.voxel.Y(); ++CurrentCell.Y();}
|
|
t.Y() = (goal.Y()-r.Origin().Y())/r.Direction().Y();
|
|
} else {
|
|
if(r.Direction().Z()<0.0)
|
|
{ goal.Z() -= Si.voxel.Z(); --CurrentCell.Z();}
|
|
else
|
|
{ goal.Z() += Si.voxel.Z(); ++CurrentCell.Z();}
|
|
t.Z() = (goal.Z()-r.Origin().Z())/r.Direction().Z();
|
|
}
|
|
|
|
dist=(r.Origin()-goal).Norm();
|
|
end=_controlEnd();
|
|
}
|
|
|
|
public:
|
|
|
|
|
|
///contructor
|
|
RayIterator(Spatial_Idexing &_Si,INTFUNCTOR _int_funct):Si(_Si),int_funct(_int_funct){
|
|
};
|
|
|
|
void SetMarker(TMARKER _tm)
|
|
{
|
|
tm=_tm;
|
|
}
|
|
|
|
void Init(const RayType _r)
|
|
{
|
|
r=_r;
|
|
end=false;
|
|
tm.UnMarkAll();
|
|
Elems.clear();
|
|
//CoordType ip;
|
|
//control if intersect the bounding box of the mesh
|
|
if(vcg::Intersection_Ray_Box<ScalarType>(Si.bbox,r,start))
|
|
{
|
|
Si.PToIP(start,CurrentCell);
|
|
_ControlLimits();
|
|
_FindLinePar();
|
|
//go to first intersection
|
|
while ((!End())&& Refresh())
|
|
_NextCell();
|
|
}
|
|
else
|
|
end=true;
|
|
}
|
|
|
|
bool End()
|
|
{return end;}
|
|
|
|
|
|
///refresh current cell intersection , return true if there are
|
|
///at lest 1 intersection
|
|
bool Refresh()
|
|
{
|
|
//Elems.clear();
|
|
|
|
Spatial_Idexing::CellIterator first,last,l;
|
|
|
|
///take first, last iterators to elements in the cell
|
|
Si.Grid(CurrentCell.X(),CurrentCell.Y(),CurrentCell.Z(),first,last);
|
|
for(l=first;l!=last;++l)
|
|
{
|
|
ObjType* elem=&(*(*l));
|
|
ScalarType t;
|
|
CoordType Int;
|
|
if((!tm.IsMarked(elem))&&(int_funct((**l),r,t)))
|
|
{
|
|
Int=r.Origin()+r.Direction()*t;
|
|
Elems.push_back(Entry_Type(elem,t,Int));
|
|
tm.Mark(elem);
|
|
}
|
|
}
|
|
////then control if there are more than 1 element
|
|
if (Elems.size()>1)
|
|
std::sort(Elems.begin(),Elems.end());
|
|
|
|
CurrentElem=Elems.end();
|
|
CurrentElem--;
|
|
|
|
return((Elems.size()==0)||(Dist()>dist));
|
|
}
|
|
|
|
void operator ++()
|
|
{
|
|
//if (CurrentElem!=Elems.end())
|
|
if (Elems.size()>0)
|
|
{
|
|
CurrentElem--;
|
|
//std::pop_heap<ElemIterator>(Elems.begin(),Elems.end());
|
|
Elems.pop_back();
|
|
}
|
|
/*if (CurrentElem==Elems.end())
|
|
{*/
|
|
if (Dist()>dist)
|
|
{
|
|
if (!End())
|
|
{
|
|
_NextCell();
|
|
while ((!End())&&Refresh())
|
|
_NextCell();
|
|
}
|
|
}
|
|
}
|
|
|
|
ObjType &operator *(){return *((*CurrentElem).elem);}
|
|
|
|
CoordType IntPoint()
|
|
{return ((*CurrentElem).intersection);}
|
|
|
|
ScalarType Dist()
|
|
{
|
|
if (Elems.size()>0)
|
|
return ((*CurrentElem).dist);
|
|
else
|
|
return ((ScalarType)FLT_MAX);
|
|
}
|
|
//{return ((*CurrentElem).dist);}
|
|
|
|
///set the current spatial indexing structure used
|
|
void SetIndexStructure(Spatial_Idexing &_Si)
|
|
{Si=_Si;}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
///structure that mantain for the current cell pre-calculated data
|
|
typedef struct Entry_Type
|
|
{
|
|
public:
|
|
|
|
Entry_Type(ObjType* _elem,ScalarType _dist,CoordType _intersection)
|
|
{
|
|
elem=_elem;
|
|
dist=_dist;
|
|
intersection=_intersection;
|
|
}
|
|
inline bool operator < ( const Entry_Type & l ) const{return (dist > l.dist); }
|
|
ObjType* elem;
|
|
ScalarType dist;
|
|
CoordType intersection;
|
|
};
|
|
|
|
RayType r; //ray to find intersections
|
|
Spatial_Idexing &Si; //reference to spatial index algorithm
|
|
bool end; //true if the scan is terminated
|
|
INTFUNCTOR &int_funct;
|
|
TMARKER tm;
|
|
|
|
std::vector<Entry_Type> Elems; //element loaded from curren cell
|
|
typedef typename std::vector<Entry_Type>::iterator ElemIterator;
|
|
ElemIterator CurrentElem; //iterator to current element
|
|
|
|
vcg::Point3i CurrentCell; //current cell
|
|
|
|
//used for raterization
|
|
CoordType start;
|
|
CoordType goal;
|
|
ScalarType dist;
|
|
CoordType t;
|
|
|
|
};
|
|
|
|
template <class Spatial_Idexing,class DISTFUNCTOR,class TMARKER>
|
|
class ClosestIterator
|
|
{
|
|
typedef typename Spatial_Idexing::ObjType ObjType;
|
|
typedef typename Spatial_Idexing::ScalarType ScalarType;
|
|
typedef typename vcg::Point3<ScalarType> CoordType;
|
|
typedef typename Spatial_Idexing::CellIterator CellIterator;
|
|
|
|
|
|
///find the radius of curren sphere
|
|
///considering more nearest cell to current radius
|
|
void _FindSphereRadius()
|
|
{
|
|
//find diffence between the initial point
|
|
//and the cell narest to the sphere
|
|
CoordType min;
|
|
CoordType max;
|
|
Si.IPToP(explored.min,min);
|
|
Si.IPToP(explored.max,max);
|
|
CoordType diff_min=p-min;
|
|
CoordType diff_max=p-max;
|
|
|
|
ScalarType diffx=std::min<ScalarType>(fabs(diff_min.X()),fabs(diff_max.X()));
|
|
ScalarType diffy=std::min<ScalarType>(fabs(diff_min.Y()),fabs(diff_max.Y()));
|
|
ScalarType diffz=std::min<ScalarType>(fabs(diff_min.Z()),fabs(diff_max.Z()));
|
|
|
|
ScalarType diff=std::min<ScalarType>(diffx,std::min<ScalarType>(diffy,diffz));
|
|
|
|
//radius_min=0;
|
|
radius=diff;
|
|
//radius+=diff;
|
|
if (radius>max_dist)
|
|
radius=max_dist;
|
|
}
|
|
|
|
///control right cell value of current bounding box
|
|
/// of explored cells
|
|
void _ControlLimits()
|
|
{
|
|
vcg::Point3i dim=Si.siz;
|
|
for (int i=0;i<3;i++)
|
|
{
|
|
if (explored.min.V(i)<-1)
|
|
explored.min.V(i) = -1;
|
|
if (explored.max.V(i)>Si.siz.V(i))
|
|
explored.max.V(i) =Si.siz.V(i);
|
|
}
|
|
}
|
|
|
|
bool _OutOfLimits(vcg::Point3i p)
|
|
{
|
|
for (int i=0;i<3;i++)
|
|
if ((p.V(i)==-1)||(p.V(i)>=Si.siz.V(i)))
|
|
return true ;
|
|
|
|
return false;
|
|
}
|
|
|
|
///control the end of scanning
|
|
void _ControlEnd()
|
|
{
|
|
if ((explored.min==vcg::Point3i(-1,-1,-1))&&(explored.max==Si.siz)&&(Elems.size()==0))
|
|
end =true;
|
|
}
|
|
|
|
///add cell to the curren set of explored cells
|
|
void _NextShell()
|
|
{
|
|
if (radius>=max_dist)
|
|
end=true;
|
|
|
|
radius+=voxel_min;
|
|
//control bounds
|
|
if (radius>max_dist)
|
|
radius=max_dist;
|
|
|
|
//expand the box
|
|
explored.min-=vcg::Point3i(1,1,1);
|
|
explored.max+=vcg::Point3i(1,1,1);
|
|
|
|
//control right limits of the bound
|
|
_ControlLimits();
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
///contructor
|
|
ClosestIterator(Spatial_Idexing &_Si,DISTFUNCTOR _dist_funct):Si(_Si),dist_funct(_dist_funct){}
|
|
|
|
///set the current spatial indexing structure used
|
|
void SetIndexStructure(Spatial_Idexing &_Si)
|
|
{Si=_Si;}
|
|
|
|
void SetMarker(TMARKER _tm)
|
|
{
|
|
tm=_tm;
|
|
}
|
|
|
|
///initialize the Itarator
|
|
void Init(CoordType _p,const ScalarType &_max_dist)
|
|
{
|
|
//CoordType vox=Si.Voxel();
|
|
CoordType vox=Si.voxel;
|
|
|
|
voxel_min=std::min<ScalarType>(vox.V(0),std::min<ScalarType>(vox.V(1),vox.V(2)));
|
|
p=_p;
|
|
max_dist=_max_dist;
|
|
|
|
//initialize the explored region
|
|
//finding cell coordinate of initial point
|
|
vcg::Point3i c;
|
|
Si.PToIP(p,c);
|
|
|
|
assert( c.X()>=0 && c.X()<Si.siz.X() && c.Y()>=0 && c.Y()<Si.siz.Y() && c.Z()>=0 && c.Z()<Si.siz.Z() );
|
|
|
|
//explored=vcg::Box3i(c,c+vcg::Point3i(1,1,1));
|
|
explored=vcg::Box3i(c,c);
|
|
|
|
radius=0;
|
|
//radius_min=0;
|
|
|
|
Elems.clear();
|
|
end=false;
|
|
|
|
tm.UnMarkAll();
|
|
|
|
_FindSphereRadius();
|
|
Refresh();
|
|
///until don't find an element
|
|
///that is inside the radius
|
|
while ((!End())&&(Dist()>radius))
|
|
{
|
|
if (radius>=max_dist)
|
|
end=true;
|
|
_NextShell();
|
|
Refresh();
|
|
_ControlEnd();
|
|
}
|
|
//set to the last element ..the nearest
|
|
CurrentElem=Elems.end();
|
|
CurrentElem--;
|
|
|
|
}
|
|
|
|
//return true if the scan is complete
|
|
bool End()
|
|
{return end;}
|
|
|
|
///refresh Object found also considering current shere radius,
|
|
//and object comes from previos that are already in the stack
|
|
void Refresh()
|
|
{
|
|
int x,y,z;
|
|
for( z = explored.min.Z(); z <= explored.max.Z(); ++z)
|
|
for(y = explored.min.Y(); y <=explored.max.Y(); ++y)
|
|
for(x = explored.min.X(); x <= explored.max.X();)
|
|
{
|
|
/*vcg::Point3i CurrentCell=vcg::Point3i(x,y,z);*/
|
|
Spatial_Idexing::CellIterator first,last,l;
|
|
///take first, last iterators to elements in the cell
|
|
if (!_OutOfLimits(vcg::Point3i(x,y,z)))
|
|
{
|
|
Si.Grid(x,y,z,first,last);
|
|
for(l=first;l!=last;++l)
|
|
{
|
|
ObjType *elem=&(**l);
|
|
if (!tm.IsMarked(elem))
|
|
{
|
|
|
|
CoordType nearest;
|
|
ScalarType dist=Si.bbox.Diag();
|
|
dist_funct((**l),p,dist,nearest);
|
|
Elems.push_back(Entry_Type(elem,fabs(dist),nearest));
|
|
tm.Mark(elem);
|
|
}
|
|
}
|
|
}
|
|
if( ( ( y == explored.min.Y()) || ( y == explored.max.Y())) ||
|
|
( ( z == explored.min.Z()) || ( z == explored.max.Z())) ||
|
|
( x == explored.max.X()))
|
|
++x;
|
|
else
|
|
x=explored.max.X();
|
|
}
|
|
|
|
std::sort(Elems.begin(),Elems.end());
|
|
//std::unique(Elems.begin(),Elems.end());
|
|
|
|
CurrentElem=Elems.end();
|
|
CurrentElem--;
|
|
}
|
|
|
|
void operator ++()
|
|
{
|
|
if (Elems.size()>0)
|
|
{
|
|
CurrentElem--;
|
|
Elems.pop_back();
|
|
}
|
|
if (Dist()>radius)
|
|
{
|
|
_NextShell();
|
|
Refresh();
|
|
//continue to scan until finish the scanning or the
|
|
//first element (the nearest for ordering of the structure)
|
|
//is at distance<radius
|
|
while ((!End())&&(Dist()>radius))
|
|
{
|
|
if (radius>=max_dist)
|
|
end=true;
|
|
_NextShell();
|
|
Refresh();
|
|
_ControlEnd();
|
|
}
|
|
}
|
|
}
|
|
|
|
ObjType &operator *(){return *((*CurrentElem).elem);}
|
|
|
|
//return distance of the element form the point if no element
|
|
//are in the vector then return max dinstance
|
|
ScalarType Dist()
|
|
{
|
|
if (Elems.size()>0)
|
|
return ((*CurrentElem).dist);
|
|
else
|
|
return ((ScalarType)FLT_MAX);
|
|
}
|
|
|
|
CoordType NearestPoint()
|
|
{return ((*CurrentElem).intersection);}
|
|
|
|
protected:
|
|
|
|
///structure that mantain for the current cell pre-calculated data
|
|
typedef struct Entry_Type
|
|
{
|
|
public:
|
|
|
|
Entry_Type(ObjType* _elem,ScalarType _dist,CoordType _intersection)
|
|
{
|
|
elem=_elem;
|
|
dist=_dist;
|
|
intersection=_intersection;
|
|
}
|
|
|
|
inline bool operator < ( const Entry_Type & l ) const{return (dist > l.dist); }
|
|
|
|
inline bool operator == ( const Entry_Type & l ) const{return (elem == l.elem); }
|
|
|
|
ObjType* elem;
|
|
ScalarType dist;
|
|
CoordType intersection;
|
|
};
|
|
|
|
CoordType p; //initial point
|
|
Spatial_Idexing &Si; //reference to spatial index algorithm
|
|
bool end; //true if the scan is terminated
|
|
ScalarType max_dist; //max distance when the scan terminate
|
|
vcg::Box3i explored; //current bounding box explored
|
|
ScalarType radius; //curret radius for sphere expansion
|
|
//ScalarType radius_min; //curret radius of explored simplexes
|
|
ScalarType voxel_min; //minimum value of the voxel
|
|
std::vector<Entry_Type> Elems; //element loaded from the current sphere
|
|
|
|
DISTFUNCTOR &dist_funct;
|
|
TMARKER tm;
|
|
|
|
typedef typename std::vector<Entry_Type>::iterator ElemIterator;
|
|
ElemIterator CurrentElem; //iterator to current element
|
|
|
|
};
|
|
}
|
|
|
|
#endif |