574 lines
19 KiB
C++
574 lines
19 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
|
|
$Log: sampling.h,v $
|
|
|
|
|
|
The sampling Class has a set of static functions, that you can call to sample the surface of a mesh.
|
|
Each function is templated on the mesh and on a Sampler object s.
|
|
Each function calls many time the sample object with the sampling point as parameter.
|
|
|
|
|
|
****************************************************************************/
|
|
#ifndef __VCGLIB_POINT_SAMPLING
|
|
#define __VCGLIB_POINT_SAMPLING
|
|
#include <vcg/complex/trimesh/stat.h>
|
|
#include <vcg/complex/trimesh/update/topology.h>
|
|
#include <vcg/space/box2.h>
|
|
namespace vcg
|
|
{
|
|
namespace tri
|
|
{
|
|
|
|
/// Trivial Sampler, an example sampler object that show the required interface used by the sampling class.
|
|
/// Most of the sampling classes call the AddFace method with the face containing the sample and its baricentric coord.
|
|
|
|
|
|
template <class MeshType>
|
|
class TrivialSampler
|
|
{
|
|
public:
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
|
|
TrivialSampler(){};
|
|
std::vector<CoordType> sampleVec;
|
|
|
|
void AddVert(const VertexType &p)
|
|
{
|
|
sampleVec.push_back(p.cP());
|
|
}
|
|
void AddFace(const FaceType &f, const CoordType &p)
|
|
{
|
|
sampleVec.push_back(f.P(0)*p[0] + f.P(1)*p[1] +f.P(2)*p[2] );
|
|
}
|
|
|
|
void AddTextureSample(const FaceType &, const CoordType &, const Point2i &)
|
|
{
|
|
// Retrieve the colorof the sample from the face f using the barycentric coord p
|
|
// and write that color in a texture image at position tp[0],tp[1]
|
|
}
|
|
}; // end class TrivialSampler
|
|
|
|
template <class MetroMesh, class VertexSampler>
|
|
class SurfaceSampling
|
|
{
|
|
typedef typename MetroMesh::CoordType CoordType;
|
|
typedef typename MetroMesh::ScalarType ScalarType;
|
|
typedef typename MetroMesh::VertexType VertexType;
|
|
typedef typename MetroMesh::VertexPointer VertexPointer;
|
|
typedef typename MetroMesh::VertexIterator VertexIterator;
|
|
typedef typename MetroMesh::FacePointer FacePointer;
|
|
typedef typename MetroMesh::FaceIterator FaceIterator;
|
|
typedef typename MetroMesh::FaceType FaceType;
|
|
typedef typename MetroMesh::FaceContainer FaceContainer;
|
|
public:
|
|
|
|
static
|
|
void AllVertex(MetroMesh & m, VertexSampler &ps)
|
|
{
|
|
VertexIterator vi;
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
if(!(*vi).IsD())
|
|
{
|
|
ps.AddVert(*vi);
|
|
}
|
|
}
|
|
|
|
/// Sample the vertices in a weighted way. Each vertex has a probabiltiy of being chosen
|
|
/// that is proportional to its quality.
|
|
/// It assumes that you are asking a number of vertices smaller than nv;
|
|
/// Algorithm:
|
|
/// 1) normalize quality so that sum q == 1;
|
|
/// 2) shuffle vertices.
|
|
/// 3) for each vertices choose it if rand > thr;
|
|
|
|
static void VertexWeighted(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
|
{
|
|
ScalarType qSum = 0;
|
|
VertexIterator vi;
|
|
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if(!(*vi).IsD())
|
|
qSum += (*vi).Q();
|
|
|
|
ScalarType samplePerUnit = sampleNum/qSum;
|
|
ScalarType floatSampleNum =0;
|
|
std::vector<VertexPointer> vertVec;
|
|
FillAndShuffleVertexPointVector(m,vertVec);
|
|
|
|
std::vector<bool> vertUsed(m.vn,false);
|
|
|
|
int i=0; int cnt=0;
|
|
while(cnt < sampleNum)
|
|
{
|
|
if(vertUsed[i])
|
|
{
|
|
floatSampleNum += vertVec[i]->Q() * samplePerUnit;
|
|
int vertSampleNum = (int) floatSampleNum;
|
|
floatSampleNum -= (float) vertSampleNum;
|
|
|
|
// for every sample p_i in T...
|
|
if(vertSampleNum > 1)
|
|
{
|
|
ps.AddVert(*vertVec[i]);
|
|
cnt++;
|
|
vertUsed[i]=true;
|
|
}
|
|
}
|
|
i = (i+1)%m.vn;
|
|
}
|
|
}
|
|
|
|
/// Sample the vertices in a uniform way. Each vertex has a probabiltiy of being chosen
|
|
/// that is proportional to the area it represent.
|
|
static void VertexAreaUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
|
{
|
|
VertexIterator vi;
|
|
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if(!(*vi).IsD())
|
|
(*vi).Q() = 0;
|
|
|
|
FaceIterator fi;
|
|
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD())
|
|
{
|
|
ScalarType areaThird = DoubleArea(*fi)/6.0;
|
|
(*fi).V(0).Q()+=areaThird;
|
|
(*fi).V(1).Q()+=areaThird;
|
|
(*fi).V(2).Q()+=areaThird;
|
|
}
|
|
|
|
VertexWeighted(m,ps,sampleNum);
|
|
}
|
|
|
|
static void FillAndShuffleVertexPointVector(MetroMesh & m, std::vector<VertexPointer> &vertVec)
|
|
{
|
|
VertexIterator vi;
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
if(!(*vi).IsD()) vertVec.push_back(&*vi);
|
|
|
|
assert((int)vertVec.size()==m.vn);
|
|
|
|
std::random_shuffle(vertVec.begin(),vertVec.end());
|
|
}
|
|
/// Sample the vertices in a uniform way. Each vertex has the same probabiltiy of being chosen.
|
|
static void VertexUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
|
{
|
|
if(sampleNum>=m.vn)
|
|
{
|
|
AllVertex(m,ps);
|
|
return;
|
|
}
|
|
|
|
std::vector<VertexPointer> vertVec;
|
|
FillAndShuffleVertexPointVector(m,vertVec);
|
|
|
|
for(int i =0; i< sampleNum; ++i)
|
|
ps.AddVert(*vertVec[i]);
|
|
}
|
|
|
|
|
|
static void AllFace(MetroMesh & m, VertexSampler &ps)
|
|
{
|
|
FaceIterator fi;
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
if(!(*fi).IsD())
|
|
{
|
|
ps.AddFace(*fi,Barycenter(*fi));
|
|
}
|
|
}
|
|
|
|
|
|
static void AllEdge(MetroMesh & m, VertexSampler &ps)
|
|
{
|
|
// Edge sampling.
|
|
typedef typename UpdateTopology<MetroMesh>::PEdge SimpleEdge;
|
|
std::vector< SimpleEdge > Edges;
|
|
UpdateTopology<MetroMesh>::FillEdgeVector(m,Edges);
|
|
|
|
sort(Edges.begin(), Edges.end()); // Lo ordino per vertici
|
|
|
|
typename std::vector< SimpleEdge>::iterator newEnd = unique(Edges.begin(), Edges.end());
|
|
typename std::vector<SimpleEdge>::iterator ei;
|
|
|
|
//qDebug("Edges %i (unique %i) ",(int)Edges.size(), (int)(newEnd-Edges.begin()) );
|
|
Edges.resize(newEnd-Edges.begin());
|
|
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
|
|
{
|
|
Point3f interp(0,0,0);
|
|
interp[ (*ei).z ]=.5;
|
|
interp[((*ei).z+1)%3]=.5;
|
|
ps.AddFace(*(*ei).f,interp);
|
|
}
|
|
}
|
|
/*
|
|
// sample edges.
|
|
typename std::vector<pvv>::iterator ei;
|
|
double n_samples_per_length_unit;
|
|
double n_samples_decimal = 0.0;
|
|
int cnt=0;
|
|
|
|
if(Flags & SamplingFlags::FACE_SAMPLING) n_samples_per_length_unit = sqrt((double)n_samples_per_area_unit);
|
|
else n_samples_per_length_unit = n_samples_per_area_unit;
|
|
|
|
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
|
|
{
|
|
n_samples_decimal += Distance((*ei).first->cP(),(*ei).second->cP()) * n_samples_per_length_unit;
|
|
n_samples = (int) n_samples_decimal;
|
|
SampleEdge((*ei).first->cP(), (*ei).second->cP(), (int) n_samples);
|
|
n_samples_decimal -= (double) n_samples;
|
|
}
|
|
*/
|
|
|
|
// Generate the baricentric coords of a random point over a single face, with a uniform distribution over the triangle.
|
|
// It uses the parallelgoram folding trick.
|
|
|
|
static CoordType RandomBaricentric()
|
|
{
|
|
CoordType interp;
|
|
interp[1] = (double)rand() / (double)RAND_MAX;
|
|
interp[2] = (double)rand() / (double)RAND_MAX;
|
|
if(interp[1] + interp[2] > 1.0)
|
|
{
|
|
interp[1] = 1.0 - interp[1];
|
|
interp[2] = 1.0 - interp[2];
|
|
}
|
|
|
|
assert(interp[1] + interp[2] <= 1.0);
|
|
interp[0]=1.0-(interp[1] + interp[2]);
|
|
return interp;
|
|
}
|
|
|
|
static void Montecarlo(MetroMesh & m, VertexSampler &ps,int sampleNum)
|
|
{
|
|
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
|
|
ScalarType samplePerAreaUnit = sampleNum/area;
|
|
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
|
|
// Montecarlo sampling.
|
|
double floatSampleNum = 0.0;
|
|
|
|
FaceIterator fi;
|
|
for(fi=m.face.begin(); fi != m.face.end(); fi++)
|
|
if(!(*fi).IsD())
|
|
{
|
|
// compute # samples in the current face (taking into account of the remainders)
|
|
floatSampleNum += 0.5*DoubleArea(*fi) * samplePerAreaUnit;
|
|
int faceSampleNum = (int) floatSampleNum;
|
|
|
|
// for every sample p_i in T...
|
|
for(int i=0; i < faceSampleNum; i++)
|
|
ps.AddFace(*fi,RandomBaricentric());
|
|
|
|
|
|
floatSampleNum -= (double) faceSampleNum;
|
|
}
|
|
}
|
|
|
|
static ScalarType WeightedArea(FaceType f)
|
|
{
|
|
ScalarType averageQ = ( f.V(0)->Q() + f.V(1)->Q() + f.V(2)->Q() ) /3.0;
|
|
return DoubleArea(f)*averageQ/2.0;
|
|
}
|
|
|
|
/// Compute a sampling of the surface that is weighted by the quality
|
|
/// the area of each face is multiplied by the average of the quality of the vertices.
|
|
/// So the a face with a zero quality on all its vertices is never sampled and a face with average quality 2 get twice the samples of a face with the same area but with an average quality of 1;
|
|
static void WeightedMontecarlo(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
|
{
|
|
assert(tri::HasPerVertexQuality(m));
|
|
|
|
ScalarType weightedArea = 0;
|
|
FaceIterator fi;
|
|
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD())
|
|
weightedArea += WeightedArea(*fi);
|
|
|
|
ScalarType samplePerAreaUnit = sampleNum/weightedArea;
|
|
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
|
|
// Montecarlo sampling.
|
|
double floatSampleNum = 0.0;
|
|
for(fi=m.face.begin(); fi != m.face.end(); fi++)
|
|
if(!(*fi).IsD())
|
|
{
|
|
// compute # samples in the current face (taking into account of the remainders)
|
|
floatSampleNum += WeightedArea(*fi) * samplePerAreaUnit;
|
|
int faceSampleNum = (int) floatSampleNum;
|
|
|
|
// for every sample p_i in T...
|
|
for(int i=0; i < faceSampleNum; i++)
|
|
ps.AddFace(*fi,RandomBaricentric());
|
|
|
|
floatSampleNum -= (double) faceSampleNum;
|
|
}
|
|
}
|
|
|
|
|
|
// Subdivision sampling of a single face.
|
|
// return number of added samples
|
|
|
|
static int SingleFaceSubdivision(const CoordType & v0, const CoordType & v1, const CoordType & v2, int maxdepth, VertexSampler &ps, FacePointer fp)
|
|
{
|
|
// recursive face subdivision.
|
|
if(maxdepth == 0)
|
|
{
|
|
// ground case.
|
|
CoordType SamplePoint((v0+v1+v2)/3.0f);
|
|
CoordType SampleBary;
|
|
InterpolationParameters(*fp,SamplePoint,SampleBary[0],SampleBary[1],SampleBary[2]);
|
|
ps.AddFace(*fp,SampleBary);
|
|
return 1;
|
|
}
|
|
|
|
// compute the longest edge.
|
|
double maxd01 = SquaredDistance(v0,v1);
|
|
double maxd12 = SquaredDistance(v1,v2);
|
|
double maxd20 = SquaredDistance(v2,v0);
|
|
int res;
|
|
if(maxd01 > maxd12)
|
|
if(maxd01 > maxd20) res = 0;
|
|
else res = 2;
|
|
else
|
|
if(maxd12 > maxd20) res = 1;
|
|
else res = 2;
|
|
|
|
int faceSampleNum=0;
|
|
// break the input triangle along the midpoint of the longest edge.
|
|
CoordType pp;
|
|
switch(res)
|
|
{
|
|
case 0 : pp = (v0+v1)/2;
|
|
faceSampleNum+=SingleFaceSubdivision(v0,pp,v2,maxdepth-1,ps,fp);
|
|
faceSampleNum+=SingleFaceSubdivision(pp,v1,v2,maxdepth-1,ps,fp);
|
|
break;
|
|
case 1 : pp = (v1+v2)/2;
|
|
faceSampleNum+=SingleFaceSubdivision(v0,v1,pp,maxdepth-1,ps,fp);
|
|
faceSampleNum+=SingleFaceSubdivision(v0,pp,v2,maxdepth-1,ps,fp);
|
|
break;
|
|
case 2 : pp = (v2+v0)/2;
|
|
faceSampleNum+=SingleFaceSubdivision(v0,v1,pp,maxdepth-1,ps,fp);
|
|
faceSampleNum+=SingleFaceSubdivision(pp,v1,v2,maxdepth-1,ps,fp);
|
|
break;
|
|
}
|
|
return faceSampleNum;
|
|
}
|
|
|
|
|
|
/// Compute a sampling of the surface where the points are regularly scattered over the face surface using a recursive longest-edge subdivision rule.
|
|
static void FaceSubdivision(MetroMesh & m, VertexSampler &ps,int sampleNum)
|
|
{
|
|
|
|
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
|
|
ScalarType samplePerAreaUnit = sampleNum/area;
|
|
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
|
|
|
|
double floatSampleNum = 0.0;
|
|
int faceSampleNum;
|
|
// Subdivision sampling.
|
|
FaceIterator fi;
|
|
for(fi=m.face.begin(); fi!=m.face.end(); fi++)
|
|
{
|
|
// compute # samples in the current face.
|
|
floatSampleNum += 0.5*DoubleArea(*fi) * samplePerAreaUnit;
|
|
faceSampleNum = (int) floatSampleNum;
|
|
if(faceSampleNum>0)
|
|
{
|
|
// face sampling.
|
|
int maxdepth = ((int)(log((double)faceSampleNum)/log(2.0)));
|
|
faceSampleNum = SingleFaceSubdivision((*fi).V(0)->cP(), (*fi).V(1)->cP(), (*fi).V(2)->cP(), maxdepth,ps,&*fi);
|
|
}
|
|
floatSampleNum -= (double) faceSampleNum;
|
|
}
|
|
}
|
|
|
|
|
|
// Similar Triangles sampling.
|
|
// Skip vertex and edges
|
|
// Sample per edges includes vertexes, so here we should expect n_samples_per_edge >=4
|
|
|
|
static int SingleFaceSimilar(FacePointer fp, VertexSampler &ps, int n_samples_per_edge)
|
|
{
|
|
int n_samples=0;
|
|
int i, j;
|
|
float segmentNum=n_samples_per_edge -1 ;
|
|
float segmentLen = 1.0/segmentNum;
|
|
// face sampling.
|
|
for(i=1; i < n_samples_per_edge-1; i++)
|
|
for(j=1; j < n_samples_per_edge-1-i; j++)
|
|
{
|
|
//AddSample( v0 + (V1*(double)i + V2*(double)j) );
|
|
CoordType sampleBary(i*segmentLen,j*segmentLen, 1.0 - (i*segmentLen+j*segmentLen) ) ;
|
|
n_samples++;
|
|
ps.AddFace(*fp,sampleBary);
|
|
}
|
|
return n_samples;
|
|
}
|
|
|
|
/// Similar sampling. Each triangle is subdivided into similar triangles following a generalization of the classical 1-to-4 splitting rule of triangles.
|
|
/// According to the level of subdivision <k> you get 1, 4 , 9, 16 , <k^2> triangles.
|
|
/// Of these triangles we consider only internal vertices. (to avoid multiple sampling of edges and vertices).
|
|
/// Therefore the number of internal points is ((k-3)*(k-2))/2. where k is the number of point on an edge (vertex included)
|
|
// e.g. for a k=4 you get (1*2)/2 == 1 e.g. a single point, etc.
|
|
/// So if you want N samples in a triangle i have to solve k^2 -5k +6 - 2N = 0
|
|
|
|
// 5 + sqrt( 1 + 8N )
|
|
// k = -------------------
|
|
// 2
|
|
|
|
|
|
|
|
//template <class MetroMesh>
|
|
//void Sampling<MetroMesh>::SimilarFaceSampling()
|
|
static void FaceSimilar(MetroMesh & m, VertexSampler &ps,int sampleNum)
|
|
{
|
|
|
|
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
|
|
ScalarType samplePerAreaUnit = sampleNum/area;
|
|
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
|
|
|
|
// Similar Triangles sampling.
|
|
int n_samples_per_edge;
|
|
double n_samples_decimal = 0.0;
|
|
FaceIterator fi;
|
|
|
|
printf("Similar Triangles face sampling\n");
|
|
for(fi=m.face.begin(); fi != m.face.end(); fi++)
|
|
{
|
|
// compute # samples in the current face.
|
|
n_samples_decimal += 0.5*DoubleArea(*fi) * samplePerAreaUnit;
|
|
int n_samples = (int) n_samples_decimal;
|
|
if(n_samples)
|
|
{
|
|
// face sampling.
|
|
n_samples_per_edge = (int)((sqrt(1.0+8.0*(double)n_samples) +5.0)/2.0);
|
|
//n_samples = 0;
|
|
//SingleFaceSimilar((*fi).V(0)->cP(), (*fi).V(1)->cP(), (*fi).V(2)->cP(), n_samples_per_edge);
|
|
n_samples = SingleFaceSimilar(&*fi,ps, n_samples_per_edge);
|
|
}
|
|
n_samples_decimal -= (double) n_samples;
|
|
}
|
|
}
|
|
|
|
|
|
// Rasterization fuction
|
|
// Take a triangle
|
|
// T deve essere una classe funzionale che ha l'operatore ()
|
|
// con due parametri x,y di tipo S esempio:
|
|
// class Foo { public void operator()(int x, int y ) { ??? } };
|
|
|
|
|
|
|
|
static void SingleFaceRaster(FaceType &f, VertexSampler &ps, const Point2<ScalarType> & v0, const Point2<ScalarType> & v1, const Point2<ScalarType> & v2)
|
|
{
|
|
typedef ScalarType S;
|
|
// Calcolo bounding box
|
|
Box2i bbox;
|
|
|
|
if(v0[0]<v1[0]) { bbox.min[0]=v0[0]; bbox.max[0]=v1[0]; }
|
|
else { bbox.min[0]=v1[0]; bbox.max[0]=v0[0]; }
|
|
if(v0[1]<v1[1]) { bbox.min[1]=v0[1]; bbox.max[1]=v1[1]; }
|
|
else { bbox.min[1]=v1[1]; bbox.max[1]=v0[1]; }
|
|
if(bbox.min[0]>v2[0]) bbox.min[0]=v2[0];
|
|
else if(bbox.max[0]<v2[0]) bbox.max[0]=v2[0];
|
|
if(bbox.min[1]>v2[1]) bbox.min[1]=v2[1];
|
|
else if(bbox.max[1]<v2[1]) bbox.max[1]=v2[1];
|
|
|
|
// Calcolo versori degli spigoli
|
|
Point2<S> d10 = v1 - v0;
|
|
Point2<S> d21 = v2 - v1;
|
|
Point2<S> d02 = v0 - v2;
|
|
|
|
// Preparazione prodotti scalari
|
|
S b0 = (bbox.min[0]-v0[0])*d10[1] - (bbox.min[1]-v0[1])*d10[0];
|
|
S b1 = (bbox.min[0]-v1[0])*d21[1] - (bbox.min[1]-v1[1])*d21[0];
|
|
S b2 = (bbox.min[0]-v2[0])*d02[1] - (bbox.min[1]-v2[1])*d02[0];
|
|
// Preparazione degli steps
|
|
S db0 = d10[1];
|
|
S db1 = d21[1];
|
|
S db2 = d02[1];
|
|
// Preparazione segni
|
|
S dn0 = -d10[0];
|
|
S dn1 = -d21[0];
|
|
S dn2 = -d02[0];
|
|
// Rasterizzazione
|
|
|
|
double de = v0[0]*v1[1]-v0[0]*v2[1]-v1[0]*v0[1]+v1[0]*v2[1]-v2[0]*v1[1]+v2[0]*v0[1];
|
|
|
|
for(int x=bbox.min[0];x<=bbox.max[0];++x)
|
|
{
|
|
bool in = false;
|
|
S n0 = b0;
|
|
S n1 = b1;
|
|
S n2 = b2;
|
|
for(int y=bbox.min[1];y<=bbox.max[1];++y)
|
|
{
|
|
if( (n0>=0 && n1>=0 && n2>=0) || (n0<=0 && n1<=0 && n2<=0) )
|
|
{
|
|
CoordType baryCoord;
|
|
baryCoord[0] = double(-y*v1[0]+v2[0]*y+v1[1]*x-v2[0]*v1[1]+v1[0]*v2[1]-x*v2[1])/de;
|
|
baryCoord[1] = -double( x*v0[1]-x*v2[1]-v0[0]*y+v0[0]*v2[1]-v2[0]*v0[1]+v2[0]*y)/de;
|
|
baryCoord[2] = 1-baryCoord[0]-baryCoord[1];
|
|
|
|
ps.AddTextureSample(f, baryCoord, Point2i(x,y));
|
|
in = true;
|
|
} else if(in) break;
|
|
n0 += dn0;
|
|
n1 += dn1;
|
|
n2 += dn2;
|
|
}
|
|
b0 += db0;
|
|
b1 += db1;
|
|
b2 += db2;
|
|
}
|
|
}
|
|
|
|
|
|
//template <class MetroMesh>
|
|
//void Sampling<MetroMesh>::SimilarFaceSampling()
|
|
static void Texture(MetroMesh & m, VertexSampler &ps, int textureSize)
|
|
{
|
|
FaceIterator fi;
|
|
|
|
printf("Similar Triangles face sampling\n");
|
|
for(fi=m.face.begin(); fi != m.face.end(); fi++)
|
|
{
|
|
Point2f ti[3];
|
|
for(int i=0;i<3;++i)
|
|
ti[i]=Point2f((*fi).WT(i).U() * textureSize, (*fi).WT(i).V() * textureSize);
|
|
|
|
SingleFaceRaster(*fi, ps, ti[0],ti[1],ti[2]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
}; // end class
|
|
|
|
|
|
} // end namespace tri
|
|
} // end namespace vcg
|
|
|
|
#endif
|