vcglib/vcg/space/box3.h

326 lines
11 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.6 2004/07/07 23:26:25 cignoni
removed the infamous Inflate. Now only Offset exists
Revision 1.5 2004/03/05 17:51:28 tarini
Errorino "ScalarType" -> "BoxScalarType"
Revision 1.4 2004/03/03 14:32:13 cignoni
Yet another cr lf mismatch
Revision 1.3 2004/02/23 23:44:21 cignoni
cr lf mismatch
Revision 1.2 2004/02/19 15:40:56 cignoni
Added doxygen groups
Revision 1.1 2004/02/13 02:16:22 cignoni
First working release.
****************************************************************************/
#ifndef __VCGLIB_BOX3
#define __VCGLIB_BOX3
#include <vcg/space/point3.h>
namespace vcg {
/** \addtogroup space */
/*@{*/
/**
Templated class for 3D boxes.
This is the class for definition of a axis aligned bounding box in 3D space. It is stored just as two Point3
@param BoxScalarType (template parameter) Specifies the type of scalar used to represent coords.
*/
template <class BoxScalarType>
class Box3
{
public:
/// The scalar type
typedef BoxScalarType ScalarType;
/// min coordinate point
Point3<BoxScalarType> min;
/// max coordinate point
Point3<BoxScalarType> max;
/// The bounding box constructor
inline Box3() { min.X()= 1;max.X()= -1;min.Y()= 1;max.Y()= -1;min.Z()= 1;max.Z()= -1;}
/// Copy constructor
inline Box3( const Box3 & b ) { min=b.min; max=b.max; }
/// Min Max constructor
inline Box3( const Point3<BoxScalarType> & mi, const Point3<BoxScalarType> & ma ) { min = mi; max = ma; }
/// The bounding box distructor
inline ~Box3() { }
/// Operator to compare two bounding box
inline bool operator == ( Box3<BoxScalarType> const & p ) const
{
return min==p.min && max==p.max;
}
/// Operator to dispare two bounding box
inline bool operator != ( Box3<BoxScalarType> const & p ) const
{
return min!=p.min || max!=p.max;
}
/** Varia le dimensioni del bounding box scalandole rispetto al parametro scalare.
@param s Valore scalare che indica di quanto deve variare il bounding box
*/
void Offset( const BoxScalarType s )
{
Offset( Point3<BoxScalarType> (s,s,s));
}
/** Varia le dimensioni del bounding box del valore fornito attraverso il parametro.
@param delta Point in 3D space
*/
void Offset( const Point3<BoxScalarType> & delta )
{
min -= delta;
max += delta;
}
/// Initializing the bounding box
void Set( const Point3<BoxScalarType> & p )
{
min = max = p;
}
/// Set the bounding box to a null value
void SetNull()
{
min.X()= 1; max.X()= -1;
min.Y()= 1; max.Y()= -1;
min.Z()= 1; max.Z()= -1;
}
/** Function to add two bounding box
@param b Il bounding box che si vuole aggiungere
*/
void Add( Box3<BoxScalarType> const & b )
{
if(IsNull()) *this=b;
else
{
if(min.X() > b.min.X()) min.X() = b.min.X();
if(min.Y() > b.min.Y()) min.Y() = b.min.Y();
if(min.Z() > b.min.Z()) min.Z() = b.min.Z();
if(max.X() < b.max.X()) max.X() = b.max.X();
if(max.Y() < b.max.Y()) max.Y() = b.max.Y();
if(max.Z() < b.max.Z()) max.Z() = b.max.Z();
}
}
/** Funzione per aggiungere un punto al bounding box. Il bounding box viene modificato se il punto
cade fuori da esso.
@param p The point 3D
*/
void Add( const Point3<BoxScalarType> & p )
{
if(IsNull()) Set(p);
else
{
if(min.X() > p.X()) min.X() = p.X();
if(min.Y() > p.Y()) min.Y() = p.Y();
if(min.Z() > p.Z()) min.Z() = p.Z();
if(max.X() < p.X()) max.X() = p.X();
if(max.Y() < p.Y()) max.Y() = p.Y();
if(max.Z() < p.Z()) max.Z() = p.Z();
}
}
//
//// Aggiunge ad un box un altro box trasformato secondo la matrice m
//void Add( const Matrix44<BoxScalarType> &m, const Box3<BoxScalarType> & b )
//{
// const Point3<BoxScalarType> &mn= b.min;
// const Point3<BoxScalarType> &mx= b.max;
// Add(m.Apply(Point3<BoxScalarType>(mn[0],mn[1],mn[2])));
// Add(m.Apply(Point3<BoxScalarType>(mx[0],mn[1],mn[2])));
// Add(m.Apply(Point3<BoxScalarType>(mn[0],mx[1],mn[2])));
// Add(m.Apply(Point3<BoxScalarType>(mx[0],mx[1],mn[2])));
// Add(m.Apply(Point3<BoxScalarType>(mn[0],mn[1],mx[2])));
// Add(m.Apply(Point3<BoxScalarType>(mx[0],mn[1],mx[2])));
// Add(m.Apply(Point3<BoxScalarType>(mn[0],mx[1],mx[2])));
// Add(m.Apply(Point3<BoxScalarType>(mx[0],mx[1],mx[2])));
//}
/** Calcola l'intersezione tra due bounding box. Al bounding box viene assegnato il valore risultante.
@param b Il bounding box con il quale si vuole effettuare l'intersezione
*/
void Intersect( const Box3<BoxScalarType> & b )
{
if(min.X() < b.min.X()) min.X() = b.min.X();
if(min.Y() < b.min.Y()) min.Y() = b.min.Y();
if(min.Z() < b.min.Z()) min.Z() = b.min.Z();
if(max.X() > b.max.X()) max.X() = b.max.X();
if(max.Y() > b.max.Y()) max.Y() = b.max.Y();
if(max.Z() > b.max.Z()) max.Z() = b.max.Z();
if(min.X()>max.X() || min.Y()>max.Y() || min.Z()>max.Z()) SetNull();
}
/** Trasla il bounding box di un valore definito dal parametro.
@param p Il bounding box trasla sulla x e sulla y in base alle coordinate del parametro
*/
void Translate( const Point3<BoxScalarType> & p )
{
min += p;
max += p;
}
/** Verifica se un punto appartiene ad un bounding box.
@param p The point 3D
@return True se p appartiene al bounding box, false altrimenti
*/
bool IsIn( Point3<BoxScalarType> const & p ) const
{
return (
min.X() <= p.X() && p.X() <= max.X() &&
min.Y() <= p.Y() && p.Y() <= max.Y() &&
min.Z() <= p.Z() && p.Z() <= max.Z()
);
}
/** Verifica se un punto appartiene ad un bounding box aperto sul max.
@param p The point 3D
@return True se p appartiene al bounding box, false altrimenti
*/
bool IsInEx( Point3<BoxScalarType> const & p ) const
{
return (
min.X() <= p.X() && p.X() < max.X() &&
min.Y() <= p.Y() && p.Y() < max.Y() &&
min.Z() <= p.Z() && p.Z() < max.Z()
);
}
/** Verifica se due bounding box collidono cioe' se hanno una intersezione non vuota. Per esempio
due bounding box adiacenti non collidono.
@param b A bounding box
@return True se collidoo, false altrimenti
*/
/* old version
bool Collide(Box3<BoxScalarType> const &b)
{
Box3<BoxScalarType> bb=*this;
bb.Intersect(b);
return bb.IsValid();
}
*/
bool Collide(Box3<BoxScalarType> const &b)
{
return b.min.X()<max.X() && b.max.X()>min.X() &&
b.min.Y()<max.Y() && b.max.Y()>min.Y() &&
b.min.Z()<max.Z() && b.max.Z()>min.Z() ;
}
/** Controlla se il bounding box e' nullo.
@return True se il bounding box e' nullo, false altrimenti
*/
bool IsNull() const { return min.X()>max.X() || min.Y()>max.Y() || min.Z()>max.Z(); }
/** Controlla se il bounding box e' vuoto.
@return True se il bounding box e' vuoto, false altrimenti
*/
bool IsEmpty() const { return min==max; }
/// Restituisce la lunghezza della diagonale del bounding box.
BoxScalarType Diag() const
{
return Distance(min,max);
}
/// Calcola il quadrato della diagonale del bounding box.
BoxScalarType SquaredDiag() const
{
return SquaredDistance(min,max);
}
/// Calcola il centro del bounding box.
Point3<BoxScalarType> Center() const
{
return (min+max)/2;
}
/// Compute bounding box size.
Point3<BoxScalarType> Dim() const
{
return (max-min);
}
/// Returns global coords of a local point expressed in [0..1]^3
Point3<BoxScalarType> LocalToGlobal(Point3<BoxScalarType> const & p) const{
return Point3<BoxScalarType>(
min[0] + p[0]*(max[0]-min[0]),
min[1] + p[1]*(max[1]-min[1]),
min[2] + p[2]*(max[2]-min[2]));
}
/// Returns local coords expressed in [0..1]^3 of a point in 3D
Point3<BoxScalarType> GlobalToLocal(Point3<BoxScalarType> const & p) const{
return Point3<BoxScalarType>(
(p[0]-min[0])/(max[0]-min[0]),
(p[1]-min[1])/(max[1]-min[1]),
(p[2]-min[2])/(max[2]-min[2])
);
}
/// Calcola il volume del bounding box.
BoxScalarType Volume() const
{
return (max.X()-min.X())*(max.Y()-min.Y())*(max.Z()-min.Z());
}
/// Calcola la dimensione del bounding box sulla x.
inline BoxScalarType DimX() const { return max.X()-min.X();}
/// Calcola la dimensione del bounding box sulla y.
inline BoxScalarType DimY() const { return max.Y()-min.Y();}
/// Calcola la dimensione del bounding box sulla z.
inline BoxScalarType DimZ() const { return max.Z()-min.Z();}
template <class Q>
inline void Import( const Box3<Q> & b )
{
min.Import(b.min);
max.Import(b.max);
}
template <class Q>
inline Box3 Construct( const Box3<Q> & b )
{
return Box3(Point3<BoxScalarType>::Construct(b.min),Point3<BoxScalarType>::Construct(b.max));
}
/// gives the ith box vertex in order: (x,y,z),(X,y,z),(x,Y,z),(X,Y,z),(x,y,Z),(X,y,Z),(x,Y,Z),(X,Y,Z)
Point3<BoxScalarType> P(const int & i){
return Point3<BoxScalarType>(
min[0]+ (i%2) * DimX(),
min[1]+ ((i / 2)%2) * DimY(),
min[2]+ (i>3)* DimZ());
}
}; // end class definition
typedef Box3<short> Box3s;
typedef Box3<int> Box3i;
typedef Box3<float> Box3f;
typedef Box3<double> Box3d;
/*@}*/
} // end namespace
#endif