vcglib/apps/metro/metro.cpp

378 lines
15 KiB
C++

// -----------------------------------------------------------------------------------------------
// standard libraries
#include <time.h>
// project definitions.
#include "defs.h"
#include "sampling.h"
#include "mesh_type.h"
#include <vcg/complex/trimesh/update/edges.h>
#include <vcg/complex/trimesh/update/bounding.h>
//#include <wrap/io_trimesh/import_smf.h>
#include <wrap/io_trimesh/import_ply.h>
#include <wrap/io_trimesh/export_ply.h>
// -----------------------------------------------------------------------------------------------
////////////////// Command line Flags and parameters
bool ComputeHistFlag = false;
bool VertexSampleFlag = true;
bool EdgeSampleFlag = true;
bool FaceSampleFlag = true;
bool MontecarloSamplingFlag = false;
bool SubdivisionSamplingFlag = false;
bool SimilarTrianglesSamplingFlag = false;
bool NumberOfSamples = false;
bool SamplesPerAreaUnit = false;
bool SaveErrorDisplacement = false;
bool SaveErrorAsColour = false;
// -----------------------------------------------------------------------------------------------
inline char* GetExtension(char* filename)
{
size_t i;
for( i=strlen(filename)-1; i >= 0; i--)
if(filename[i] == '.')
break;
if(i > 0)
return &(filename[i+1]);
else
return NULL;
}
int main(int argc, char**argv)
{
CMesh S1, S2;
double dist1_max, dist1_mean, dist1_RMS, volume_1;
double dist2_max, dist2_mean, dist2_RMS, volume_2;
double mesh_dist_max;
unsigned long n_samples_target, n_samples_output, elapsed_time;
double n_samples_per_area_unit;
int flags, flags_fwd, flags_back, n_samples_area, n_samples_edge, n_samples_vertex, err;
char *fmt, *hist_filename, *new_mesh_filename, *new_mesh_filename_2;
char fname_1[] = STR_NEW_MESH_FILENAME_DEFAULT, fname_2[] = STR_NEW_MESH_FILENAME_DEFAULT_2;
//FILE *fd;
// print program info
printf("-------------------------------\n"
" Metro\n"
" release date: "__DATE__"\n"
"-------------------------------\n\n");
// load input meshes.
if(argc <= 2)
{
printf(MSG_ERR_N_ARGS);
exit(-1);
}
// load mesh M1.
if(!(fmt = GetExtension(argv[1])))
{
printf(MSG_ERR_UNKNOWN_FORMAT, fmt);
exit(-1);
}
if(!strcmp(FILE_EXT_PLY, fmt))
{
printf("reading the mesh `%s'...", argv[1]);
err = tri::io::ImporterPLY<CMesh>::Open(S1,argv[1]);
}
/* else
if(!strcmp(FILE_EXT_SMF, fmt))
{
printf("reading the mesh `%s'...", argv[1]);
err = tri::io::ImporterSMF::Open(S1,argv[1]);
}*/
else
{
printf(MSG_ERR_UNKNOWN_FORMAT, fmt);
exit(-1);
}
if(err < 0)
{
printf("\n");
printf(MSG_ERR_MESH_LOAD);
exit(-1);
}
else
printf("done\n");
// load mesh M2.
if(!(fmt = GetExtension(argv[2])))
{
printf(MSG_ERR_UNKNOWN_FORMAT, fmt);
exit(-1);
}
if(!strcmp(FILE_EXT_PLY, fmt))
{
printf("reading the mesh `%s'...", argv[2]);
err = tri::io::ImporterPLY<CMesh>::Open(S2,argv[2]);
}
/*else
if(!strcmp(FILE_EXT_SMF, fmt))
{
printf("reading the mesh `%s'...", argv[2]);
err = S2.Load_Smf(argv[2]);
}*/
else
{
printf(MSG_ERR_UNKNOWN_FORMAT, fmt);
exit(-1);
}
if(err < 0)
{
printf(MSG_ERR_MESH_LOAD);
exit(-1);
}
else
printf("done\n");
// parse command line.
for(int i=3; i < argc;)
{
if(argv[i][0]=='-')
switch(argv[i][1])
{
case CMD_LINE_ARG_HIST : ComputeHistFlag = true; hist_filename = &(argv[i][2]);
if(hist_filename[0] == '\0')
strcpy(hist_filename, STR_HIST_FILENAME_DEFAULT);
break;
case CMD_LINE_ARG_VERTEX_SAMPLE : VertexSampleFlag = false; break;
case CMD_LINE_ARG_EDGE_SAMPLE : EdgeSampleFlag = false; break;
case CMD_LINE_ARG_FACE_SAMPLE : FaceSampleFlag = false; break;
case CMD_LINE_ARG_SAMPLE_TYPE :
switch(argv[i][2])
{
case CMD_LINE_ARG_MONTECARLO_SAMPLING : MontecarloSamplingFlag = true; break;
case CMD_LINE_ARG_SUBDIVISION_SAMPLING : SubdivisionSamplingFlag = true; break;
case CMD_LINE_ARG_SIMILAR_TRIANGLES_SAMPLING : SimilarTrianglesSamplingFlag = true; break;
default : printf(MSG_ERR_INVALID_OPTION, argv[i]);
exit(0);
}
break;
case CMD_LINE_ARG_N_SAMPLES : NumberOfSamples = true; n_samples_target = (unsigned long) atoi(&(argv[i][2])); break;
case CMD_LINE_ARG_SAMPLES_PER_AREA_UNIT : SamplesPerAreaUnit = true; n_samples_per_area_unit = (unsigned long) atoi(&(argv[i][2])); break;
case CMD_LINE_ARG_SAVE_DISPLACEMENT : SaveErrorDisplacement = true; new_mesh_filename = &(argv[i][2]);
if(new_mesh_filename[0] == '\0')
new_mesh_filename = fname_1;
break;
case CMD_LINE_ARG_SAVE_ERROR_AS_COLOUR : SaveErrorAsColour = true; new_mesh_filename_2 = &(argv[i][2]);
if(new_mesh_filename_2[0] == '\0')
new_mesh_filename_2 = fname_2;
break;
default : printf(MSG_ERR_INVALID_OPTION, argv[i]);
exit(0);
}
i++;
}
// set sampling scheme
int sampling_method = MontecarloSamplingFlag + SubdivisionSamplingFlag + SimilarTrianglesSamplingFlag;
// defaults
if(!sampling_method)
SimilarTrianglesSamplingFlag = true;
if(sampling_method > 1)
{
printf("Cannot choose more than one sampling method. Similar Triangles sampling assumed.\n");
SimilarTrianglesSamplingFlag = true;
MontecarloSamplingFlag = false;
SubdivisionSamplingFlag = false;
}
if(!NumberOfSamples && !SamplesPerAreaUnit)
{
NumberOfSamples = true;
n_samples_target = NO_SAMPLES_PER_FACE * max(S1.fn,S2.fn);
}
// compute face information
tri::UpdateEdges<CMesh>::Set(S1);
tri::UpdateEdges<CMesh>::Set(S2);
// set bounding boxes for S1 and S2
tri::UpdateBounding<CMesh>::Box(S1);
tri::UpdateBounding<CMesh>::Box(S2);
// set Bounding Box.
Box3d bbox, tmp_bbox_M1=S1.bbox, tmp_bbox_M2=S2.bbox;
bbox.Add(S1.bbox);
bbox.Add(S2.bbox);
bbox.InflateFix(INFLATE_PERCENTAGE);
S1.bbox = bbox;
S2.bbox = bbox;
// set flags.
flags = 0;
if(ComputeHistFlag)
flags |= FLAG_HIST;
if(VertexSampleFlag)
flags |= FLAG_VERTEX_SAMPLING;
if(EdgeSampleFlag)
flags |= FLAG_EDGE_SAMPLING;
if(FaceSampleFlag)
flags |= FLAG_FACE_SAMPLING;
if(MontecarloSamplingFlag)
flags |= FLAG_MONTECARLO_SAMPLING;
if(SubdivisionSamplingFlag)
flags |= FLAG_SUBDIVISION_SAMPLING;
if(SimilarTrianglesSamplingFlag)
flags |= FLAG_SIMILAR_TRIANGLES_SAMPLING;
flags_fwd = flags;
flags_back = flags;
if(SaveErrorDisplacement)
{
if(S1.vn >= S2.vn)
flags_fwd |= FLAG_SAVE_ERROR_DISPLACEMENT;
else
flags_back |= FLAG_SAVE_ERROR_DISPLACEMENT;
}
if(SaveErrorAsColour)
{
if(S1.vn >= S2.vn)
flags_fwd |= FLAG_SAVE_ERROR_AS_COLOUR;
else
flags_back |= FLAG_SAVE_ERROR_AS_COLOUR;
}
// initialize time info.
int t0=clock();
// print mesh info.
Sampling<CMesh> ForwardSampling(S1,S2);
Sampling<CMesh> BackwardSampling(S2,S1);
printf("Mesh info:\n");
printf(" M1: '%s'\n\t%vertices %7i\n\tfaces %7i\n\tarea %12.4f\n", argv[1], S1.vn, S1.fn, ForwardSampling.GetArea());
printf("\tbbox (%7.4f %7.4f %7.4f)-(%7.4f %7.4f %7.4f)\n", tmp_bbox_M1.min[0], tmp_bbox_M1.min[1], tmp_bbox_M1.min[2], tmp_bbox_M1.max[0], tmp_bbox_M1.max[1], tmp_bbox_M1.max[2]);
printf("\tbbox diagonal %f\n", (float)tmp_bbox_M1.Diag());
printf(" M2: '%s'\n\t%vertices %7i\n\tfaces %7i\n\tarea %12.4f\n", argv[2], S2.vn, S2.fn, BackwardSampling.GetArea());
printf("\tbbox (%7.4f %7.4f %7.4f)-(%7.4f %7.4f %7.4f)\n", tmp_bbox_M2.min[0], tmp_bbox_M2.min[1], tmp_bbox_M2.min[2], tmp_bbox_M2.max[0], tmp_bbox_M2.max[1], tmp_bbox_M2.max[2]);
printf("\tbbox diagonal %f\n", (float)tmp_bbox_M2.Diag());
// Forward distance.
printf("\nForward distance (M1 -> M2):\n");
ForwardSampling.SetFlags(flags_fwd);
if(NumberOfSamples)
{
ForwardSampling.SetSamplesTarget(n_samples_target);
n_samples_per_area_unit = ForwardSampling.GetNSamplesPerAreaUnit();
}
else
{
ForwardSampling.SetSamplesPerAreaUnit(n_samples_per_area_unit);
n_samples_target = ForwardSampling.GetNSamplesTarget();
}
printf("target # samples : %u\ntarget # samples/area : %f\n", n_samples_target, n_samples_per_area_unit);
ForwardSampling.Hausdorff();
dist1_max = ForwardSampling.GetDistMax();
dist1_mean = ForwardSampling.GetDistMean();
dist1_RMS = ForwardSampling.GetDistRMS();
volume_1 = ForwardSampling.GetDistVolume();
n_samples_output = ForwardSampling.GetNSamples();
n_samples_area = ForwardSampling.GetNAreaSamples();
n_samples_edge = ForwardSampling.GetNEdgeSamples();
n_samples_vertex = ForwardSampling.GetNVertexSamples();
printf("\ndistance:\n max : %f (%f with respect to bounding box diagonal)\n mean : %f\n RMS : %f\n", (float)dist1_max, (float)dist1_max/bbox.Diag(), (float)dist1_mean, (float)dist1_RMS);
if(VertexSampleFlag)
printf("# vertex samples %d\n", n_samples_vertex);
if(EdgeSampleFlag)
printf("# edge samples %d\n", n_samples_edge);
printf("# area samples %d\n# total samples %d\nsamples per area unit: %f\n\n", n_samples_area, n_samples_output, ForwardSampling.GetNSamplesPerAreaUnit());
// Backward distance.
printf("\nBackward distance (M2 -> M1):\n");
BackwardSampling.SetFlags(flags_back);
if(NumberOfSamples)
{
BackwardSampling.SetSamplesTarget(n_samples_target);
n_samples_per_area_unit = BackwardSampling.GetNSamplesPerAreaUnit();
}
else
{
BackwardSampling.SetSamplesPerAreaUnit(n_samples_per_area_unit);
n_samples_target = BackwardSampling.GetNSamplesTarget();
}
printf("target # samples : %u\ntarget # samples/area : %f\n", n_samples_target, n_samples_per_area_unit);
BackwardSampling.Hausdorff();
dist2_max = BackwardSampling.GetDistMax();
dist2_mean = BackwardSampling.GetDistMean();
dist2_RMS = BackwardSampling.GetDistRMS();
volume_2 = BackwardSampling.GetDistVolume();
n_samples_output = BackwardSampling.GetNSamples();
n_samples_area = BackwardSampling.GetNAreaSamples();
n_samples_edge = BackwardSampling.GetNEdgeSamples();
n_samples_vertex = BackwardSampling.GetNVertexSamples();
printf("\ndistance:\n max : %f (%f with respect to bounding box diagonal)\n mean : %f\n RMS : %f\n", (float)dist2_max, (float)dist2_max/bbox.Diag(), (float)dist2_mean, (float)dist2_RMS);
if(VertexSampleFlag)
printf("# vertex samples %d\n", n_samples_vertex);
if(EdgeSampleFlag)
printf("# edge samples %d\n", n_samples_edge);
printf("# area samples %d\n# total samples %d\nsamples per area unit: %f\n\n", n_samples_area, n_samples_output, BackwardSampling.GetNSamplesPerAreaUnit());
// compute time info.
elapsed_time = clock() - t0;
// save error distribution histogram
/*if(ComputeHistFlag)
{
const Hist &hist1 = ForwardSampling.GetHist();
const Hist &hist2 = BackwardSampling.GetHist();
if(!(fd = fopen(hist_filename, "w")))
{
printf(MSG_ERR_FILE_OPEN);
exit(-1);
}
vector<int>::const_iterator ii;
vector<float>::const_iterator fi;
fprintf(fd, "error distribution histogram (forward distance)\n\n");
for(ii=hist1.H.begin(), fi=hist1.R.begin(); ii != hist1.H.end(); ++fi,ii++)
fprintf(fd, "%6.4f\t%d\n", *fi, *ii);
fprintf(fd, "\n\nerror distribution histogram (backward distance)\n");
for(ii=hist2.H.begin(), fi=hist2.R.begin(); ii != hist2.H.end(); ++fi,ii++)
fprintf(fd, "%6.4f\t%d\n", *fi, *ii);
fclose(fd);
}*/
// max distance.
mesh_dist_max = max(dist1_max , dist2_max);
printf("\nHausdorff distance: %f (%f with respect to bounding box diagonal)\nComputation time : %d ms\n# samples/second : %f\n\n", (float)mesh_dist_max, (float)mesh_dist_max/bbox.Diag(), (int)elapsed_time, (float)n_samples_output/(float)elapsed_time*2000.0F);
// save error files.
if((flags_fwd & FLAG_SAVE_ERROR_DISPLACEMENT) && (flags_fwd & FLAG_SAVE_ERROR_AS_COLOUR))
if(!strcmp(new_mesh_filename, new_mesh_filename_2))
{
tri::io::ExporterPLY<CMesh>::Save( S1,new_mesh_filename);
exit(0);
}
if((flags_back & FLAG_SAVE_ERROR_DISPLACEMENT) && (flags_back & FLAG_SAVE_ERROR_AS_COLOUR))
if(!strcmp(new_mesh_filename, new_mesh_filename_2))
{
tri::io::ExporterPLY<CMesh>::Save( S2,new_mesh_filename_2);
exit(0);
}
//if(flags_fwd & FLAG_SAVE_ERROR_DISPLACEMENT)
// S1.SavePly(new_mesh_filename, CMesh::SM_ALL & (CMesh::SM_ALL ^ CMesh::SM_VERTCOLOR));
//else
// if(flags_back & FLAG_SAVE_ERROR_DISPLACEMENT)
// S2.SavePly(new_mesh_filename, CMesh::SM_ALL & (CMesh::SM_ALL ^ CMesh::SM_VERTCOLOR));
//if(flags_fwd & FLAG_SAVE_ERROR_AS_COLOUR)
// S1.SavePly(new_mesh_filename_2, CMesh::SM_ALL & (CMesh::SM_ALL ^ CMesh::SM_VERTQUALITY));
//else
// if(flags_back & FLAG_SAVE_ERROR_AS_COLOUR)
// S2.SavePly(new_mesh_filename_2, CMesh::SM_ALL & (CMesh::SM_ALL ^ CMesh::SM_VERTQUALITY));
return 0;
}
// -----------------------------------------------------------------------------------------------