vcglib/vcg/space/ray2.h

200 lines
7.1 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
****************************************************************************/
#ifndef __VCGLIB_RAY2
#define __VCGLIB_RAY2
#include <vcg/space/point2.h>
namespace vcg {
/** \addtogroup space */
/*@{*/
/**
Templated class for 3D rays.
This is the class for infinite rays in 3D space. A Ray is stored just as two Point3:
an origin and a direction (not necessarily normalized).
@param RayScalarType (template parameter) Specifies the type of scalar used to represent coords.
@param NORM: if on, the direction is always Normalized
*/
template <class RayScalarType, bool NORM=false>
class Ray2
{
public:
/// The scalar type
typedef RayScalarType ScalarType;
/// The point type
typedef Point2<RayScalarType> PointType;
/// The ray type
typedef Ray2<RayScalarType,NORM> RayType;
private:
/// Origin
PointType _ori;
/// Direction (not necessarily normalized, unless so specified by NORM)
PointType _dir;
public:
//@{
/** @name Members to access the origin or direction
Direction() cannot be assigned directly.
Use SetDirection() or Set() instead.
**/
///
inline const PointType &Origin() const { return _ori; }
inline PointType &Origin() { return _ori; }
inline const PointType &Direction() const { return _dir; }
/// sets the origin
inline void SetOrigin( const PointType & ori )
{ _ori=ori; }
/// sets the direction
inline void SetDirection( const PointType & dir)
{ _dir=dir; if (NORM) _dir.Normalize(); }
/// sets origin and direction.
inline void Set( const PointType & ori, const PointType & dir )
{ SetOrigin(ori); SetDirection(dir); }
//@}
//@{
/** @name Constructors
**/
/// The empty constructor
Ray2() {};
/// The (origin, direction) constructor
Ray2(const PointType &ori, const PointType &dir) {SetOrigin(ori); SetDirection(dir);};
//@}
/// Operator to compare two rays
inline bool operator == ( RayType const & p ) const
{ return _ori==p._ori && _dir==p._dir; }
/// Operator to dispare two rays
inline bool operator != ( RayType const & p ) const
{ return _ori!=p._ori || _dir!=p._dir; }
/// Projects a point on the ray
inline ScalarType Projection( const PointType &p ) const
{ if (NORM) return ScalarType((p-_ori)*_dir);
else return ScalarType((p-_ori)*_dir/_dir.SquaredNorm());
}
/// returns wheter this type is normalized or not
static bool IsNormalized() {return NORM;};
/// calculates the point of parameter t on the ray.
inline PointType P( const ScalarType t ) const
{ return _ori + _dir * t; }
/// normalizes direction field (returns a Normalized Ray)
inline Ray2<ScalarType,true> &Normalize()
{ if (!NORM) _dir.Normalize(); return *((Ray2<ScalarType,true>*)this);}
/// normalizes direction field (returns a Normalized Ray) - static version
static Ray2<ScalarType,true> &Normalize(RayType &p)
{ p.Normalize(); return *((Ray2<ScalarType,true>*)(&p));}
/// importer for different ray types (with any scalar type or normalization beaviour)
template <class Q, bool K>
inline void Import( const Ray2<Q,K> & b )
{ _ori.Import( b.Origin() ); _dir.Import( b.Direction() );
if ((NORM) && (!K)) _dir.Normalize();
//printf("(=)%c->%c ",(!NORM)?'N':'n', NORM?'N':'n');
}
/// constructs a new ray importing it from an existing one
template <class Q, bool K>
static RayType Construct( const Ray2<Q,K> & b )
{ RayType res; res.Import(b); return res;
}
PointType ClosestPoint(const PointType & p) const{
return P(Projection(p));
}
/// flips the ray
inline void Flip(){
_dir=-_dir;
};
//@{
/** @name Linearity for 3d rays
(operators +, -, *, /) so a ray can be set as a linear combination
of several rays. Note that the result of any operation returns
a non-normalized ray; however, the command r0 = r1*a + r2*b is licit
even if r0,r1,r2 are normalized rays, as the normalization will
take place within the final assignement operation.
**/
inline Ray2<ScalarType,false> operator + ( RayType const & p) const
{return Ray2<ScalarType,false> ( _ori+p.Origin(), _dir+p.Direction() );}
inline Ray2<ScalarType,false> operator - ( RayType const & p) const
{return Ray2<ScalarType,false> ( _ori-p.Origin(), _dir-p.Direction() );}
inline Ray2<ScalarType,false> operator * ( const ScalarType s ) const
{return Ray2<ScalarType,false> ( _ori*s, _dir*s );}
inline Ray2<ScalarType,false> operator / ( const ScalarType s ) const
{ScalarType s0=((ScalarType)1.0)/s; return RayType( _ori*s0, _dir*s0 );}
//@}
//@{
/** @name Automatic normalized to non-normalized
"Ray2dN r0 = r1" is equivalent to
"Ray2dN r0 = r1.Normalize()" if r1 is a Ray2d
**/
/// copy constructor that takes opposite beaviour
Ray2(const Ray2<ScalarType,!NORM > &r)
{ Import(r); };
/// assignment
inline RayType & operator = ( Ray2<ScalarType,!NORM> const &r)
{ Import(r); return *this; };
//@}
}; // end class definition
typedef Ray2<short> Ray2s;
typedef Ray2<int> Ray2i;
typedef Ray2<float> Ray2f;
typedef Ray2<double> Ray2d;
typedef Ray2<short ,true> Ray2sN;
typedef Ray2<int ,true> Ray2iN;
typedef Ray2<float ,true> Ray2fN;
typedef Ray2<double,true> Ray2dN;
/// returns closest point
template <class ScalarType, bool NORM>
Point2<ScalarType> ClosestPoint( Ray2<ScalarType,NORM> r, const Point3<ScalarType> & p)
{
ScalarType t = r.Projection(p);
if (t<0) return r.Origin();
return r.P(t);
}
/*@}*/
} // end namespace
#endif