677 lines
15 KiB
C++
677 lines
15 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
|
|
$Log: not supported by cvs2svn $
|
|
Revision 1.6 2005/02/01 17:37:53 rita_borgo
|
|
Fixed Volume and Color
|
|
|
|
Revision 1.5 2005/01/18 16:33:12 rita_borgo
|
|
Added OFF file Option
|
|
|
|
Revision 1.4 2005/01/17 18:19:00 rita_borgo
|
|
Added new routines.
|
|
Self-intersection first release
|
|
|
|
Revision 1.2 2005/01/03 16:13:09 rita_borgo
|
|
Added Standard comments
|
|
|
|
|
|
|
|
****************************************************************************/
|
|
#include <vector>
|
|
#include <string>
|
|
#include <stack>
|
|
using namespace std;
|
|
|
|
#include<vcg/simplex/vertex/vertex.h>
|
|
#include<vcg/simplex/face/with/afav.h>
|
|
#include<vcg/simplex/face/topology.h>
|
|
#include<vcg/simplex/face/pos.h> // mi sembra di averlo aggiunto!
|
|
|
|
|
|
#include<vcg/complex/trimesh/base.h>
|
|
#include<vcg/complex/trimesh/update/topology.h>
|
|
#include <vcg/complex/trimesh/update/edges.h>
|
|
#include <vcg/complex/trimesh/update/bounding.h>
|
|
#include <vcg/complex/trimesh/clean.h>
|
|
#include <vcg/space/intersection/triangle_triangle3.h>
|
|
#include <vcg/math/histogram.h>
|
|
#include <wrap/io_trimesh/import.h>
|
|
#include <wrap/io_trimesh/export_ply.h>
|
|
|
|
|
|
// loader
|
|
#include<wrap/io_trimesh/import_ply.h>
|
|
|
|
#include "defs.h"
|
|
|
|
using namespace vcg;
|
|
using namespace tri;
|
|
using namespace face;
|
|
|
|
class MyFace;
|
|
class MyEdge;
|
|
class MyVertex:public Vertex<float,MyEdge,MyFace>{};
|
|
class MyFace :public FaceAFAV<MyVertex,MyEdge,MyFace>{};
|
|
class MyMesh: public tri::TriMesh< std::vector<MyVertex>, std::vector<MyFace > >{};
|
|
|
|
void OpenMesh(const char *filename, MyMesh &m)
|
|
{
|
|
int err = tri::io::Importer<MyMesh>::Open(m,filename);
|
|
if(err) {
|
|
printf("Error in reading %s: '%s'\n",filename,tri::io::Importer<MyMesh>::ErrorMsg(err));
|
|
exit(-1);
|
|
}
|
|
printf("read mesh `%s'\n", filename);
|
|
}
|
|
|
|
|
|
inline char* GetExtension(char* filename)
|
|
{
|
|
for(int i=strlen(filename)-1; i >= 0; i--)
|
|
if(filename[i] == '.')
|
|
break;
|
|
if(i > 0)
|
|
return &(filename[i+1]);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
|
|
typedef MyMesh::VertexPointer VertexPointer;
|
|
typedef MyMesh::VertexIterator VertexIterator;
|
|
|
|
/* classe di confronto per l'algoritmo di individuazione vertici duplicati*/
|
|
template <class VertexIterator>
|
|
class DuplicateVert_Compare{
|
|
public:
|
|
inline bool operator() (VertexIterator a, VertexIterator b)
|
|
{
|
|
return *a < *b;
|
|
}
|
|
};
|
|
|
|
static int DuplicateVertex( MyMesh & m ) // V1.0
|
|
{
|
|
if(m.vert.size()==0 || m.vn==0)
|
|
return 0;
|
|
std::map<VertexPointer, VertexPointer> mp;
|
|
int i,j;
|
|
VertexIterator vi;
|
|
int deleted=0;
|
|
int k=0;
|
|
int num_vert = m.vert.size();
|
|
vector<VertexPointer> perm(num_vert);
|
|
for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi, ++k)
|
|
perm[k] = &(*vi);
|
|
|
|
DuplicateVert_Compare<VertexPointer> c_obj;
|
|
|
|
std::sort(perm.begin(),perm.end(),c_obj);
|
|
j = 0;
|
|
i = j;
|
|
mp[perm[i]] = perm[j];
|
|
++i;
|
|
for(;i!=num_vert;)
|
|
{
|
|
if( (! (*perm[i]).IsD()) &&
|
|
(! (*perm[j]).IsD()) &&
|
|
(*perm[i]).P() == (*perm[j]).cP() )
|
|
{
|
|
VertexPointer t = perm[i];
|
|
mp[perm[i]] = perm[j];
|
|
++i;
|
|
(*t).SetD();
|
|
deleted++;
|
|
}
|
|
else
|
|
{
|
|
j = i;
|
|
++i;
|
|
}
|
|
}
|
|
return deleted;
|
|
}
|
|
void main(int argc,char ** argv){
|
|
|
|
char *fmt;
|
|
MyMesh m;
|
|
bool DEBUG = true;
|
|
//load the mesh
|
|
//argv[1]=(char*)"c:\\checkup\\debug\\column1m.ply";
|
|
//argv[1] = "C:\\sf\\apps\\msvc\\trimeshinfo\\Release\\prism.off";
|
|
//argv[1] = "C:\\sf\\apps\\msvc\\trimeshinfo\\Release\\prova1.ply";
|
|
|
|
// print program info
|
|
printf("-------------------------------\n"
|
|
" TriMeshInfo V.1.01 \n"
|
|
" http://vcg.isti.cnr.it\n"
|
|
" release date: "__DATE__"\n"
|
|
"-------------------------------\n\n");
|
|
|
|
|
|
if(DEBUG)
|
|
argv[1] = "C:\\sf\\apps\\msvc\\trimeshinfo\\Release\\cube1.stl";
|
|
|
|
else
|
|
{
|
|
// load input meshes.
|
|
if(argc <= 1)
|
|
{
|
|
printf(MSG_ERR_N_ARGS);
|
|
exit(-1);
|
|
}
|
|
}
|
|
|
|
|
|
OpenMesh(argv[1],m);
|
|
|
|
|
|
|
|
FILE * index;
|
|
index = fopen((string(argv[1])+string("2.html")).c_str(),"w");
|
|
fprintf(index,"<p>Mesh info: %s </p>\n\n\n", argv[1]);
|
|
|
|
fprintf(index,"<p>GENERAL INFO </p>\n\n");
|
|
fprintf(index,"<p>Number of vertices: %d </p>\n", m.vn);
|
|
fprintf(index,"<p>Number of faces: %d </p>\n", m.fn);
|
|
printf("Mesh info:\n");
|
|
printf(" M: '%s'\n\t Number of vertices: %d \n", argv[1], m.vn);
|
|
printf("\t Number of faces: %d \n", m.fn);
|
|
|
|
if(m.HasPerFaceColor()||m.HasPerVertexColor())
|
|
{
|
|
Color4b Color=m.C();
|
|
fprintf(index, "<p>Object color(4b): %f %f %f </p>\n\n", Color[0], Color[1], Color[2]);
|
|
printf( "\t Object color(4b): %f %f %f \n", Color[0], Color[1], Color[2]);
|
|
}
|
|
|
|
|
|
vcg::tri::UpdateTopology<MyMesh>::FaceFace(m);
|
|
|
|
// IS MANIFOLD
|
|
|
|
MyMesh::FaceIterator f;
|
|
MyMesh::FaceIterator g;
|
|
vcg::face::Pos<MyMesh::FaceType> he;
|
|
vcg::face::Pos<MyMesh::FaceType> hei;
|
|
int j;
|
|
int man=0;
|
|
bool Manifold = true;
|
|
|
|
MyMesh::FaceIterator prova;
|
|
prova = m.face.end();
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
|
{
|
|
for (j=0;j<3;++j)
|
|
{
|
|
if(!IsManifold(*f,j))
|
|
{
|
|
Manifold = false;
|
|
f= m.face.end();
|
|
--f;
|
|
j=3;
|
|
}
|
|
}
|
|
}
|
|
if (!Manifold)
|
|
{
|
|
fprintf(index, "<p> Manifold: NO </p>");
|
|
printf( "\t Manifold: NO\n");
|
|
}
|
|
else
|
|
{
|
|
fprintf(index, "<p> Manifold: YES </p>");
|
|
printf( "\t Manifold: YES\n ");
|
|
}
|
|
|
|
// COUNT EDGES
|
|
|
|
MyMesh::FaceIterator fi;
|
|
int count_e = 0;
|
|
bool counted=false;
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
(*fi).ClearS();
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
(*fi).SetS();
|
|
count_e +=3;
|
|
for(int i=0; i<3; ++i)
|
|
{
|
|
if (IsManifold(*fi,i))
|
|
{
|
|
if((*fi).FFp(i)->IsS())
|
|
count_e--;
|
|
}
|
|
else
|
|
{
|
|
hei.Set(&(*fi), i , fi->V(i));
|
|
he=hei;
|
|
he.NextF();
|
|
while (he.f!=hei.f)
|
|
{
|
|
if (he.f->IsS())
|
|
{
|
|
counted=true;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
he.NextF();
|
|
}
|
|
}
|
|
if (counted)
|
|
{
|
|
count_e--;
|
|
counted=false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
fprintf(index, "<p>Number of edges: %d </p>\n", count_e);
|
|
printf("\t Number of edges: %d \n", count_e);
|
|
|
|
|
|
// DA QUI IN POI!!!
|
|
|
|
// DEGENERATED FACES
|
|
|
|
int count_fd = 0;
|
|
for(fi=m.face.begin(); fi!=m.face.end();++fi)
|
|
if((*fi).Area() == 0)
|
|
count_fd++;
|
|
fprintf(index, "<p>Number of degenerated faces: %d </p>\n", count_fd);
|
|
printf("\t Number of degenerated faces: %d \n", count_fd);
|
|
|
|
// UNREFERENCED VERTEX
|
|
|
|
int count_uv = 0;
|
|
MyMesh::VertexIterator v;
|
|
|
|
|
|
|
|
for(v=m.vert.begin();v!=m.vert.end();++v)
|
|
(*v).ClearV();
|
|
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
|
for(j=0;j<3;++j)
|
|
(*f).V(j)->SetV();
|
|
|
|
for(v=m.vert.begin();v!=m.vert.end();++v)
|
|
if( !(*v).IsV() )
|
|
++count_uv;
|
|
fprintf(index,"<p>Number of unreferenced vertices: %d</p>\n",count_uv);
|
|
printf("\t Number of unreferenced vertices: %d\n",count_uv);
|
|
|
|
|
|
// HOLES COUNT
|
|
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
|
(*f).ClearS();
|
|
g=m.face.begin(); f=g;
|
|
|
|
int BEdges=0; int numholes=0;
|
|
|
|
|
|
if (Manifold)
|
|
{
|
|
for(f=g;f!=m.face.end();++f)
|
|
{
|
|
if(!(*f).IsS())
|
|
{
|
|
for(j=0;j<3;j++)
|
|
{
|
|
if ((*f).IsBorder(j))
|
|
{
|
|
BEdges++;
|
|
|
|
if(!(IsManifold(*f,j)))
|
|
{
|
|
(*f).SetS();
|
|
hei.Set(&(*f),j,f->V(j));
|
|
he=hei;
|
|
do
|
|
{
|
|
he.NextB();
|
|
he.f->SetS();
|
|
// BEdges++;
|
|
}
|
|
while (he.f!=hei.f);
|
|
//BEdges--;
|
|
numholes++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(f=g;f!=m.face.end();++f)
|
|
{
|
|
for(j=0;j<3;j++)
|
|
{
|
|
if ((*f).IsBorder(j))
|
|
{
|
|
BEdges++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (Manifold)
|
|
{
|
|
fprintf(index, "<p> Number of holes: %d </p> \n <p> Number of border edges: %d </p>", numholes, BEdges);
|
|
printf("\t Number of holes: %d \n", numholes, BEdges);
|
|
printf("\t Number of border edges: %d\n", numholes, BEdges);
|
|
}
|
|
else
|
|
{
|
|
fprintf(index, "<p> Number of border edges: %d </p>", BEdges);
|
|
printf("\t Number of border edges: %d\n", BEdges);
|
|
}
|
|
|
|
// Mesh Volume
|
|
float vol = m.Volume();
|
|
int nuh = numholes;
|
|
if((m.Volume()>0.)&&(Manifold)&&(numholes==0))
|
|
{
|
|
fprintf(index,"<p>Volume: %d </p>\n", m.Volume());
|
|
printf("\t Volume: %f \n", m.Volume());
|
|
}
|
|
|
|
|
|
// CONNECTED COMPONENTS
|
|
|
|
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
|
(*f).ClearS();
|
|
g=m.face.begin(); f=g;
|
|
int CountComp=0; int CountOrient=0;
|
|
stack<MyMesh::FaceIterator> sf;
|
|
MyMesh::FaceType *l;
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
|
{
|
|
if (!(*f).IsS())
|
|
{
|
|
(*f).SetS();
|
|
sf.push(f);
|
|
while (!sf.empty())
|
|
{
|
|
g=sf.top();
|
|
he.Set(&(*g),0,g->V(0));
|
|
sf.pop();
|
|
for(j=0;j<3;++j)
|
|
if( !(*g).IsBorder(j) )
|
|
{
|
|
l=he.f->FFp(j);
|
|
if( !(*l).IsS() )
|
|
{
|
|
(*l).SetS();
|
|
sf.push(l);
|
|
}
|
|
}
|
|
}
|
|
CountComp++;
|
|
}
|
|
}
|
|
fprintf(index, "<p> Number of connected components: %d </p>", CountComp);
|
|
printf("\t Number of connected components: %d\n", CountComp);
|
|
|
|
if(CountComp ==1)
|
|
{
|
|
int eulero; //v-e+f
|
|
eulero = (m.vn-count_uv)- (count_e+BEdges)+m.fn;
|
|
if(Manifold)
|
|
{
|
|
int genus = (2-eulero)>>1;
|
|
fprintf(index, "<p> Genus: %d </p> \n ", genus);
|
|
printf( "\t Genus: %d \n", genus);
|
|
}
|
|
}
|
|
// REGULARITY
|
|
|
|
bool Regular=true;
|
|
bool Semiregular=true;
|
|
int inc=0;
|
|
for(v=m.vert.begin();v!=m.vert.end();++v)
|
|
(*v).ClearS();
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
|
{
|
|
for (j=0; j<3; j++)
|
|
{
|
|
he.Set(&(*f),j,f->V(j));
|
|
if (!(*f).IsBorder(j) && !(*f).IsBorder((j+2)%3) && !f->V(j)->IsS())
|
|
{
|
|
hei=he;
|
|
inc=1;
|
|
he.FlipE();
|
|
he.NextF();
|
|
while (he.f!=hei.f)
|
|
{
|
|
he.FlipE();
|
|
if (he.IsBorder())
|
|
{
|
|
inc=6;
|
|
break;
|
|
}
|
|
he.NextF();
|
|
inc++;
|
|
}
|
|
if (inc!=6)
|
|
Regular=false;
|
|
if (inc!=6 && inc!=5)
|
|
Semiregular=false;
|
|
f->V(j)->SetS();
|
|
|
|
}
|
|
else
|
|
f->V(j)->SetS();
|
|
}
|
|
if (Semiregular==false)
|
|
break;
|
|
|
|
}
|
|
|
|
if (Regular)
|
|
{
|
|
fprintf(index, "<p> Type of Mesh: REGULAR</p>");
|
|
printf("\t Type of Mesh: REGULAR\n");
|
|
}
|
|
else if (Semiregular)
|
|
{
|
|
fprintf(index, "<p> Type of Mesh: SEMIREGULAR</p>");
|
|
printf("\t Type of Mesh: SEMIREGULAR\n");
|
|
}
|
|
else
|
|
{
|
|
fprintf(index, "<p> Type of Mesh: IRREGULAR</p>");
|
|
printf("\t Type of Mesh: IRREGULAR\n");
|
|
}
|
|
// ORIENTABLE E ORIENTED MESH
|
|
|
|
bool Orientable=true;
|
|
bool Oriented=true;
|
|
if (!Manifold)
|
|
{
|
|
fprintf(index, "<p> Orientable Mesh: NO</p>");
|
|
printf( "\t Orientable Mesh: NO\n");
|
|
}
|
|
else
|
|
{
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
|
{
|
|
(*f).ClearS();
|
|
(*f).ClearUserBit(0);
|
|
}
|
|
g=m.face.begin(); f=g;
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
|
{
|
|
if (!(*f).IsS())
|
|
{
|
|
(*f).SetS();
|
|
sf.push(f);
|
|
|
|
while (!sf.empty())
|
|
{
|
|
g=sf.top();
|
|
sf.pop();
|
|
for(j=0;j<3;++j)
|
|
{
|
|
if( !(*g).IsBorder(j) )
|
|
{
|
|
he.Set(&(*g),0,g->V(0));
|
|
l=he.f->FFp(j);
|
|
he.Set(&(*g),j,g->V(j));
|
|
hei.Set(he.f->FFp(j),he.f->FFi(j), (he.f->FFp(j))->V(he.f->FFi(j)));
|
|
if( !(*g).IsUserBit(0) )
|
|
{
|
|
if (he.v!=hei.v) // bene
|
|
{
|
|
if ((*l).IsS() && (*l).IsUserBit(0))
|
|
{
|
|
Orientable=false;
|
|
break;
|
|
}
|
|
else if (!(*l).IsS())
|
|
{
|
|
(*l).SetS();
|
|
sf.push(l);
|
|
}
|
|
}
|
|
else if (!(*l).IsS())
|
|
{
|
|
Oriented=false;
|
|
(*l).SetS();
|
|
(*l).SetUserBit(0);
|
|
sf.push(l);
|
|
}
|
|
else if ((*l).IsS() && !(*l).IsUserBit(0))
|
|
{
|
|
Orientable=false;
|
|
break;
|
|
}
|
|
}
|
|
else if (he.v==hei.v) // bene
|
|
{
|
|
if ((*l).IsS() && (*l).IsUserBit(0))
|
|
{
|
|
Orientable=false;
|
|
break;
|
|
}
|
|
else if (!(*l).IsS())
|
|
{
|
|
(*l).SetS();
|
|
sf.push(l);
|
|
}
|
|
}
|
|
else if (!(*l).IsS())
|
|
{
|
|
Oriented=false;
|
|
(*l).SetS();
|
|
(*l).SetUserBit(0);
|
|
sf.push(l);
|
|
}
|
|
else if ((*l).IsS() && !(*l).IsUserBit(0))
|
|
{
|
|
Orientable=false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!Orientable)
|
|
break;
|
|
}
|
|
if (Orientable)
|
|
{
|
|
fprintf(index, "<p> Orientable Mesh: YES</p>");
|
|
printf( "\t Orientable Mesh: YES\n");
|
|
}
|
|
else
|
|
{
|
|
fprintf(index, "<p> Orientable Mesh: NO</p>");
|
|
printf( "\t Orientable Mesh: NO\n");
|
|
}
|
|
}
|
|
if (Oriented && Manifold)
|
|
{
|
|
fprintf(index, "<p> Oriented Mesh: YES</p>");
|
|
printf( "\t Oriented Mesh: YES\n");
|
|
}
|
|
else
|
|
{
|
|
fprintf(index, "<p> Oriented Mesh: NO</p>");
|
|
printf( "\t Oriented Mesh: NO\n");
|
|
}
|
|
// SELF INTERSECTION
|
|
|
|
if (m.fn<300000)
|
|
{
|
|
bool SelfInt=false;
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
|
{
|
|
for(g=++f , f--;g!=m.face.end();++g)
|
|
{
|
|
if ((*f).FFp(0)!=&(*g) && (*f).FFp(1)!=&(*g) && (*f).FFp(2)!=&(*g) &&
|
|
f->V(0)!=g->V(0) && f->V(0)!=g->V(1) && f->V(0)!=g->V(2) &&
|
|
f->V(1)!=g->V(0) && f->V(1)!=g->V(1) && f->V(1)!=g->V(2) &&
|
|
f->V(2)!=g->V(0) && f->V(2)!=g->V(1) && f->V(2)!=g->V(2))
|
|
{
|
|
if (NoDivTriTriIsect(f->V(0)->P(), f->V(1)->P(), f->V(2)->P(),g->V(0)->P(), g->V(1)->P(), g->V(2)->P()) )
|
|
SelfInt=true;
|
|
}
|
|
}
|
|
if (SelfInt)
|
|
break;
|
|
}
|
|
if (SelfInt)
|
|
{
|
|
fprintf(index, "<p> Self Intersection: YES</p>");
|
|
printf( "\t Self Intersection: YES\n");
|
|
}
|
|
else
|
|
{
|
|
fprintf(index, "<p> Self Intersection: NO</p>");
|
|
printf( "\t Self Intersection: NO\n");
|
|
}
|
|
}
|
|
int dv = DuplicateVertex(m);
|
|
if(dv>0)
|
|
{
|
|
fprintf(index, "<p> Duplicated vertices: %d</p>", dv);
|
|
printf( "\t Duplicated vertices: %d\n",dv);
|
|
}
|
|
else
|
|
{
|
|
fprintf(index, "<p> Duplicated vertices: NO</p>");
|
|
printf( "\t Duplicated vertices: NO\n");
|
|
}
|
|
fclose(index);
|
|
}
|
|
|
|
|