vcglib/vcg/complex/trimesh/clean.h

1530 lines
49 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_CLEAN
#define __VCGLIB_CLEAN
// Standard headers
#include <map>
#include <algorithm>
#include <stack>
// VCG headers
#include <vcg/simplex/face/pos.h>
#include <vcg/simplex/face/topology.h>
#include <vcg/complex/trimesh/base.h>
#include <vcg/complex/trimesh/closest.h>
#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/space/index/spatial_hashing.h>
#include <vcg/complex/trimesh/allocate.h>
#include <vcg/complex/trimesh/update/selection.h>
#include <vcg/complex/trimesh/update/flag.h>
#include <vcg/complex/trimesh/update/normal.h>
#include <vcg/complex/trimesh/update/topology.h>
#include <vcg/space/triangle3.h>
namespace vcg {
namespace tri{
template <class ConnectedMeshType>
class ConnectedIterator
{
public:
typedef ConnectedMeshType MeshType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::ConstFaceIterator ConstFaceIterator;
typedef typename MeshType::FaceContainer FaceContainer;
public:
void operator ++()
{
FacePointer fpt=sf.top();
sf.pop();
for(int j=0;j<3;++j)
if( !face::IsBorder(*fpt,j) )
{
FacePointer l=fpt->FFp(j);
if( !tri::IsMarked(*mp,l) )
{
tri::Mark(*mp,l);
sf.push(l);
}
}
}
void start(MeshType &m, FacePointer p)
{
mp=&m;
while(!sf.empty()) sf.pop();
UnMarkAll(m);
assert(p);
assert(!p->IsD());
tri::Mark(m,p);
sf.push(p);
}
bool completed() {
return sf.empty();
}
FacePointer operator *()
{
return sf.top();
}
private:
std::stack<FacePointer> sf;
MeshType *mp;
};
///
/** \addtogroup trimesh */
/*@{*/
/// Class of static functions to clean/correct/restore meshs.
template <class CleanMeshType>
class Clean
{
public:
typedef CleanMeshType MeshType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::ConstVertexIterator ConstVertexIterator;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::ConstFaceIterator ConstFaceIterator;
typedef typename MeshType::FaceContainer FaceContainer;
typedef typename vcg::Box3<ScalarType> Box3Type;
typedef GridStaticPtr<FaceType, ScalarType > TriMeshGrid;
typedef Point3<ScalarType> Point3x;
//TriMeshGrid gM;
//FaceIterator fi;
//FaceIterator gi;
//vcg::face::Pos<FaceType> he;
//vcg::face::Pos<FaceType> hei;
/* classe di confronto per l'algoritmo di eliminazione vertici duplicati*/
class RemoveDuplicateVert_Compare{
public:
inline bool operator()(VertexPointer const &a, VertexPointer const &b)
{
return (*a).cP() < (*b).cP();
}
};
/** This function removes all duplicate vertices of the mesh by looking only at their spatial positions.
Note that it does not update any topology relation that could be affected by this like the VT or TT relation.
the reason this function is usually performed BEFORE building any topology information.
*/
static int RemoveDuplicateVertex( MeshType & m, bool RemoveDegenerateFlag=true) // V1.0
{
if(m.vert.size()==0 || m.vn==0) return 0;
std::map<VertexPointer, VertexPointer> mp;
size_t i,j;
VertexIterator vi;
int deleted=0;
int k=0;
size_t num_vert = m.vert.size();
std::vector<VertexPointer> perm(num_vert);
for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi, ++k)
perm[k] = &(*vi);
RemoveDuplicateVert_Compare c_obj;
std::sort(perm.begin(),perm.end(),c_obj);
j = 0;
i = j;
mp[perm[i]] = perm[j];
++i;
for(;i!=num_vert;)
{
if( (! (*perm[i]).IsD()) &&
(! (*perm[j]).IsD()) &&
(*perm[i]).P() == (*perm[j]).cP() )
{
VertexPointer t = perm[i];
mp[perm[i]] = perm[j];
++i;
Allocator<MeshType>::DeleteVertex(m,*t);
deleted++;
}
else
{
j = i;
++i;
}
}
FaceIterator fi;
for(fi = m.face.begin(); fi!=m.face.end(); ++fi)
if( !(*fi).IsD() )
for(k = 0; k < 3; ++k)
if( mp.find( (typename MeshType::VertexPointer)(*fi).V(k) ) != mp.end() )
{
(*fi).V(k) = &*mp[ (*fi).V(k) ];
}
if(RemoveDegenerateFlag) RemoveDegenerateFace(m);
return deleted;
}
class SortedTriple
{
public:
SortedTriple() {}
SortedTriple(unsigned int v0, unsigned int v1, unsigned int v2,FacePointer _fp)
{
v[0]=v0;v[1]=v1;v[2]=v2;
fp=_fp;
std::sort(v,v+3);
}
bool operator < (const SortedTriple &p) const
{
return (v[2]!=p.v[2])?(v[2]<p.v[2]):
(v[1]!=p.v[1])?(v[1]<p.v[1]):
(v[0]<p.v[0]); }
bool operator == (const SortedTriple &s) const
{
if( (v[0]==s.v[0]) && (v[1]==s.v[1]) && (v[2]==s.v[2]) ) return true;
return false;
}
unsigned int v[3];
FacePointer fp;
};
/** This function removes all duplicate faces of the mesh by looking only at their vertex reference.
So it should be called after unification of vertices.
Note that it does not update any topology relation that could be affected by this like the VT or TT relation.
the reason this function is usually performed BEFORE building any topology information.
*/
static int RemoveDuplicateFace( MeshType & m) // V1.0
{
FaceIterator fi;
std::vector<SortedTriple> fvec;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
fvec.push_back(SortedTriple( tri::Index(m,(*fi).V(0)),
tri::Index(m,(*fi).V(1)),
tri::Index(m,(*fi).V(2)),
&*fi));
}
assert (size_t(m.fn) == fvec.size());
//for(int i=0;i<fvec.size();++i) qDebug("fvec[%i] = (%i %i %i)(%i)",i,fvec[i].v[0],fvec[i].v[1],fvec[i].v[2],tri::Index(m,fvec[i].fp));
std::sort(fvec.begin(),fvec.end());
int total=0;
for(size_t i=0;i<fvec.size()-1;++i)
{
if(fvec[i]==fvec[i+1])
{
total++;
tri::Allocator<MeshType>::DeleteFace(m, *(fvec[i].fp) );
//qDebug("deleting face %i (pos in fvec %i)",tri::Index(m,fvec[i].fp) ,i);
}
}
return total;
}
/** This function removes that are not referenced by any face. The function updates the vn counter.
@param m The mesh
@return The number of removed vertices
*/
static int RemoveUnreferencedVertex( MeshType& m, bool DeleteVertexFlag=true) // V1.0
{
FaceIterator fi;
VertexIterator vi;
int referredBit = VertexType::NewBitFlag();
int j;
int deleted = 0;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
(*vi).ClearUserBit(referredBit);
for(fi=m.face.begin();fi!=m.face.end();++fi)
if( !(*fi).IsD() )
for(j=0;j<3;++j)
(*fi).V(j)->SetUserBit(referredBit);
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if( (!(*vi).IsD()) && (!(*vi).IsUserBit(referredBit)))
{
if(DeleteVertexFlag) Allocator<MeshType>::DeleteVertex(m,*vi);
++deleted;
}
VertexType::DeleteBitFlag(referredBit);
return deleted;
}
/**
Degenerate vertices are vertices that have coords with invalid floating point values,
All the faces incident on deleted vertices are also deleted
*/
static int RemoveDegenerateVertex(MeshType& m)
{
VertexIterator vi;
int count_vd = 0;
for(vi=m.vert.begin(); vi!=m.vert.end();++vi)
if(math::IsNAN( (*vi).P()[0]) ||
math::IsNAN( (*vi).P()[1]) ||
math::IsNAN( (*vi).P()[2]) )
{
count_vd++;
Allocator<MeshType>::DeleteVertex(m,*vi);
}
FaceIterator fi;
int count_fd = 0;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
if(!(*fi).IsD())
if( (*fi).V(0)->IsD() ||
(*fi).V(1)->IsD() ||
(*fi).V(2)->IsD() )
{
count_fd++;
Allocator<MeshType>::DeleteFace(m,*fi);
}
return count_vd;
}
/**
Degenerate faces are faces that are Topologically degenerate,
i.e. have two or more vertex reference that link the same vertex
(and not only two vertexes with the same coordinates).
All Degenerate faces are zero area faces BUT not all zero area faces are degenerate.
We do not take care of topology because when we have degenerate faces the
topology calculation functions crash.
*/
static int RemoveDegenerateFace(MeshType& m)
{
FaceIterator fi;
int count_fd = 0;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
if((*fi).V(0) == (*fi).V(1) ||
(*fi).V(0) == (*fi).V(2) ||
(*fi).V(1) == (*fi).V(2) )
{
count_fd++;
Allocator<MeshType>::DeleteFace(m,*fi);
}
}
return count_fd;
}
static int RemoveNonManifoldVertex(MeshType& m)
{
/*int count_vd = */
CountNonManifoldVertexFF(m,true);
/*int count_fd = */
tri::UpdateSelection<MeshType>::FaceFromVertexLoose(m);
int count_removed = 0;
FaceIterator fi;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
if(!(*fi).IsD() && (*fi).IsS())
Allocator<MeshType>::DeleteFace(m,*fi);
VertexIterator vi;
for(vi=m.vert.begin(); vi!=m.vert.end();++vi)
if(!(*vi).IsD() && (*vi).IsS()) {
++count_removed;
Allocator<MeshType>::DeleteVertex(m,*vi);
}
return count_removed;
}
/// Removal of faces that were incident on a non manifold edge.
static int SplitNonManifoldVertex(MeshType& m)
{
FaceIterator fi;
int count_sv = 0; // split vertex counter
typedef std::pair<FacePointer,int> FaceInt;
std::vector<std::pair<VertexPointer, std::vector<FaceInt> > >ToSplitVec;
SelectionStack<MeshType> ss(m);
ss.push();
CountNonManifoldVertexFF(m,true);
UpdateFlags<MeshType>::VertexClearV(m);
for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
{
for(int i=0;i<3;i++)
if((*fi).V(i)->IsS() && !(*fi).V(i)->IsV())
{
(*fi).V(i)->SetV();
face::Pos<FaceType> startPos(&*fi,i);
face::Pos<FaceType> curPos = startPos;
std::set<FaceInt> faceSet;
do
{
faceSet.insert(make_pair(curPos.F(),curPos.VInd()));
curPos.NextE();
} while (curPos != startPos);
ToSplitVec.push_back(make_pair((*fi).V(i),std::vector<FaceInt>()));
typename std::set<FaceInt>::const_iterator iii;
for(iii=faceSet.begin();iii!=faceSet.end();++iii)
ToSplitVec.back().second.push_back(*iii);
}
}
ss.pop();
// Second step actually add new vertices and split them.
typename tri::Allocator<MeshType>::template PointerUpdater<VertexPointer> pu;
VertexIterator firstVp = tri::Allocator<MeshType>::AddVertices(m,ToSplitVec.size(),pu);
for(int i =0;i<ToSplitVec.size();++i)
{
qDebug("Splitting Vertex %i",ToSplitVec[i].first-&*m.vert.begin());
VertexPointer np=ToSplitVec[i].first;
pu.Update(np);
firstVp->ImportData(*np);
for(int j=0;j<ToSplitVec[i].second.size();++j)
{
FaceInt ff=ToSplitVec[i].second[j];
ff.first->V(ff.second)=&*firstVp;
}
firstVp++;
}
return ToSplitVec.size();
}
// Auxiliary function for sorting the non manifold faces according to their area. Used in RemoveNonManifoldFace
struct CompareAreaFP {
bool operator ()(FacePointer const& f1, FacePointer const& f2) const {
return DoubleArea(*f1) < DoubleArea(*f2);
}
};
/// Removal of faces that were incident on a non manifold edge.
static int RemoveNonManifoldFace(MeshType& m)
{
FaceIterator fi;
int count_fd = 0;
std::vector<FacePointer> ToDelVec;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
if (!fi->IsD())
{
if ((!IsManifold(*fi,0))||
(!IsManifold(*fi,1))||
(!IsManifold(*fi,2)))
ToDelVec.push_back(&*fi);
}
std::sort(ToDelVec.begin(),ToDelVec.end(),CompareAreaFP());
for(size_t i=0;i<ToDelVec.size();++i)
{
if(!ToDelVec[i]->IsD())
{
FaceType &ff= *ToDelVec[i];
if ((!IsManifold(ff,0))||
(!IsManifold(ff,1))||
(!IsManifold(ff,2)))
{
for(int j=0;j<3;++j)
if(!face::IsBorder<FaceType>(ff,j))
vcg::face::FFDetach<FaceType>(ff,j);
Allocator<MeshType>::DeleteFace(m,ff);
count_fd++;
}
}
}
return count_fd;
}
/*
The following functions remove faces that are geometrically "bad" according to edges and area criteria.
They remove the faces that are out of a given range of area or edges (e.g. faces too large or too small, or with edges too short or too long)
but that could be topologically correct.
These functions can optionally take into account only the selected faces.
*/
template<bool Selected>
static int RemoveFaceOutOfRangeAreaSel(MeshType& m, ScalarType MinAreaThr=0, ScalarType MaxAreaThr=(std::numeric_limits<ScalarType>::max)())
{
FaceIterator fi;
int count_fd = 0;
MinAreaThr*=2;
MaxAreaThr*=2;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
if(!(*fi).IsD())
if(!Selected || (*fi).IsS())
{
const ScalarType doubleArea=DoubleArea<FaceType>(*fi);
if((doubleArea<=MinAreaThr) || (doubleArea>=MaxAreaThr) )
{
Allocator<MeshType>::DeleteFace(m,*fi);
count_fd++;
}
}
return count_fd;
}
// alias for the old style. Kept for backward compatibility
static int RemoveZeroAreaFace(MeshType& m) { return RemoveFaceOutOfRangeArea(m);}
// Aliases for the functions that do not look at selection
static int RemoveFaceOutOfRangeArea(MeshType& m, ScalarType MinAreaThr=0, ScalarType MaxAreaThr=(std::numeric_limits<ScalarType>::max)())
{
return RemoveFaceOutOfRangeAreaSel<false>(m,MinAreaThr,MaxAreaThr);
}
/**
* Is the mesh only composed by quadrilaterals?
*/
static bool IsBitQuadOnly(const MeshType &m)
{
typedef typename MeshType::FaceType F;
if (!m.HasPerFaceFlags()) return false;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2);
if ( tmp != F::FAUX0 && tmp != F::FAUX1 && tmp != F::FAUX2) return false;
}
return true;
}
/**
* Is the mesh only composed by triangles? (non polygonal faces)
*/
static bool IsBitTriOnly(const MeshType &m)
{
if (!m.HasPerFaceFlags()) return true;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) {
if (
!fi->IsD() && fi->IsAnyF()
) return false;
}
return true;
}
static bool IsBitPolygonal(const MeshType &m){
return !IsBitTriOnly(m);
}
/**
* Is the mesh only composed by quadrilaterals and triangles? (no pentas, etc)
*/
static bool IsBitTriQuadOnly(const MeshType &m)
{
typedef typename MeshType::FaceType F;
if (!m.HasPerFaceFlags()) return false;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2);
if ( tmp!=F::FAUX0 && tmp!=F::FAUX1 && tmp!=F::FAUX2 && tmp!=0 ) return false;
}
return true;
}
/**
* How many quadrilaterals?
*/
static int CountBitQuads(const MeshType &m)
{
if (!m.HasPerFaceFlags()) return 0;
typedef typename MeshType::FaceType F;
int count=0;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2);
if ( tmp==F::FAUX0 || tmp==F::FAUX1 || tmp==F::FAUX2) count++;
}
return count / 2;
}
/**
* How many triangles? (non polygonal faces)
*/
static int CountBitTris(const MeshType &m)
{
if (!m.HasPerFaceFlags()) return m.fn;
int count=0;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
if (!(fi->IsAnyF())) count++;
}
return count;
}
/**
* How many polygons of any kind? (including triangles)
*/
static int CountBitPolygons(const MeshType &m)
{
if (!m.HasPerFaceFlags()) return m.fn;
typedef typename MeshType::FaceType F;
int count = 0;
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) {
if (fi->IsF(0)) count++;
if (fi->IsF(1)) count++;
if (fi->IsF(2)) count++;
}
return m.fn - count/2;
}
/**
* The number of polygonal faces is
* FN - EN_f (each faux edge hides exactly one triangular face or in other words a polygon of n edges has n-3 faux edges.)
* In the general case where a The number of polygonal faces is
* FN - EN_f + VN_f
* where:
* EN_f is the number of faux edges.
* VN_f is the number of faux vertices (e.g vertices completely surrounded by faux edges)
* as a intuitive proof think to a internal vertex that is collapsed onto a border of a polygon:
* it deletes 2 faces, 1 faux edges and 1 vertex so to keep the balance you have to add back the removed vertex.
*/
static int CountBitLargePolygons(MeshType &m)
{
UpdateFlags<MeshType>::VertexSetV(m);
// First loop Clear all referenced vertices
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if (!fi->IsD())
for(int i=0;i<3;++i) fi->V(i)->ClearV();
// Second Loop, count (twice) faux edges and mark all vertices touched by non faux edges (e.g vertexes on the boundary of a polygon)
if (!m.HasPerFaceFlags()) return m.fn;
typedef typename MeshType::FaceType F;
int countE = 0;
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if (!fi->IsD()) {
for(int i=0;i<3;++i)
{
if (fi->IsF(i))
countE++;
else
{
fi->V0(i)->SetV();
fi->V1(i)->SetV();
}
}
}
// Third Loop, count the number of referenced vertexes that are completely surrounded by faux edges.
int countV = 0;
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if (!vi->IsD() && !vi->IsV()) countV++;
return m.fn - countE/2 + countV ;
}
/**
* Checks that the mesh has consistent per-face faux edges
* (the ones that merges triangles into larger polygons).
* A border edge should never be faux, and faux edges should always be
* reciprocated by another faux edges.
* It requires FF adjacency.
*/
static bool HasConsistentPerFaceFauxFlag(const MeshType &m)
{
assert(m.HasPerFaceFlags());
assert(m.HasFFTopology()); // todo: remove this constraint
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
for (int k=0; k<3; k++)
if( fi->IsF(k) != fi->cFFp(k)->IsF(fi->cFFi(k)) ) {
return false;
}
// non-reciprocal faux edge!
// (OR: border faux edge, which is likewise inconsistent)
return true;
}
static bool HasConsistentEdges(const MeshType &m)
{
assert(m.HasPerFaceFlags());
for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
for (int k=0; k<3; k++)
{
VertexType *v0=(*fi).V(0);
VertexType *v1=(*fi).V(1);
VertexType *v2=(*fi).V(2);
if ((v0==v1)||(v0==v2)||(v1==v2))
return false;
}
return true;
}
/**
* Count the number of non manifold edges in a mesh, e.g. the edges where there are more than 2 incident faces.
*
* Note that this test is not enough to say that a mesh is two manifold,
* you have to count also the non manifold vertexes.
*/
static int CountNonManifoldEdgeFF( MeshType & m, bool SelectFlag=false)
{
int nmfBit[3];
nmfBit[0]= FaceType::NewBitFlag();
nmfBit[1]= FaceType::NewBitFlag();
nmfBit[2]= FaceType::NewBitFlag();
UpdateFlags<MeshType>::FaceClear(m,nmfBit[0]+nmfBit[1]+nmfBit[2]);
if(SelectFlag){
UpdateSelection<MeshType>::ClearVertex(m);
UpdateSelection<MeshType>::ClearFace(m);
}
assert(tri::HasFFAdjacency(m));
int edgeCnt = 0;
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
{
if (!fi->IsD())
{
for(int i=0;i<3;++i)
if(!IsManifold(*fi,i))
{
if(!(*fi).IsUserBit(nmfBit[i]))
{
++edgeCnt;
if(SelectFlag)
{
(*fi).V0(i)->SetS();
(*fi).V1(i)->SetS();
}
// follow the ring of faces incident on edge i;
face::Pos<FaceType> nmf(&*fi,i);
do
{
if(SelectFlag) nmf.F()->SetS();
nmf.F()->SetUserBit(nmfBit[nmf.E()]);
nmf.NextF();
}
while(nmf.f != &*fi);
}
}
}
}
return edgeCnt;
}
/** Count (and eventually select) non 2-Manifold vertexes of a mesh
* e.g. the vertices with a non 2-manif. neighbourhood but that do not belong to not 2-manif edges.
* typical situation two cones connected by one vertex.
*/
static int CountNonManifoldVertexFF( MeshType & m, bool selectVert = true )
{
assert(tri::HasFFAdjacency(m));
if(selectVert) UpdateSelection<MeshType>::ClearVertex(m);
int nonManifoldCnt=0;
SimpleTempData<typename MeshType::VertContainer, int > TD(m.vert,0);
// First Loop, just count how many faces are incident on a vertex and store it in the TemporaryData Counter.
FaceIterator fi;
for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
{
TD[(*fi).V(0)]++;
TD[(*fi).V(1)]++;
TD[(*fi).V(2)]++;
}
tri::UpdateFlags<MeshType>::VertexClearV(m);
// Second Loop.
// mark out of the game the vertexes that are incident on non manifold edges.
for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
{
for(int i=0;i<3;++i)
if (!IsManifold(*fi,i)) {
(*fi).V0(i)->SetV();
(*fi).V1(i)->SetV();
}
}
// Third Loop, for safe vertexes, check that the number of faces that you can reach starting
// from it and using FF is the same of the previously counted.
for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
{
for(int i=0;i<3;i++) if(!(*fi).V(i)->IsV()){
(*fi).V(i)->SetV();
face::Pos<FaceType> pos(&(*fi),i);
int starSizeFF = pos.NumberOfIncidentFaces();
if (starSizeFF != TD[(*fi).V(i)])
{
if(selectVert) (*fi).V(i)->SetS();
nonManifoldCnt++;
}
}
}
return nonManifoldCnt;
}
static void CountEdges( MeshType & m, int &count_e, int &boundary_e )
{
count_e=0;
boundary_e=0;
UpdateFlags<MeshType>::FaceClearV(m);
FaceIterator fi;
vcg::face::Pos<FaceType> he;
vcg::face::Pos<FaceType> hei;
bool counted =false;
for(fi=m.face.begin();fi!=m.face.end();fi++)
{
if(!((*fi).IsD()))
{
(*fi).SetV();
count_e +=3; //assume that we have to increase the number of edges with three
for(int j=0; j<3; j++)
{
if (face::IsBorder(*fi,j)) //If this edge is a border edge
boundary_e++; // then increase the number of boundary edges
else if (IsManifold(*fi,j))//If this edge is manifold
{
if((*fi).FFp(j)->IsV()) //If the face on the other side of the edge is already selected
count_e--; // we counted one edge twice
}
else//We have a non-manifold edge
{
hei.Set(&(*fi), j , fi->V(j));
he=hei;
he.NextF();
while (he.f!=hei.f)// so we have to iterate all faces that are connected to this edge
{
if (he.f->IsV())// if one of the other faces was already visited than this edge was counted already.
{
counted=true;
break;
}
else
{
he.NextF();
}
}
if (counted)
{
count_e--;
counted=false;
}
}
}
}
}
}
static int CountHoles( MeshType & m)
{
int numholev=0;
FaceIterator fi;
FaceIterator gi;
vcg::face::Pos<FaceType> he;
vcg::face::Pos<FaceType> hei;
std::vector< std::vector<Point3x> > holes; //indices of vertices
for(fi=m.face.begin();fi!=m.face.end();++fi)
(*fi).ClearS();
gi=m.face.begin(); fi=gi;
for(fi=m.face.begin();fi!=m.face.end();fi++)//for all faces do
{
for(int j=0;j<3;j++)//for all edges
{
if(fi->V(j)->IsS()) continue;
if(face::IsBorder(*fi,j))//found an unvisited border edge
{
he.Set(&(*fi),j,fi->V(j)); //set the face-face iterator to the current face, edge and vertex
std::vector<Point3x> hole; //start of a new hole
hole.push_back(fi->P(j)); // including the first vertex
numholev++;
he.v->SetS(); //set the current vertex as selected
he.NextB(); //go to the next boundary edge
while(fi->V(j) != he.v)//will we do not encounter the first boundary edge.
{
Point3x newpoint = he.v->P(); //select its vertex.
if(he.v->IsS())//check if this vertex was selected already, because then we have an additional hole.
{
//cut and paste the additional hole.
std::vector<Point3x> hole2;
int index = static_cast<int>(find(hole.begin(),hole.end(),newpoint)
- hole.begin());
for(unsigned int i=index; i<hole.size(); i++)
hole2.push_back(hole[i]);
hole.resize(index);
if(hole2.size()!=0) //annoying in degenerate cases
holes.push_back(hole2);
}
hole.push_back(newpoint);
numholev++;
he.v->SetS(); //set the current vertex as selected
he.NextB(); //go to the next boundary edge
}
holes.push_back(hole);
}
}
}
return static_cast<int>(holes.size());
}
/*
Compute the set of connected components of a given mesh
it fills a vector of pair < int , faceptr > with, for each connecteed component its size and a represnant
*/
static int CountConnectedComponents(MeshType &m)
{
std::vector< std::pair<int,FacePointer> > CCV;
return ConnectedComponents(m,CCV);
}
static int ConnectedComponents(MeshType &m, std::vector< std::pair<int,FacePointer> > &CCV)
{
FaceIterator fi;
FacePointer l;
CCV.clear();
for(fi=m.face.begin();fi!=m.face.end();++fi)
(*fi).ClearS();
int Compindex=0;
std::stack<FacePointer> sf;
FacePointer fpt=&*(m.face.begin());
for(fi=m.face.begin();fi!=m.face.end();++fi)
{
if(!((*fi).IsD()) && !(*fi).IsS())
{
(*fi).SetS();
CCV.push_back(std::make_pair(0,&*fi));
sf.push(&*fi);
while (!sf.empty())
{
fpt=sf.top();
++CCV.back().first;
sf.pop();
for(int j=0;j<3;++j)
{
if( !face::IsBorder(*fpt,j) )
{
l=fpt->FFp(j);
if( !(*l).IsS() )
{
(*l).SetS();
sf.push(l);
}
}
}
}
Compindex++;
}
}
assert(int(CCV.size())==Compindex);
return Compindex;
}
/**
GENUS.
A topologically invariant property of a surface defined as
the largest number of non-intersecting simple closed curves that can be
drawn on the surface without separating it.
Roughly speaking, it is the number of holes in a surface.
The genus g of a closed surface, also called the geometric genus, is related to the
Euler characteristic by the relation $chi$ by $chi==2-2g$.
The genus of a connected, orientable surface is an integer representing the maximum
number of cuttings along closed simple curves without rendering the resultant
manifold disconnected. It is equal to the number of handles on it.
For general polyhedra the <em>Euler Formula</em> is:
V + F - E = 2 - 2G - B
where V is the number of vertices, F is the number of faces, E is the
number of edges, G is the genus and B is the number of <em>boundary polygons</em>.
The above formula is valid for a mesh with one single connected component.
By considering multiple connected components the formula becomes:
V + F - E = 2C - 2Gs - B
where C is the number of connected components and Gs is the sum of
the genus of all connected components.
*/
static int MeshGenus(MeshType &m, int numholes, int numcomponents, int count_e)
{
int V = m.vn;
int F = m.fn;
int E = count_e;
return -((V + F - E + numholes - 2 * numcomponents) / 2);
}
/**
* Check if the given mesh is regular, semi-regular or irregular.
*
* Each vertex of a \em regular mesh has valence 6 except for border vertices
* which have valence 4.
*
* A \em semi-regular mesh is derived from an irregular one applying
* 1-to-4 subdivision recursively. (not checked for now)
*
* All other meshes are \em irregular.
*/
static void IsRegularMesh(MeshType &m, bool &Regular, bool &Semiregular)
{
// This algorithm requires Vertex-Face topology
assert(m.HasVFTopology());
Regular = true;
VertexIterator vi;
// for each vertex the number of edges are count
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
{
if (!vi->IsD())
{
face::Pos<FaceType> he((*vi).VFp(), &*vi);
face::Pos<FaceType> ht = he;
int n=0;
bool border=false;
do
{
++n;
ht.NextE();
if (ht.IsBorder())
border=true;
}
while (ht != he);
if (border)
n = n/2;
if ((n != 6)&&(!border && n != 4))
{
Regular = false;
break;
}
}
}
if (!Regular)
Semiregular = false;
else
{
// For now we do not account for semi-regularity
Semiregular = false;
}
}
static void IsOrientedMesh(MeshType &m, bool &Oriented, bool &Orientable)
{
assert(&Oriented != &Orientable);
// This algorithms requires FF topology
assert(m.HasFFTopology());
Orientable = true;
Oriented = true;
// Ensure that each face is deselected
FaceIterator fi;
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
fi->ClearS();
// initialize stack
std::stack<FacePointer> faces;
// for each face of the mesh
FacePointer fp,fpaux;
int iaux;
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
{
if (!fi->IsD() && !fi->IsS())
{
// each face put in the stack is selected (and oriented)
fi->SetS();
faces.push(&(*fi));
// empty the stack
while (!faces.empty())
{
fp = faces.top();
faces.pop();
// make consistently oriented the adjacent faces
for (int j = 0; j < 3; j++)
{
// get one of the adjacent face
fpaux = fp->FFp(j);
iaux = fp->FFi(j);
if (!fpaux->IsD() && fpaux != fp && face::IsManifold<FaceType>(*fp, j))
{
if (!CheckOrientation(*fpaux, iaux))
{
Oriented = false;
if (!fpaux->IsS())
{
face::SwapEdge<FaceType,true>(*fpaux, iaux);
assert(CheckOrientation(*fpaux, iaux));
}
else
{
Orientable = false;
break;
}
}
// put the oriented face into the stack
if (!fpaux->IsS())
{
fpaux->SetS();
faces.push(fpaux);
}
}
}
}
}
if (!Orientable) break;
}
}
/// Flip the orientation of the whole mesh flipping all the faces (by swapping the first two vertices)
static void FlipMesh(MeshType &m, bool selected=false)
{
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD())
if(!selected || (*fi).IsS())
{
face::SwapEdge<FaceType,false>((*fi), 0);
if (HasPerWedgeTexCoord(m))
std::swap((*fi).WT(0),(*fi).WT(1));
}
}
// Search and remove small single triangle folds
// - a face has normal opposite to all other faces
// - choose the edge that brings to the face f1 containing the vertex opposite to that edge.
static int RemoveFaceFoldByFlip(MeshType &m, float normalThresholdDeg=175, bool repeat=true)
{
assert(m.HasFFTopology());
assert(m.HasPerVertexMark());
//Counters for logging and convergence
int count, total = 0;
do {
tri::UpdateTopology<MeshType>::FaceFace(m);
tri::UnMarkAll(m);
count = 0;
ScalarType NormalThrRad = math::ToRad(normalThresholdDeg);
ScalarType eps = 0.0001; // this epsilon value is in absolute value. It is a distance from edge in baricentric coords.
//detection stage
for(FaceIterator fi=m.face.begin();fi!= m.face.end();++fi ) if(!(*fi).IsV())
{ Point3<ScalarType> NN = vcg::NormalizedNormal((*fi));
if( vcg::Angle(NN,vcg::NormalizedNormal(*(*fi).FFp(0))) > NormalThrRad &&
vcg::Angle(NN,vcg::NormalizedNormal(*(*fi).FFp(1))) > NormalThrRad &&
vcg::Angle(NN,vcg::NormalizedNormal(*(*fi).FFp(2))) > NormalThrRad )
{
(*fi).SetS();
//(*fi).C()=Color4b(Color4b::Red);
// now search the best edge to flip
for(int i=0;i<3;i++)
{
Point3<ScalarType> &p=(*fi).P2(i);
Point3<ScalarType> L;
bool ret = vcg::InterpolationParameters((*(*fi).FFp(i)),vcg::Normal(*(*fi).FFp(i)),p,L);
if(ret && L[0]>eps && L[1]>eps && L[2]>eps)
{
(*fi).FFp(i)->SetS();
(*fi).FFp(i)->SetV();
//(*fi).FFp(i)->C()=Color4b(Color4b::Green);
if(face::CheckFlipEdge<FaceType>( *fi, i )) {
face::FlipEdge<FaceType>( *fi, i );
++count; ++total;
}
}
}
}
}
// tri::UpdateNormals<MeshType>::PerFace(m);
}
while( repeat && count );
return total;
}
static int RemoveTVertexByFlip(MeshType &m, float threshold=40, bool repeat=true)
{
assert(m.HasFFTopology());
assert(m.HasPerVertexMark());
//Counters for logging and convergence
int count, total = 0;
do {
tri::UpdateTopology<MeshType>::FaceFace(m);
tri::UnMarkAll(m);
count = 0;
//detection stage
for(unsigned int index = 0 ; index < m.face.size(); ++index )
{
FacePointer f = &(m.face[index]); float sides[3]; Point3<float> dummy;
sides[0] = Distance(f->P(0), f->P(1));
sides[1] = Distance(f->P(1), f->P(2));
sides[2] = Distance(f->P(2), f->P(0));
// Find largest triangle side
int i = std::find(sides, sides+3, std::max( std::max(sides[0],sides[1]), sides[2])) - (sides);
if( tri::IsMarked(m,f->V2(i) )) continue;
if( PSDist(f->P2(i),f->P(i),f->P1(i),dummy)*threshold <= sides[i] )
{
tri::Mark(m,f->V2(i));
if(face::CheckFlipEdge<FaceType>( *f, i )) {
// Check if EdgeFlipping improves quality
FacePointer g = f->FFp(i); int k = f->FFi(i);
Triangle3<float> t1(f->P(i), f->P1(i), f->P2(i)), t2(g->P(k), g->P1(k), g->P2(k)),
t3(f->P(i), g->P2(k), f->P2(i)), t4(g->P(k), f->P2(i), g->P2(k));
if ( std::min( t1.QualityFace(), t2.QualityFace() ) < std::min( t3.QualityFace(), t4.QualityFace() ))
{
face::FlipEdge<FaceType>( *f, i );
++count; ++total;
}
}
}
}
// tri::UpdateNormals<MeshType>::PerFace(m);
}
while( repeat && count );
return total;
}
static int RemoveTVertexByCollapse(MeshType &m, float threshold=40, bool repeat=true)
{
assert(tri::HasPerVertexMark(m));
//Counters for logging and convergence
int count, total = 0;
do {
tri::UnMarkAll(m);
count = 0;
//detection stage
for(unsigned int index = 0 ; index < m.face.size(); ++index )
{
FacePointer f = &(m.face[index]); float sides[3]; Point3<float> dummy;
sides[0] = Distance(f->P(0), f->P(1)); sides[1] = Distance(f->P(1), f->P(2)); sides[2] = Distance(f->P(2), f->P(0));
int i = std::find(sides, sides+3, std::max( std::max(sides[0],sides[1]), sides[2])) - (sides);
if( tri::IsMarked(m,f->V2(i) )) continue;
if( PSDist(f->P2(i),f->P(i),f->P1(i),dummy)*threshold <= sides[i] )
{
tri::Mark(m,f->V2(i));
int j = Distance(dummy,f->P(i))<Distance(dummy,f->P1(i))?i:(i+1)%3;
f->P2(i) = f->P(j); tri::Mark(m,f->V(j));
++count; ++total;
}
}
tri::Clean<MeshType>::RemoveDuplicateVertex(m);
tri::Allocator<MeshType>::CompactFaceVector(m);
tri::Allocator<MeshType>::CompactVertexVector(m);
}
while( repeat && count );
return total;
}
static bool SelfIntersections(MeshType &m, std::vector<FaceType*> &ret)
{
assert(HasPerFaceMark(m));// Needed by the UG
Box3< ScalarType> bbox;
TriMeshGrid gM;
ret.clear();
FaceIterator fi;
int referredBit = FaceType::NewBitFlag();
tri::UpdateFlags<MeshType>::FaceClear(m,referredBit);
std::vector<FaceType*> inBox;
gM.Set(m.face.begin(),m.face.end());
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
{
(*fi).SetUserBit(referredBit);
(*fi).GetBBox(bbox);
vcg::tri::GetInBoxFace(m, gM, bbox,inBox);
bool Intersected=false;
typename std::vector<FaceType*>::iterator fib;
for(fib=inBox.begin();fib!=inBox.end();++fib)
{
if(!(*fib)->IsUserBit(referredBit) && (*fib != &*fi) )
if(TestIntersection(&*fi,*fib)){
ret.push_back(*fib);
if(!Intersected) {
ret.push_back(&*fi);
Intersected=true;
}
}
}
inBox.clear();
}
FaceType::DeleteBitFlag(referredBit);
return (ret.size()>0);
}
/**
This function simply test that the vn and fn counters be consistent with the size of the containers and the number of deleted simplexes.
*/
static bool IsSizeConsistent(MeshType &m)
{
int DeletedVertexNum=0;
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if((*vi).IsD()) DeletedVertexNum++;
int DeletedFaceNum=0;
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if((*fi).IsD()) DeletedFaceNum++;
if(size_t(m.vn+DeletedVertexNum) != m.vert.size()) return false;
if(size_t(m.fn+DeletedFaceNum) != m.face.size()) return false;
return true;
}
/**
This function simply test that all the faces have a consistent face-face topology relation.
useful for checking that a topology modifying algorithm does not mess something.
*/
static bool IsFFAdjacencyConsistent(MeshType &m)
{
if(!HasFFAdjacency(m)) return false;
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{
for(int i=0;i<3;++i)
if(!FFCorrectness(*fi, i)) return false;
}
return true;
}
/**
This function simply test that a mesh has some reasonable tex coord.
*/
static bool HasConsistentPerWedgeTexCoord(MeshType &m)
{
if(!HasPerWedgeTexCoord(m)) return false;
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{ FaceType &f=(*fi);
if( ! ( (f.WT(0).N() == f.WT(1).N()) && (f.WT(0).N() == (*fi).WT(2).N()) ) )
return false; // all the vertices must have the same index.
if((*fi).WT(0).N() <0) return false; // no undefined texture should be allowed
}
return true;
}
/**
Simple check that there are no face with all collapsed tex coords.
*/
static bool HasZeroTexCoordFace(MeshType &m)
{
if(!HasPerWedgeTexCoord(m)) return false;
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{
if( (*fi).WT(0).P() == (*fi).WT(1).P() && (*fi).WT(0).P() == (*fi).WT(2).P() ) return false;
}
return true;
}
/**
This function test if two face intersect.
We assume that the two faces are different.
if the faces share an edge no test is done.
if the faces share only a vertex, the opposite edge is tested against the face
*/
static bool TestIntersection(FaceType *f0,FaceType *f1)
{
assert(f0!=f1);
int sv = face::CountSharedVertex(f0,f1);
if(sv==0) return (vcg::IntersectionTriangleTriangle<FaceType>((*f0),(*f1)));
// if the faces share only a vertex, the opposite edge is tested against the face
if(sv==1)
{
int i0,i1; ScalarType a,b;
face::SharedVertex(f0,f1,i0,i1);
if(vcg::IntersectionSegmentTriangle(Segment3<ScalarType>((*f0).V1(i0)->P(),(*f0).V2(i0)->P()), *f1, a, b) ) return true;
if(vcg::IntersectionSegmentTriangle(Segment3<ScalarType>((*f1).V1(i1)->P(),(*f1).V2(i1)->P()), *f0, a, b) ) return true;
}
return false;
}
/**
This function merge all the vertices that are closer than the given radius
*/
static int MergeCloseVertex(MeshType &m, const ScalarType radius)
{
int mergedCnt=0;
mergedCnt = ClusterVertex(m,radius);
RemoveDuplicateVertex(m,true);
return mergedCnt;
}
static int ClusterVertex(MeshType &m, const ScalarType radius)
{
typedef vcg::SpatialHashTable<VertexType, ScalarType> SampleSHT;
SampleSHT sht;
tri::VertTmark<MeshType> markerFunctor;
typedef vcg::vertex::PointDistanceFunctor<ScalarType> VDistFunct;
std::vector<VertexType*> closests;
int mergedCnt=0;
Point3f closestPt;
sht.Set(m.vert.begin(), m.vert.end());
UpdateFlags<MeshType>::VertexClearV(m);
for(VertexIterator viv = m.vert.begin(); viv!= m.vert.end(); ++viv)
if(!(*viv).IsD() && !(*viv).IsV())
{
(*viv).SetV();
Point3f p = viv->cP();
Box3f bb(p-Point3f(radius,radius,radius),p+Point3f(radius,radius,radius));
GridGetInBox(sht, markerFunctor, bb, closests);
// qDebug("Vertex %i has %i closest", &*viv - &*m.vert.begin(),closests.size());
for(size_t i=0; i<closests.size(); ++i)
{
float dist = Distance(p,closests[i]->cP());
if(dist < radius && !closests[i]->IsV())
{
printf("%f %f \n",dist,radius);
mergedCnt++;
closests[i]->SetV();
closests[i]->P()=p;
}
}
}
return mergedCnt;
}
static std::pair<int,int> RemoveSmallConnectedComponentsSize(MeshType &m, int maxCCSize)
{
std::vector< std::pair<int, typename MeshType::FacePointer> > CCV;
int TotalCC=ConnectedComponents(m, CCV);
int DeletedCC=0;
ConnectedIterator<MeshType> ci;
for(unsigned int i=0;i<CCV.size();++i)
{
std::vector<typename MeshType::FacePointer> FPV;
if(CCV[i].first<maxCCSize)
{
DeletedCC++;
for(ci.start(m,CCV[i].second);!ci.completed();++ci)
FPV.push_back(*ci);
typename std::vector<typename MeshType::FacePointer>::iterator fpvi;
for(fpvi=FPV.begin(); fpvi!=FPV.end(); ++fpvi)
Allocator<MeshType>::DeleteFace(m,(**fpvi));
}
}
return std::make_pair<int,int>(TotalCC,DeletedCC);
}
/// Remove the connected components smaller than a given diameter
// it returns a pair with the number of connected components and the number of deleted ones.
static std::pair<int,int> RemoveSmallConnectedComponentsDiameter(MeshType &m, ScalarType maxDiameter)
{
std::vector< std::pair<int, typename MeshType::FacePointer> > CCV;
int TotalCC=ConnectedComponents(m, CCV);
int DeletedCC=0;
tri::ConnectedIterator<MeshType> ci;
for(unsigned int i=0;i<CCV.size();++i)
{
Box3f bb;
std::vector<typename MeshType::FacePointer> FPV;
for(ci.start(m,CCV[i].second);!ci.completed();++ci)
{
FPV.push_back(*ci);
bb.Add((*ci)->P(0));
bb.Add((*ci)->P(1));
bb.Add((*ci)->P(2));
}
if(bb.Diag()<maxDiameter)
{
DeletedCC++;
typename std::vector<typename MeshType::FacePointer>::iterator fpvi;
for(fpvi=FPV.begin(); fpvi!=FPV.end(); ++fpvi)
tri::Allocator<MeshType>::DeleteFace(m,(**fpvi));
}
}
return std::make_pair<int,int>(TotalCC,DeletedCC);
}
}; // end class
/*@}*/
} //End Namespace Tri
} // End Namespace vcg
#endif