vcglib/vcg/complex/trimesh/append.h

329 lines
12 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_APPEND
#define __VCGLIB_APPEND
#include <vcg/complex/trimesh/allocate.h>
#include <vcg/complex/trimesh/update/flag.h>
namespace vcg {
namespace tri {
template<class MeshLeft, class MeshRight>
class Append
{
public:
typedef typename MeshLeft::ScalarType ScalarLeft;
typedef typename MeshLeft::CoordType CoordLeft;
typedef typename MeshLeft::VertexType VertexLeft;
typedef typename MeshLeft::EdgeType EdgeLeft;
typedef typename MeshLeft::FaceType FaceLeft;
typedef typename MeshLeft::HEdgeType HEdgeLeft;
typedef typename MeshLeft::VertexPointer VertexPointerLeft;
typedef typename MeshLeft::VertexIterator VertexIteratorLeft;
typedef typename MeshLeft::EdgeIterator EdgeIteratorLeft;
typedef typename MeshLeft::HEdgeIterator HEdgeIteratorLeft;
typedef typename MeshLeft::FaceIterator FaceIteratorLeft;
typedef typename MeshRight::ScalarType ScalarRight;
typedef typename MeshRight::CoordType CoordRight;
typedef typename MeshRight::VertexType VertexRight;
typedef typename MeshRight::EdgeType EdgeRight;
typedef typename MeshRight::HEdgeType HEdgeRight;
typedef typename MeshRight::FaceType FaceRight;
typedef typename MeshRight::VertexPointer VertexPointerRight;
typedef typename MeshRight::VertexIterator VertexIteratorRight;
typedef typename MeshRight::EdgeIterator EdgeIteratorRight;
typedef typename MeshRight::HEdgeIterator HEdgeIteratorRight;
typedef typename MeshRight::FaceIterator FaceIteratorRight;
typedef typename MeshRight::FacePointer FacePointerRight;
struct Remap{
std::vector<int> vert,face,edge, hedge;
};
static void ImportVertexAdj(MeshLeft &ml, MeshRight &mr, VertexLeft &vl, VertexRight &vr, Remap &remap, bool sel ){
// Vertex to Edge Adj
if(vcg::tri::HasVEAdjacency(ml) && vcg::tri::HasVEAdjacency(mr)){
size_t i = Index(mr,vr.cVEp());
vl.VEp() = (i>ml.edge.size())? 0 : &ml.edge[remap.edge[i]];
vl.VEi() = vr.VEi();
}
if(!sel){
// Vertex to Face Adj
if(vcg::tri::HasPerVertexVFAdjacency(ml) && vcg::tri::HasPerVertexVFAdjacency(mr) &&
vcg::tri::HasPerFaceVFAdjacency(ml) && vcg::tri::HasPerFaceVFAdjacency(mr)
){
size_t i = Index(mr,vr.cVFp());
vl.VFp() = (i>ml.face.size())? 0 :&ml.face[remap.face[i]];
vl.VFi() = vr.VFi();
}
// Vertex to HEdge Adj
if(vcg::tri::HasVHAdjacency(ml) && vcg::tri::HasVHAdjacency(mr)){
vl.VHp() = &ml.hedge[remap.hedge[Index(mr,vr.cVHp())]];
vl.VHi() = vr.VHi();
}
}
}
static void ImportEdgeAdj(MeshLeft &ml, MeshRight &mr, EdgeLeft &el, const EdgeRight &er, Remap &remap, bool sel ){
// Edge to Vertex Adj
if(vcg::tri::HasEVAdjacency(ml) && vcg::tri::HasEVAdjacency(mr)){
el.EVp(0) = &ml.vert[remap.vert[Index(mr,er.cEVp(0))]];
el.EVp(1) = &ml.vert[remap.vert[Index(mr,er.cEVp(1))]];
}
if(!sel){
// Edge to Edge Adj
if(vcg::tri::HasEEAdjacency(ml) && vcg::tri::HasEEAdjacency(mr))
for(unsigned int vi = 0; vi < 2; ++vi)
{
size_t i = Index(mr,er.cEEp(vi));
el.EEp(i) = (i>ml.edge.size())? 0 : &ml.edge[remap.edge[i]];
el.EEi(i) = er.cEEi(i);
}
// Edge to Face Adj
if(vcg::tri::HasEFAdjacency(ml) && vcg::tri::HasEFAdjacency(mr)){
size_t i = Index(mr,er.cEFp());
el.EFp() = (i>ml.face.size())? 0 :&ml.face[remap.face[i]];
el.EFi() = er.cEFi();
}
// Edge to HEdge Adj
if(vcg::tri::HasEHAdjacency(ml) && vcg::tri::HasEHAdjacency(mr))
el.EHp() = &ml.hedge[remap.hedge[Index(mr,er.cEHp())]];
}
}
static void ImportFaceAdj(MeshLeft &ml, MeshRight &mr, FaceLeft &fl, const FaceRight &fr, Remap &remap, bool sel ){
// Face to Vertex Adj
if(vcg::tri::HasFVAdjacency(ml) && vcg::tri::HasFVAdjacency(mr)){
assert(fl.VN() == fr.VN());
for( int i = 0; i < fl.VN(); ++i )
fl.V(i) = &ml.vert[remap.vert[Index(mr,fr.V(i))]];
}
if(!sel){
// Face to Edge Adj
if(vcg::tri::HasFEAdjacency(ml) && vcg::tri::HasFEAdjacency(mr)){
assert(fl.VN() == fr.VN());
for( int vi = 0; vi < fl.VN(); ++vi ){
size_t i = Index(mr,fr.cFEp(vi));
fl.FEp(i) = (i>ml.edge.size())? 0 : &ml.edge[remap.edge[i]];
}
}
// Face to Face Adj
if(vcg::tri::HasFFAdjacency(ml) && vcg::tri::HasFFAdjacency(mr)){
assert(fl.VN() == fr.VN());
for( int vi = 0; vi < fl.VN(); ++vi ){
size_t i = Index(mr,fr.cFFp(vi));
fl.FFp(vi) = (i>ml.face.size()) ? 0 :&ml.face[remap.face[i]];
fl.FFi(vi) = fr.cFFi(vi);
}
}
// Face to HEedge Adj
if(vcg::tri::HasFHAdjacency(ml) && vcg::tri::HasFHAdjacency(mr))
fl.FHp() = &ml.hedge[remap.hedge[Index(mr,fr.cFHp())]];
}
}
static void ImportHEdgeAdj(MeshLeft &ml, MeshRight &mr, HEdgeLeft &hl, const HEdgeRight &hr, Remap &remap, bool /*sel*/ ){
// HEdge to Vertex Adj
if(vcg::tri::HasHVAdjacency(ml) && vcg::tri::HasHVAdjacency(mr))
hl.HVp() = &ml.vert[remap.vert[Index(mr,hr.cHVp())]];
// HEdge to Edge Adj
if(vcg::tri::HasHEAdjacency(ml) && vcg::tri::HasHEAdjacency(mr)){
size_t i = Index(mr,hr.cHEp()) ;
hl.HEp() = (i>ml.edge.size())? 0 : &ml.edge[remap.edge[i]];
}
// HEdge to Face Adj
if(vcg::tri::HasHFAdjacency(ml) && vcg::tri::HasHFAdjacency(mr)){
size_t i = Index(mr,hr.cHFp());
hl.HFp() = (i>ml.face.size())? 0 :&ml.face[remap.face[i]];
}
// HEdge to Opposite HEdge Adj
if(vcg::tri::HasHOppAdjacency(ml) && vcg::tri::HasHOppAdjacency(mr))
hl.HOp() = &ml.hedge[remap.hedge[Index(mr,hr.cHOp())]];
// HEdge to Next HEdge Adj
if(vcg::tri::HasHNextAdjacency(ml) && vcg::tri::HasHNextAdjacency(mr))
hl.HNp() = &ml.hedge[remap.hedge[Index(mr,hr.cHNp())]];
// HEdge to Next HEdge Adj
if(vcg::tri::HasHPrevAdjacency(ml) && vcg::tri::HasHPrevAdjacency(mr))
hl.HPp() = &ml.hedge[remap.hedge[Index(mr,hr.cHPp())]];
}
// Append Right Mesh to the Left Mesh
// Append::Mesh(ml, mr) is equivalent to ml += mr.
// Note MeshRigth could be costant...
static void Mesh(MeshLeft& ml, MeshRight& mr, const bool selected = false){
// phase 1. allocate on ml vert,edge,face, hedge to accomodat those of mr
// and build the remapping for all
Remap remap;
// vertex
remap.vert.resize(mr.vert.size(),-1);
VertexIteratorRight vi;
for(vi=mr.vert.begin();vi!=mr.vert.end();++vi)
if(!(*vi).IsD() && (!selected || (*vi).IsS())){
int ind=Index(mr,*vi);
assert(remap.vert[ind]==-1);
VertexIteratorLeft vp;
vp=Allocator<MeshLeft>::AddVertices(ml,1);
(*vp).ImportData(*(vi));
remap.vert[ind]=Index(ml,*vp);
}
// edge
remap.edge.resize(mr.edge.size(),-1);
EdgeIteratorRight ei;
for(ei=mr.edge.begin(); ei!=mr.edge.end();++ei)
if(!(*ei).IsD() && (!selected || (*ei).IsS())){
int ind=Index(mr,*ei);
assert(remap.edge[ind]==-1);
EdgeIteratorLeft ep;
ep=Allocator<MeshLeft>::AddEdges(ml,1);
(*ep).ImportData(*(ei));
remap.edge[ind]=Index(ml,*ep);
}
// face
vcg::tri::Allocator<MeshRight>::CompactFaceVector(mr);
remap.face.resize(mr.face.size(),-1);
FaceIteratorRight fi;
for(fi=mr.face.begin();fi!=mr.face.end();++fi)
if(!(*fi).IsD() && (!selected || (*fi).IsS())){
int ind=Index(mr,*fi);
assert(remap.face[ind]==-1);
FaceIteratorLeft fp;
fp=Allocator<MeshLeft>::AddFaces(ml,1);
(*fp).ImportData(*(fi));
remap.face[ind]=Index(ml,*fp);
}
// hedge
remap.hedge.resize(mr.hedge.size(),-1);
HEdgeIteratorRight hi;
for(hi=mr.hedge.begin();hi!=mr.hedge.end();++hi)
if(!(*hi).IsD() && (!selected || (*hi).IsS())){
int ind=Index(mr,*hi);
assert(remap.hedge[ind]==-1);
HEdgeIteratorLeft hp;
hp=Allocator<MeshLeft>::AddHEdges(ml,1);
(*hp).ImportData(*(hi));
remap.hedge[ind]=Index(ml,*hp);
}
// phase 2.
// copy data from ml to its corresponding elements in ml and adjacencies
// vertex
for(vi=mr.vert.begin();vi!=mr.vert.end();++vi)
if( !(*vi).IsD() && (!selected || (*vi).IsS())){
ml.vert[remap.vert[Index(mr,*vi)]].ImportData(*vi);
ImportVertexAdj(ml,mr,ml.vert[remap.vert[Index(mr,*vi)]],*vi,remap,selected);
}
// edge
for(ei=mr.edge.begin();ei!=mr.edge.end();++ei)
if(!(*ei).IsD() && (!selected || (*ei).IsS())){
ml.edge[remap.edge[Index(mr,*ei)]].ImportData(*ei);
ImportEdgeAdj(ml,mr,ml.edge[remap.edge[Index(mr,*ei)]],*ei,remap,selected);
}
// face
bool wedgetexcoord = vcg::tri::HasPerWedgeTexCoord(mr);
for(fi=mr.face.begin();fi!=mr.face.end();++fi)
if(!(*fi).IsD() && (!selected || (*fi).IsS())){
if(wedgetexcoord)
for(int i = 0; i < (*fi).VN(); ++i)
(*fi).WT(i).n() += ml.textures.size();
ml.face[remap.face[Index(mr,*fi)]].ImportData(*fi);
ImportFaceAdj(ml,mr,ml.face[remap.face[Index(mr,*fi)]],*fi,remap,selected);
}
// hedge
for(hi=mr.hedge.begin();hi!=mr.hedge.end();++hi)
if(!(*hi).IsD() && (!selected || (*hi).IsS())){
ml.hedge[remap.hedge[Index(mr,*hi)]].ImportData(*hi);
ImportHEdgeAdj(ml,mr,ml.hedge[remap.hedge[Index(mr,*hi)]],*hi,remap,selected);
}
// phase 3.
// take care of other per mesh data: textures, attributes
// At the end concatenate the vector with texture names.
ml.textures.insert(ml.textures.end(),mr.textures.begin(),mr.textures.end());
// Attributes. Copy only those attributes that are present in both meshes
// Two attributes in different meshes are considered the same if they have the same
// name and the same type. This may be deceiving because they could in fact have
// different semantic, but this is up to the developer.
// If the left mesh has attributes that are not in the right mesh, their values for the elements
// of the right mesh will be uninitialized
// to be done.
// note: we need to assign attribute values without knowing their type
}
static void Selected(MeshLeft& ml, MeshRight& mr)
{
Mesh(ml,mr,true);
}
}; // end of class Append
} // End Namespace TriMesh
} // End Namespace vcg
#endif