301 lines
7.9 KiB
C++
301 lines
7.9 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
|
|
$Log: not supported by cvs2svn $
|
|
Revision 1.2 2004/03/10 00:35:24 cignoni
|
|
added a math namespace reference
|
|
|
|
Revision 1.1 2004/02/10 01:11:28 cignoni
|
|
Edited Comments and GPL license
|
|
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCGLIB_POINT4
|
|
#define __VCGLIB_POINT4
|
|
|
|
#include <vcg/space/point3.h>
|
|
|
|
namespace vcg {
|
|
|
|
/** \addtogroup space */
|
|
/*@{*/
|
|
/**
|
|
The templated class for representing a point in 4D space.
|
|
The class is templated over the ScalarType class that is used to represent coordinates. All the usual
|
|
operator overloading (* + - ...) is present. This class is also the base for vcg::Color4
|
|
*/
|
|
template <class T> class Point4
|
|
{
|
|
protected:
|
|
T _v[4];
|
|
|
|
public:
|
|
typedef T scalar;
|
|
|
|
|
|
inline Point4 () { }
|
|
inline Point4 ( const T nx, const T ny, const T nz , const T nw )
|
|
{
|
|
_v[0] = nx; _v[1] = ny; _v[2] = nz; _v[3] = nw;
|
|
}
|
|
inline Point4 ( const T p[4] )
|
|
{
|
|
_v[0] = p[0]; _v[1]= p[1]; _v[2] = p[2]; _v[3]= p[3];
|
|
}
|
|
inline Point4 ( const Point4 & p )
|
|
{
|
|
_v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2]; _v[3]= p._v[3];
|
|
}
|
|
inline Point4 ( const Point3<T> & p )
|
|
{
|
|
_v[0] = p.V(0);
|
|
_v[1] = p.V(1);
|
|
_v[2] = p.V(2);
|
|
_v[3] = 1.0;
|
|
}
|
|
inline Point4 & operator = ( const Point4 & p )
|
|
{
|
|
_v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2]; _v[3]= p._v[3];
|
|
return *this;
|
|
}
|
|
inline T &x() {return _v[0];}
|
|
inline T &y() {return _v[1];}
|
|
inline T &z() {return _v[2];}
|
|
inline T &w() {return _v[3];}
|
|
inline const T & operator [] ( const int i ) const
|
|
{
|
|
assert(i>=0 && i<4);
|
|
return _v[i];
|
|
}
|
|
inline T & operator [] ( const int i )
|
|
{
|
|
assert(i>=0 && i<4);
|
|
return _v[i];
|
|
}
|
|
inline T const * V() const
|
|
{
|
|
return _v;
|
|
}
|
|
inline const T & V ( const int i ) const
|
|
{
|
|
assert(i>=0 && i<4);
|
|
return _v[i];
|
|
}
|
|
inline T & V ( const int i )
|
|
{
|
|
assert(i>=0 && i<4);
|
|
return _v[i];
|
|
}
|
|
|
|
inline Point4 operator + ( const Point4 & p) const
|
|
{
|
|
return Point4( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2], _v[3]+p._v[3] );
|
|
}
|
|
inline Point4 operator - ( const Point4 & p) const
|
|
{
|
|
return Point4( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2], _v[3]-p._v[3] );
|
|
}
|
|
inline Point4 operator * ( const T s ) const
|
|
{
|
|
return Point4( _v[0]*s, _v[1]*s, _v[2]*s, _v[3]*s );
|
|
}
|
|
inline Point4 operator / ( const T s ) const
|
|
{
|
|
return Point4( _v[0]/s, _v[1]/s, _v[2]/s, _v[3]/s );
|
|
}
|
|
inline T operator * ( const Point4 & p ) const
|
|
{
|
|
return _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] + _v[3]*p._v[3];
|
|
}
|
|
inline Point4 & operator += ( const Point4 & p)
|
|
{
|
|
_v[0] += p._v[0]; _v[1] += p._v[1]; _v[2] += p._v[2]; _v[3] += p._v[3];
|
|
return *this;
|
|
}
|
|
inline Point4 & operator -= ( const Point4 & p )
|
|
{
|
|
_v[0] -= p._v[0]; _v[1] -= p._v[1]; _v[2] -= p._v[2]; _v[3] -= p._v[3];
|
|
return *this;
|
|
}
|
|
inline Point4 & operator *= ( const T s )
|
|
{
|
|
_v[0] *= s; _v[1] *= s; _v[2] *= s; _v[3] *= s;
|
|
return *this;
|
|
}
|
|
inline Point4 & operator /= ( const T s )
|
|
{
|
|
_v[0] /= s; _v[1] /= s; _v[2] /= s; _v[3] /= s;
|
|
return *this;
|
|
}
|
|
inline T Norm() const
|
|
{
|
|
return Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] );
|
|
}
|
|
inline T SquaredNorm() const
|
|
{
|
|
return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3];
|
|
}
|
|
|
|
inline Point4 & Normalize()
|
|
{
|
|
T n = Sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] );
|
|
if(n>0.0) { _v[0] /= n; _v[1] /= n; _v[2] /= n; _v[3] /= n; }
|
|
return *this;
|
|
}
|
|
inline Point4 operator - () const
|
|
{
|
|
return Point4( -_v[0], -_v[1], -_v[2], -_v[3] );
|
|
}
|
|
inline bool operator == ( const Point4& p ) const
|
|
{
|
|
return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2] && _v[3]==p._v[3];
|
|
}
|
|
inline bool operator != ( const Point4 & p ) const
|
|
{
|
|
return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2] || _v[3]!=p._v[3];
|
|
}
|
|
inline bool operator < ( Point4 const & p ) const
|
|
{
|
|
return (_v[3]!=p._v[3])?(_v[3]<p._v[3]):
|
|
(_v[2]!=p._v[2])?(_v[2]<p._v[2]):
|
|
(_v[1]!=p._v[1])?(_v[1]<p._v[1]):
|
|
(_v[0]<p._v[0]);
|
|
}
|
|
inline bool operator > ( const Point4 & p ) const
|
|
{
|
|
return (_v[3]!=p._v[3])?(_v[3]>p._v[3]):
|
|
(_v[2]!=p._v[2])?(_v[2]>p._v[2]):
|
|
(_v[1]!=p._v[1])?(_v[1]>p._v[1]):
|
|
(_v[0]>p._v[0]);
|
|
}
|
|
inline bool operator <= ( const Point4 & p ) const
|
|
{
|
|
return (_v[3]!=p._v[3])?(_v[3]< p._v[3]):
|
|
(_v[2]!=p._v[2])?(_v[2]< p._v[2]):
|
|
(_v[1]!=p._v[1])?(_v[1]< p._v[1]):
|
|
(_v[0]<=p._v[0]);
|
|
}
|
|
inline bool operator >= ( const Point4 & p ) const
|
|
{
|
|
return (_v[3]!=p._v[3])?(_v[3]> p._v[3]):
|
|
(_v[2]!=p._v[2])?(_v[2]> p._v[2]):
|
|
(_v[1]!=p._v[1])?(_v[1]> p._v[1]):
|
|
(_v[0]>=p._v[0]);
|
|
}
|
|
/// Questa funzione estende il vettore ad un qualsiasi numero di dimensioni
|
|
/// paddando gli elementi estesi con zeri
|
|
inline T Ext( const int i ) const
|
|
{
|
|
if(i>=0 && i<=3) return _v[i];
|
|
else return 0;
|
|
}
|
|
|
|
T stable_dot ( const Point4<T> & p ) const
|
|
{
|
|
T k[4];
|
|
|
|
k[0] = _v[0]*p._v[0];
|
|
k[1] = _v[1]*p._v[1];
|
|
k[2] = _v[2]*p._v[2];
|
|
k[3] = _v[3]*p._v[3];
|
|
sort(k+0,k+4, math::MagnitudoComparer<T>() );
|
|
T q = k[0];
|
|
q += k[1];
|
|
q += k[2];
|
|
q += k[3];
|
|
return q;
|
|
}
|
|
|
|
template <class Q>
|
|
inline void Import( const Point4<Q> & b )
|
|
{
|
|
_v[0] = T(b[0]);
|
|
_v[1] = T(b[1]);
|
|
_v[2] = T(b[2]);
|
|
_v[3] = T(b[3]);
|
|
}
|
|
|
|
}; // end class definition
|
|
|
|
#ifdef __VCG_USE_P4_INTRINSIC__
|
|
#include <vcg/p4/point4p4.h>
|
|
#endif
|
|
|
|
template <class T>
|
|
T Angle( const Point4<T>& p1, const Point4<T> & p2 )
|
|
{
|
|
T w = p1.Norm()*p2.Norm();
|
|
if(w==0) return -1;
|
|
T t = (p1*p2)/w;
|
|
if(t>1) t=1;
|
|
return T( acos(t) );
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
inline T Norm( const Point4<T> & p )
|
|
{
|
|
return p.Norm();
|
|
}
|
|
|
|
template <class T>
|
|
inline T SquaredNorm( const Point4<T> & p )
|
|
{
|
|
return p.SquaredNorm();
|
|
}
|
|
|
|
/* Deprecato
|
|
template <class T>
|
|
inline Point4<T> & Normalize( Point4<T> & p ){
|
|
T n = Sqrt( p._v[0]*p._v[0] + p._v[1]*p._v[1] + p._v[2]*p._v[2] + p._v[3]*p._v[3] );
|
|
if(n>0.0) p/=n;
|
|
return p;
|
|
}
|
|
*/
|
|
|
|
template <class T>
|
|
inline T Distance( const Point4<T> & p1, const Point4<T> & p2 )
|
|
{
|
|
return Norm(p1-p2);
|
|
}
|
|
|
|
template <class T>
|
|
inline T SquaredDistance( const Point4<T> & p1, const Point4<T> & p2 )
|
|
{
|
|
return SquaredNorm(p1-p2);
|
|
}
|
|
|
|
|
|
typedef Point4<short> Point4s;
|
|
typedef Point4<int> Point4i;
|
|
typedef Point4<float> Point4f;
|
|
typedef Point4<double> Point4d;
|
|
|
|
/*@}*/
|
|
|
|
} // end namespace
|
|
#endif
|