142 lines
6.1 KiB
C++
142 lines
6.1 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifdef __GNUC__
|
|
#warning You are including deprecated math stuff
|
|
#endif
|
|
|
|
enum {Dimension = SizeAtCompileTime};
|
|
typedef typename ei_to_vcgtype<Matrix>::type EquivVcgType;
|
|
typedef vcg::VoidType ParamType;
|
|
typedef Matrix PointType;
|
|
using Base::V;
|
|
|
|
// automatic conversion to similar vcg types
|
|
// the otherway round is implicit because they inherits this Matrix tyoe
|
|
operator EquivVcgType& () { return *reinterpret_cast<EquivVcgType*>(this); }
|
|
operator const EquivVcgType& () const { return *reinterpret_cast<const EquivVcgType*>(this); }
|
|
|
|
/** \deprecated use m.cast<NewScalar>() */
|
|
/// importer for points with different scalar type and-or dimensionality
|
|
// FIXME the Point3/Point4 specialization were only for same sizes ??
|
|
// while the Point version was generic like this one
|
|
template<typename OtherDerived>
|
|
inline void Import(const MatrixBase<OtherDerived>& b)
|
|
{
|
|
ei_import_selector<Matrix,OtherDerived>::run(*this,b.derived());
|
|
}
|
|
|
|
/// constructor for points with different scalar type and-or dimensionality
|
|
template<typename OtherDerived>
|
|
static inline Matrix Construct(const MatrixBase<OtherDerived>& b)
|
|
{ Matrix p; p.Import(b); return p; }
|
|
|
|
/// importer for homogeneous points
|
|
template<typename OtherDerived>
|
|
inline void ImportHomo(const MatrixBase<OtherDerived>& b)
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix);
|
|
EIGEN_STATIC_ASSERT_FIXED_SIZE(Matrix);
|
|
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,SizeAtCompileTime-1);
|
|
|
|
this->template start<SizeAtCompileTime-1> = b;
|
|
data()[SizeAtCompileTime-1] = Scalar(1.0);
|
|
}
|
|
|
|
/// constructor for homogeneus point.
|
|
template<typename OtherDerived>
|
|
static inline Matrix ConstructHomo(const MatrixBase<OtherDerived>& b)
|
|
{ Matrix p; p.ImportHomo(b); return p; }
|
|
|
|
inline const Scalar &X() const { return data()[0]; }
|
|
inline const Scalar &Y() const { return data()[1]; }
|
|
inline const Scalar &Z() const { assert(SizeAtCompileTime>2); return data()[2]; }
|
|
inline Scalar &X() { return data()[0]; }
|
|
inline Scalar &Y() { return data()[1]; }
|
|
inline Scalar &Z() { assert(SizeAtCompileTime>2); return data()[2]; }
|
|
|
|
/** note, W always returns the last entry */
|
|
inline Scalar& W() { return data()[SizeAtCompileTime-1]; }
|
|
/** note, W always returns the last entry */
|
|
inline const Scalar& W() const { return data()[SizeAtCompileTime-1]; }
|
|
|
|
/** \deprecated use .data() */
|
|
EIGEN_DEPRECATED Scalar* V() { return data(); }
|
|
/** \deprecated use .data() */
|
|
EIGEN_DEPRECATED const Scalar* V() const { return data(); }
|
|
|
|
/** \deprecated use m.coeff(i) or m[i] or m(i) */
|
|
// overloaded to return a const reference
|
|
EIGEN_DEPRECATED inline const Scalar& V( const int i ) const
|
|
{
|
|
assert(i>=0 && i<SizeAtCompileTime);
|
|
return data()[i];
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
// SPACE
|
|
//--------------------------------------------------------------------------------
|
|
|
|
/** Local to Glocal
|
|
* (provided for uniformity with other spatial classes. trivial for points) */
|
|
inline Matrix LocalToGlobal(ParamType p) const { return *this; }
|
|
/** Glocal to Local
|
|
* (provided for uniformity with other spatial classes. trivial for points) */
|
|
inline ParamType GlobalToLocal(PointType /*p*/) const { return ParamType(); }
|
|
|
|
/**
|
|
* Convert to polar coordinates from cartesian coordinates.
|
|
*
|
|
* Theta is the azimuth angle and ranges between [0, 360) degrees.
|
|
* Phi is the elevation angle (not the polar angle) and ranges between [-90, 90] degrees.
|
|
*
|
|
* \note Note that instead of the classical polar angle, which ranges between
|
|
* 0 and 180 degrees we opt for the elevation angle to obtain a more
|
|
* intuitive spherical coordinate system.
|
|
*/
|
|
void ToPolar(Scalar &ro, Scalar &theta, Scalar &phi) const
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix,3);
|
|
ro = this->norm();
|
|
theta = (Scalar)atan2(data()[2], data()[0]);
|
|
phi = (Scalar)asin(data()[1]/ro);
|
|
}
|
|
|
|
/**
|
|
* Convert from polar coordinates to cartesian coordinates.
|
|
*
|
|
* Theta is the azimuth angle and ranges between [0, 360) degrees.
|
|
* Phi is the elevation angle (not the polar angle) and ranges between [-90, 90] degrees.
|
|
*
|
|
* \note Note that instead of the classical polar angle, which ranges between
|
|
* 0 and 180 degrees, we opt for the elevation angle to obtain a more
|
|
* intuitive spherical coordinate system.
|
|
*/
|
|
void FromPolar(const Scalar &ro, const Scalar &theta, const Scalar &phi)
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix,3);
|
|
data()[0]= ro*ei_cos(theta)*ei_cos(phi);
|
|
data()[1]= ro*ei_sin(phi);
|
|
data()[2]= ro*ei_sin(theta)*ei_cos(phi);
|
|
}
|