vcglib/wrap/miq/param_stats.h

200 lines
6.5 KiB
C++

#ifndef PARAM_STATS_H
#define PARAM_STATS_H
#ifdef MIQ_USE_ROBUST
#include "predicates.h"
#endif
#include <vcg/space/triangle2.h>
template<typename CoordType2D>
inline bool IsFlipped(const CoordType2D &uv0,
const CoordType2D &uv1,
const CoordType2D &uv2)
{
#ifdef USE_ROBUST
double pa[2] = {uv0.X(), uv0.Y()};
double pb[2] = {uv1.X(), uv1.Y()};
double pc[2] = {uv2.X(), uv2.Y()};
return (orient2d(pa, pb, pc) < 0);
#else
vcg::Triangle2<typename CoordType2D::ScalarType> t2(uv0,uv1,uv2);
return (!t2.IsCCW());
#endif
}
template<typename FaceType>
inline bool IsFlipped( FaceType &f)
{
typedef typename FaceType::ScalarType ScalarType;
typedef typename vcg::Point2<ScalarType> CoordType2D;
CoordType2D uv0=f.WT(0).P();
CoordType2D uv1=f.WT(1).P();
CoordType2D uv2=f.WT(2).P();
return (IsFlipped(uv0,uv1,uv2));
}
template< class MeshType>
int NumFlips(MeshType &Tmesh)
{
int numFl=0;
for (unsigned int i=0;i<Tmesh.face.size();i++)
{
if (Tmesh.face[i].IsD())continue;
if (IsFlipped(Tmesh.face[i]))numFl++;
}
return numFl;
}
template< class MeshType>
void SelectFlippedFaces(MeshType &Tmesh)
{
typedef typename MeshType::ScalarType ScalarType;
typedef typename vcg::Point2<ScalarType> CoordType2D;
vcg::tri::UpdateFlags<MeshType>::FaceClearS(Tmesh);
for (unsigned int i=0;i<Tmesh.face.size();i++)
{
CoordType2D uv0=Tmesh.face[i].WT(0).P();
CoordType2D uv1=Tmesh.face[i].WT(1).P();
CoordType2D uv2=Tmesh.face[i].WT(2).P();
if (IsFlipped(uv0,uv1,uv2) ) Tmesh.face[i].SetS();
}
}
// Compute the lambda (distortion) of a triangle in the current
// parameerization from the Mixed Integer paper.
// f facet on which to compute distortion
// h scaling factor applied to cross field
// return the triangle's distortion
template< class FaceType>
typename FaceType::ScalarType Distortion(FaceType &f,typename FaceType::ScalarType h)
{
typedef typename FaceType::CoordType CoordType3D;
typedef typename FaceType::ScalarType ScalarType;
typedef typename vcg::Point2<ScalarType> CoordType2D;
typedef typename FaceType::ScalarType ScalarType;
//Facet_const_handle self = f;
assert(h > 0);
//TriangleIndex ftri = m_flattenedTriangles[f.index()];
//TriangleIndex tri = m_triangles[f.index()];
CoordType2D uv0 = f.WT(0).P();
CoordType2D uv1 = f.WT(1).P();
CoordType2D uv2 = f.WT(2).P();
CoordType3D p0 = f.P(0);
CoordType3D p1 = f.P(1);
CoordType3D p2 = f.P(2);
CoordType3D norm = (p1 - p0) ^ (p2 - p0);
ScalarType area2 = (norm).Norm();
ScalarType area2_inv = 1.0 / area2;
norm *= area2_inv;
if (area2 > 0) {
// Singular values of the Jacobian
CoordType3D neg_t0 = norm ^ (p2 - p1);
CoordType3D neg_t1 = norm ^ ( p0 - p2);
CoordType3D neg_t2 = norm ^ ( p1 - p0);
/*CoordType3D diffu = area2_inv * (uv0.X() * neg_t0 +
uv1.X() * neg_t1 + uv2.X() * neg_t2);
CoordType3D diffv = area2_inv * (uv0.Y() * neg_t0 +
uv1.Y() * neg_t1 + uv2.Y() * neg_t2);*/
CoordType3D diffu = (neg_t0 * uv0.X() +neg_t1 *uv1.X() + neg_t2 * uv2.X() )*area2_inv;
CoordType3D diffv = (neg_t0 * uv0.Y() + neg_t1*uv1.Y() + neg_t2*uv2.Y() )*area2_inv;
// first fundamental form
ScalarType I00 = diffu*diffu; // guaranteed non-neg
ScalarType I01 = diffu*diffv; // I01 = I10
ScalarType I11 = diffv*diffv; // guaranteed non-neg
// eigenvalues of a 2x2 matrix
// [a00 a01]
// [a10 a11]
// 1/2 * [ (a00 + a11) +/- sqrt((a00 - a11)^2 + 4 a01 a10) ]
ScalarType trI = I00 + I11; // guaranteed non-neg
ScalarType diffDiag = I00 - I11; // guaranteed non-neg
ScalarType sqrtDet = sqrt(std::max(0.0, diffDiag*diffDiag +
4 * I01 * I01)); // guaranteed non-neg
ScalarType sig1 = 0.5 * (trI + sqrtDet); // higher singular value
ScalarType sig2 = 0.5 * (trI - sqrtDet); // lower singular value
// Avoid sig2 < 0 due to numerical error
if (fabs(sig2) < 1.0e-8) sig2 = 0;
assert(sig1 >= 0);
assert(sig2 >= 0);
if (sig2 < 0) {
printf("Distortion will be NaN! sig1^2 is negative (%lg)\n",
sig2);
}
// The singular values of the Jacobian are the sqrts of the
// eigenvalues of the first fundamental form.
sig1 = sqrt(sig1);
sig2 = sqrt(sig2);
// distortion
ScalarType tao = IsFlipped(f) ? -1 : 1;
ScalarType factor = tao / h;
ScalarType lam = fabs(factor * sig1 - 1) + fabs(factor * sig2 - 1);
return lam;
}
else {
return 10; // something "large"
}
}
////////////////////////////////////////////////////////////////////////////
// Approximate the distortion laplacian using a uniform laplacian on
// the dual mesh:
// ___________
// \-1 / \-1 /
// \ / 3 \ /
// \-----/
// \-1 /
// \ /
//
// @param[in] f facet on which to compute distortion laplacian
// @param[in] h scaling factor applied to cross field
// @return distortion laplacian for f
///////////////////////////////////////////////////////////////////////////
template< class FaceType>
typename FaceType::ScalarType LaplaceDistortion(FaceType &f ,typename FaceType::ScalarType h)
{
typedef typename FaceType::ScalarType ScalarType;
ScalarType mydist = Distortion(f, h);
ScalarType lapl=0;
for (int i=0;i<3;i++)
lapl += (mydist- Distortion(*f.FFp(i), h));
return lapl;
}
template< class MeshType>
void SetFaceQualityByDistortion(MeshType &Tmesh,
typename MeshType::ScalarType h)
{
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::ScalarType ScalarType;
ScalarType minD=100;
ScalarType maxD=0;
///evaluate min and max
for (unsigned int i=0;i<Tmesh.face.size();i++)
{
ScalarType dist=Distortion<FaceType>(Tmesh.face[i],h);
if (dist>maxD)maxD=dist;
if (dist<minD)minD=dist;
Tmesh.face[i].Q()= dist;
}
for (unsigned int i=0;i<Tmesh.face.size();i++)
{
Tmesh.face[i].Q()= maxD-Tmesh.face[i].Q();
}
printf("Distortion MIN %4.4f \n",(float)minD);
printf("Distortion MAX %4.4f \n",(float)maxD);
}
#endif // PARAM_STATS_H