vcglib/apps/sample/trimesh_isosurface/trimesh_isosurface.cpp

146 lines
4.0 KiB
C++

#include <stdio.h>
#include <wrap/io_trimesh/export_ply.h>
#include <vcg/space/point3.h>
#include <vcg/space/box3.h>
#include <vcg/math/perlin_noise.h>
#include "trivial_walker.h"
#include <vcg/complex/trimesh/create/marching_cubes.h>
#include <vcg/complex/trimesh/create/extended_marching_cubes.h>
using namespace std;
using namespace vcg;
#include <vcg/simplex/vertex/vertex.h>
#include <vcg/simplex/face/face.h>
#include <vcg/complex/trimesh/base.h>
#include <vcg/complex/trimesh/allocate.h>
typedef float ScalarType;
class MyEdge;
class MyFace;
class MyVertex : public vcg::Vertex< ScalarType, MyEdge, MyFace > {};
class MyFace : public vcg::Face< MyVertex, MyEdge, MyFace> {};
class MyMesh : public vcg::tri::TriMesh< std::vector< MyVertex>, std::vector< MyFace > > {};
template <class VOX_TYPE>
class Volume
{
public:
typedef VOX_TYPE VoxelType;
vector<VoxelType> Vol;
Point3i sz; /// Dimensioni griglia come numero di celle per lato
const Point3i &ISize() {return sz;}; /// Dimensioni griglia come numero di celle per lato
void Init(Point3i _sz)
{
sz=_sz;
Vol.resize(sz[0]*sz[1]*sz[2]);
}
float Val(const int &x,const int &y,const int &z) const {
return cV(x,y,z).V();
//else return numeric_limits<float>::quiet_NaN( );
}
float &Val(const int &x,const int &y,const int &z) {
return V(x,y,z).V();
//else return numeric_limits<float>::quiet_NaN( );
}
VOX_TYPE &V(const int &x,const int &y,const int &z) {
return Vol[x+y*sz[0]+z*sz[0]*sz[1]];
}
const VOX_TYPE &cV(const int &x,const int &y,const int &z) const {
return Vol[x+y*sz[0]+z*sz[0]*sz[1]];
}
enum { XAxis=0,YAxis=1,ZAxis=2} VolumeAxis;
template < class VertexPointerType, enum VolumeAxis AxisVal >
void GetIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointerType &v, const float thr)
{
float f1 = Val(p1.X(), p1.Y(), p1.Z())-thr;
float f2 = Val(p2.X(), p2.Y(), p2.Z())-thr;
float u = (float) f1/(f1-f2);
if(AxisVal==XAxis) v->P().X() = (float) p1.X()*(1-u) + u*p2.X();
else v->P().X() = (float) p1.X();
if(AxisVal==YAxis) v->P().Y() = (float) p1.Y()*(1-u) + u*p2.Y();
else v->P().Y() = (float) p1.Y();
if(AxisVal==ZAxis) v->P().Z() = (float) p1.Z()*(1-u) + u*p2.Z();
else v->P().Z() = (float) p1.Z();
}
template < class VertexPointerType >
void GetXIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointerType &v, const float thr)
{ GetIntercept<VertexPointerType,XAxis>(p1,p2,v,thr); }
template < class VertexPointerType >
void GetYIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointerType &v, const float thr)
{ GetIntercept<VertexPointerType,YAxis>(p1,p2,v,thr); }
template < class VertexPointerType >
void GetZIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointerType &v, const float thr)
{ GetIntercept<VertexPointerType,ZAxis>(p1,p2,v,thr); }
};
template <class VolumeType>
class RawVolumeImporter
{
public:
enum DataType
{
// Funzioni superiori
UNDEF=0,
BYTE=1;
SHORT=2;
FLOAT=3;
};
static bool Open(const char *filename, VolumeType &V, Point3i sz, DataType d)
{
return true;
}
};
class SimpleVoxel
{
private:
float _v;
public:
float &V() {return _v;};
float V() const {return _v;};
};
typedef Volume<SimpleVoxel> MyVolume;
int main(int argc, char *argv[])
{
MyVolume volume;
typedef vcg::tri::TrivialWalker<MyMesh,MyVolume> MyWalker;
typedef vcg::tri::MarchingCubes<MyMesh, MyWalker> MyMarchingCubes;
MyWalker walker;
// Simple initialization of the volume with some cool perlin noise
volume.Init(Point3i(64,64,64));
for(int i=0;i<64;i++)
for(int j=0;j<64;j++)
for(int k=0;k<64;k++)
volume.Val(i,j,k)=(j-32)*(j-32)+(k-32)*(k-32) + i*10*math::Perlin::Noise(i*.2,j*.2,k*.2);
// MARCHING CUBES
MyMesh mc_mesh;
printf("[MARCHING CUBES] Building mesh...");
MyMarchingCubes mc(mc_mesh, walker);
walker.BuildMesh<MyMarchingCubes>(mc_mesh, volume, mc, 20*20);
vcg::tri::io::ExporterPLY<MyMesh>::Save( mc_mesh, "marching_cubes.ply");
printf("OK!\n");
};