2022-07-11 14:00:25 +02:00
|
|
|
import unittest
|
|
|
|
import quapy as qp
|
2023-02-09 19:39:16 +01:00
|
|
|
from quapy.data import LabelledCollection
|
2022-07-11 14:00:25 +02:00
|
|
|
from quapy.functional import strprev
|
|
|
|
from sklearn.linear_model import LogisticRegression
|
2024-01-29 09:43:29 +01:00
|
|
|
import numpy as np
|
2023-02-09 19:39:16 +01:00
|
|
|
from quapy.method.aggregative import PACC
|
2024-01-29 09:43:29 +01:00
|
|
|
import quapy.functional as F
|
2022-07-11 14:00:25 +02:00
|
|
|
|
|
|
|
|
|
|
|
class MyTestCase(unittest.TestCase):
|
2024-01-29 09:43:29 +01:00
|
|
|
|
2023-02-09 19:39:16 +01:00
|
|
|
def test_prediction_replicability(self):
|
2022-07-11 14:00:25 +02:00
|
|
|
|
2024-02-07 18:31:34 +01:00
|
|
|
dataset = qp.datasets.fetch_UCIBinaryDataset('yeast')
|
2022-07-11 14:00:25 +02:00
|
|
|
|
|
|
|
with qp.util.temp_seed(0):
|
|
|
|
lr = LogisticRegression(random_state=0, max_iter=10000)
|
|
|
|
pacc = PACC(lr)
|
|
|
|
prev = pacc.fit(dataset.training).quantify(dataset.test.X)
|
|
|
|
str_prev1 = strprev(prev, prec=5)
|
|
|
|
|
|
|
|
with qp.util.temp_seed(0):
|
|
|
|
lr = LogisticRegression(random_state=0, max_iter=10000)
|
|
|
|
pacc = PACC(lr)
|
|
|
|
prev2 = pacc.fit(dataset.training).quantify(dataset.test.X)
|
|
|
|
str_prev2 = strprev(prev2, prec=5)
|
|
|
|
|
|
|
|
self.assertEqual(str_prev1, str_prev2) # add assertion here
|
|
|
|
|
2024-01-29 09:43:29 +01:00
|
|
|
|
2023-02-09 19:39:16 +01:00
|
|
|
def test_samping_replicability(self):
|
|
|
|
|
|
|
|
def equal_collections(c1, c2, value=True):
|
2024-02-14 12:27:19 +01:00
|
|
|
self.assertEqual(np.all(c1.X == c2.X), value)
|
|
|
|
self.assertEqual(np.all(c1.y == c2.y), value)
|
2023-02-09 19:39:16 +01:00
|
|
|
if value:
|
|
|
|
self.assertEqual(np.all(c1.classes_ == c2.classes_), value)
|
|
|
|
|
|
|
|
X = list(map(str, range(100)))
|
|
|
|
y = np.random.randint(0, 2, 100)
|
|
|
|
data = LabelledCollection(instances=X, labels=y)
|
|
|
|
|
|
|
|
sample1 = data.sampling(50)
|
|
|
|
sample2 = data.sampling(50)
|
|
|
|
equal_collections(sample1, sample2, False)
|
|
|
|
|
|
|
|
sample1 = data.sampling(50, random_state=0)
|
|
|
|
sample2 = data.sampling(50, random_state=0)
|
|
|
|
equal_collections(sample1, sample2, True)
|
|
|
|
|
|
|
|
sample1 = data.sampling(50, *[0.7, 0.3], random_state=0)
|
|
|
|
sample2 = data.sampling(50, *[0.7, 0.3], random_state=0)
|
|
|
|
equal_collections(sample1, sample2, True)
|
|
|
|
|
|
|
|
with qp.util.temp_seed(0):
|
|
|
|
sample1 = data.sampling(50, *[0.7, 0.3])
|
|
|
|
with qp.util.temp_seed(0):
|
|
|
|
sample2 = data.sampling(50, *[0.7, 0.3])
|
|
|
|
equal_collections(sample1, sample2, True)
|
|
|
|
|
|
|
|
sample1 = data.sampling(50, *[0.7, 0.3], random_state=0)
|
|
|
|
sample2 = data.sampling(50, *[0.7, 0.3], random_state=0)
|
|
|
|
equal_collections(sample1, sample2, True)
|
|
|
|
|
|
|
|
sample1_tr, sample1_te = data.split_stratified(train_prop=0.7, random_state=0)
|
|
|
|
sample2_tr, sample2_te = data.split_stratified(train_prop=0.7, random_state=0)
|
|
|
|
equal_collections(sample1_tr, sample2_tr, True)
|
|
|
|
equal_collections(sample1_te, sample2_te, True)
|
|
|
|
|
|
|
|
with qp.util.temp_seed(0):
|
|
|
|
sample1_tr, sample1_te = data.split_stratified(train_prop=0.7)
|
|
|
|
with qp.util.temp_seed(0):
|
|
|
|
sample2_tr, sample2_te = data.split_stratified(train_prop=0.7)
|
|
|
|
equal_collections(sample1_tr, sample2_tr, True)
|
|
|
|
equal_collections(sample1_te, sample2_te, True)
|
|
|
|
|
2022-07-11 14:00:25 +02:00
|
|
|
|
2024-01-29 09:43:29 +01:00
|
|
|
def test_parallel_replicability(self):
|
|
|
|
|
|
|
|
train, test = qp.datasets.fetch_UCIMulticlassDataset('dry-bean').train_test
|
|
|
|
|
|
|
|
test = test.sampling(500, *[0.1, 0.0, 0.1, 0.1, 0.2, 0.5, 0.0])
|
|
|
|
|
|
|
|
with qp.util.temp_seed(10):
|
|
|
|
pacc = PACC(LogisticRegression(), val_split=2, n_jobs=2)
|
|
|
|
pacc.fit(train, val_split=0.5)
|
|
|
|
prev1 = F.strprev(pacc.quantify(test.instances))
|
|
|
|
|
|
|
|
with qp.util.temp_seed(0):
|
|
|
|
pacc = PACC(LogisticRegression(), val_split=2, n_jobs=2)
|
|
|
|
pacc.fit(train, val_split=0.5)
|
|
|
|
prev2 = F.strprev(pacc.quantify(test.instances))
|
|
|
|
|
|
|
|
with qp.util.temp_seed(0):
|
|
|
|
pacc = PACC(LogisticRegression(), val_split=2, n_jobs=2)
|
|
|
|
pacc.fit(train, val_split=0.5)
|
|
|
|
prev3 = F.strprev(pacc.quantify(test.instances))
|
|
|
|
|
|
|
|
print(prev1)
|
|
|
|
print(prev2)
|
|
|
|
print(prev3)
|
|
|
|
|
|
|
|
self.assertNotEqual(prev1, prev2)
|
|
|
|
self.assertEqual(prev2, prev3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2022-07-11 14:00:25 +02:00
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main()
|