146 lines
5.4 KiB
Python
146 lines
5.4 KiB
Python
|
from cgi import test
|
||
|
import os
|
||
|
import sys
|
||
|
from typing import Union, Callable
|
||
|
import numpy as np
|
||
|
from sklearn.base import BaseEstimator
|
||
|
from sklearn.linear_model import LogisticRegression
|
||
|
import pandas as pd
|
||
|
from sklearn.model_selection import GridSearchCV
|
||
|
from sklearn.neighbors import KernelDensity
|
||
|
from scipy.stats import multivariate_normal
|
||
|
import quapy as qp
|
||
|
from quapy.data import LabelledCollection
|
||
|
from quapy.protocol import APP, UPP
|
||
|
from quapy.method.aggregative import AggregativeProbabilisticQuantifier, _training_helper, cross_generate_predictions, \
|
||
|
DistributionMatching, _get_divergence
|
||
|
import scipy
|
||
|
from scipy import optimize
|
||
|
from statsmodels.nonparametric.kernel_density import KDEMultivariateConditional
|
||
|
from time import time
|
||
|
from sklearn.metrics.pairwise import rbf_kernel
|
||
|
|
||
|
|
||
|
def gram_matrix_mix_sum(bandwidth, X, Y=None, reduce=True):
|
||
|
# this adapts the output of the rbf_kernel function (pairwise evaluations of Gaussian kernels k(x,y))
|
||
|
# to contain pairwise evaluations of N(x|mu,Sigma1+Sigma2) with mu=y and Sigma1 and Sigma2 are
|
||
|
# two "scalar matrices" (h^2) I each, so Sigma1+Sigma2 has scalar 2(h^2) (h is the bandwidth)
|
||
|
variance = 2 * (bandwidth**2)
|
||
|
nRows,nD = X.shape
|
||
|
gamma = 1/(2*variance)
|
||
|
gram = rbf_kernel(X, Y, gamma=gamma)
|
||
|
|
||
|
norm_factor = 1/np.sqrt(((2*np.pi)**nD) * (variance**(nD)))
|
||
|
gram *= norm_factor
|
||
|
if Y is None:
|
||
|
# ignores the diagonal
|
||
|
aggr = (2 * np.triu(gram, 1)).sum()
|
||
|
else:
|
||
|
aggr = gram.sum()
|
||
|
return aggr
|
||
|
|
||
|
|
||
|
class KDEyclosed_efficient(AggregativeProbabilisticQuantifier):
|
||
|
|
||
|
def __init__(self, classifier: BaseEstimator, val_split=0.4, bandwidth=0.1, n_jobs=None, random_state=0):
|
||
|
self.classifier = classifier
|
||
|
self.val_split = val_split
|
||
|
self.bandwidth = bandwidth
|
||
|
self.n_jobs = n_jobs
|
||
|
self.random_state=random_state
|
||
|
|
||
|
def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, LabelledCollection] = None):
|
||
|
"""
|
||
|
|
||
|
:param data: the training set
|
||
|
:param fit_classifier: set to False to bypass the training (the learner is assumed to be already fit)
|
||
|
:param val_split: either a float in (0,1) indicating the proportion of training instances to use for
|
||
|
validation (e.g., 0.3 for using 30% of the training set as validation data), or a LabelledCollection
|
||
|
indicating the validation set itself, or an int indicating the number k of folds to be used in kFCV
|
||
|
to estimate the parameters
|
||
|
"""
|
||
|
|
||
|
# print('[fit] enter')
|
||
|
if val_split is None:
|
||
|
val_split = self.val_split
|
||
|
|
||
|
self.classifier, y, posteriors, classes, class_count = cross_generate_predictions(
|
||
|
data, self.classifier, val_split, probabilistic=True, fit_classifier=fit_classifier, n_jobs=self.n_jobs
|
||
|
)
|
||
|
|
||
|
assert all(sorted(np.unique(y)) == np.arange(data.n_classes)), \
|
||
|
'label name gaps not allowed in current implementation'
|
||
|
|
||
|
n = data.n_classes
|
||
|
h = self.bandwidth
|
||
|
|
||
|
P = posteriors
|
||
|
counts_inv = 1 / (data.counts())
|
||
|
|
||
|
nD = P.shape[1]
|
||
|
C = ((2 * np.pi) ** (-nD / 2)) * (self.bandwidth ** (-nD))
|
||
|
tr_tr_sums = np.zeros(shape=(n,n), dtype=float)
|
||
|
self.tr_C = []
|
||
|
for i in range(n):
|
||
|
for j in range(n):
|
||
|
if i > j:
|
||
|
tr_tr_sums[i,j] = tr_tr_sums[j,i]
|
||
|
else:
|
||
|
if i == j:
|
||
|
tr_tr_sums[i, j] = gram_matrix_mix_sum(h, P[y == i])
|
||
|
self.tr_C.append(C * sum(y == i))
|
||
|
else:
|
||
|
block = gram_matrix_mix_sum(h, P[y == i], P[y == j])
|
||
|
tr_tr_sums[i, j] = block
|
||
|
self.tr_C = np.asarray(self.tr_C)
|
||
|
self.Ptr = posteriors
|
||
|
self.ytr = y
|
||
|
self.tr_tr_sums = tr_tr_sums
|
||
|
self.counts_inv = counts_inv
|
||
|
|
||
|
return self
|
||
|
|
||
|
|
||
|
def aggregate(self, posteriors: np.ndarray):
|
||
|
|
||
|
# print('[aggregate] enter')
|
||
|
|
||
|
Ptr = self.Ptr
|
||
|
Pte = posteriors
|
||
|
|
||
|
K,nD = Pte.shape
|
||
|
Kinv = (1/K)
|
||
|
h = self.bandwidth
|
||
|
n = Ptr.shape[1]
|
||
|
y = self.ytr
|
||
|
tr_tr_sums = self.tr_tr_sums
|
||
|
|
||
|
C = ((2 * np.pi) ** (-nD / 2)) * (self.bandwidth ** (-nD))
|
||
|
partC = 0.5*np.log(gram_matrix_mix_sum(h, Pte) * Kinv * Kinv + C*Kinv)
|
||
|
|
||
|
|
||
|
tr_te_sums = np.zeros(shape=n, dtype=float)
|
||
|
for i in range(n):
|
||
|
tr_te_sums[i] = gram_matrix_mix_sum(h, Ptr[y==i], Pte) * self.counts_inv[i] * Kinv
|
||
|
|
||
|
def match(alpha):
|
||
|
partA = -np.log((alpha * tr_te_sums).sum())
|
||
|
alpha_l = alpha * self.counts_inv
|
||
|
partB = 0.5 * np.log((alpha_l[:,np.newaxis] * tr_tr_sums * alpha_l).sum() + (self.tr_C*(alpha_l**2)).sum())
|
||
|
return partA + partB + partC
|
||
|
|
||
|
# print('[aggregate] starts search')
|
||
|
|
||
|
# the initial point is set as the uniform distribution
|
||
|
uniform_distribution = np.full(fill_value=1 / n, shape=(n,))
|
||
|
# uniform_distribution = [0.2, 0.8]
|
||
|
|
||
|
# solutions are bounded to those contained in the unit-simplex
|
||
|
bounds = tuple((0, 1) for _ in range(n)) # values in [0,1]
|
||
|
constraints = ({'type': 'eq', 'fun': lambda x: 1 - sum(x)}) # values summing up to 1
|
||
|
r = optimize.minimize(match, x0=uniform_distribution, method='SLSQP', bounds=bounds, constraints=constraints)
|
||
|
# print('[aggregate] end')
|
||
|
return r.x
|
||
|
|
||
|
|