QuaPy/LeQua2022/baselines_T1.py

100 lines
4.0 KiB
Python
Raw Normal View History

import argparse
import pickle
from sklearn.linear_model import LogisticRegression as LR
from quapy.method.aggregative import *
2021-11-24 11:20:42 +01:00
from quapy.method.non_aggregative import MaximumLikelihoodPrevalenceEstimation as MLPE
import quapy.functional as F
from data import *
import os
import constants
2021-11-24 11:20:42 +01:00
# LeQua official baselines for task T1A (Binary/Vector) and T1B (Multiclass/Vector)
# =========================================================
def baselines():
yield CC(LR(n_jobs=-1)), "CC"
yield ACC(LR(n_jobs=-1)), "ACC"
yield PCC(LR(n_jobs=-1)), "PCC"
yield PACC(LR(n_jobs=-1)), "PACC"
yield EMQ(CalibratedClassifierCV(LR(), n_jobs=-1)), "SLD"
2021-11-24 11:20:42 +01:00
# yield HDy(LR(n_jobs=-1)) if args.task == 'T1A' else OneVsAll(HDy(LR()), n_jobs=-1), "HDy"
# yield MLPE(), "MLPE"
def main(args):
models_path = qp.util.create_if_not_exist(os.path.join(args.modeldir, args.task))
path_dev_vectors = os.path.join(args.datadir, 'dev_vectors')
path_dev_prevs = os.path.join(args.datadir, 'dev_prevalences.csv')
path_train = os.path.join(args.datadir, 'training_vectors.txt')
qp.environ['SAMPLE_SIZE'] = constants.SAMPLE_SIZE[args.task]
2021-11-24 11:20:42 +01:00
train = LabelledCollection.load(path_train, load_vector_documents)
nF = train.instances.shape[1]
print(f'number of classes: {len(train.classes_)}')
print(f'number of training documents: {len(train)}')
print(f'training prevalence: {F.strprev(train.prevalence())}')
print(f'training matrix shape: {train.instances.shape}')
2021-11-24 11:20:42 +01:00
# param_grid = {
# 'C': np.logspace(-3, 3, 7),
# 'class_weight': ['balanced', None]
# }
param_grid = {
2021-11-24 11:20:42 +01:00
'C': [1],
'class_weight': ['balanced']
}
def gen_samples():
2021-11-24 11:20:42 +01:00
return gen_load_samples(path_dev_vectors, ground_truth_path=path_dev_prevs, return_id=False,
load_fn=load_vector_documents, nF=nF)
for quantifier, q_name in baselines():
print(f'{q_name}: Model selection')
quantifier = qp.model_selection.GridSearchQ(
quantifier,
param_grid,
sample_size=None,
protocol='gen',
error=qp.error.mae,
refit=False,
verbose=True
).fit(train, gen_samples)
print(f'{q_name} got MAE={quantifier.best_score_:.3f} (hyper-params: {quantifier.best_params_})')
model_path = os.path.join(models_path, q_name+'.pkl')
print(f'saving model in {model_path}')
pickle.dump(quantifier.best_model(), open(model_path, 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='LeQua2022 Task T1A/T1B baselines')
parser.add_argument('task', metavar='TASK', type=str, choices=['T1A', 'T1B'],
help='Task name (T1A, T1B)')
parser.add_argument('datadir', metavar='DATA-PATH', type=str,
help='Path of the directory containing "dev_prevalences.csv", "training_vectors.txt", and '
'the directory "dev_vectors"')
parser.add_argument('modeldir', metavar='MODEL-PATH', type=str,
help='Path where to save the models. '
'A subdirectory named <task> will be automatically created.')
args = parser.parse_args()
if not os.path.exists(args.datadir):
raise FileNotFoundError(f'path {args.datadir} does not exist')
if not os.path.isdir(args.datadir):
raise ValueError(f'path {args.datadir} is not a valid directory')
if not os.path.exists(os.path.join(args.datadir, "dev_prevalences.csv")):
raise FileNotFoundError(f'path {args.datadir} does not contain "dev_prevalences.csv" file')
if not os.path.exists(os.path.join(args.datadir, "training_vectors.txt")):
raise FileNotFoundError(f'path {args.datadir} does not contain "training_vectors.txt" file')
if not os.path.exists(os.path.join(args.datadir, "dev_vectors")):
raise FileNotFoundError(f'path {args.datadir} does not contain "dev_vectors" folder')
main(args)